
ELA

EFFICIENT COMPUTATION OF ENCLOSURES FOR THE EXACT

SOLVENTS OF A QUADRATIC MATRIX EQUATION∗

BEHNAM HASHEMI† AND MEHDI DEHGHAN†

Abstract. None of the usual floating point numerical techniques available for solving the

quadratic matrix equation AX2 +BX +C = 0 with square matrices A,B, C and X, can provide an

exact solution; they can just obtain approximations to an exact solution. We use interval arithmetic

to compute an interval matrix which contains an exact solution to this quadratic matrix equation,

where we aim at obtaining narrow intervals for each entry. We propose a residual version of a modified

Krawczyk operator which has a cubic computational complexity, provided that A is nonsingular and

X and X + A−1B are diagonalizable. For the case that A is singular or nearly singular, but B is

nonsingular we provide an enclosure method analogous to a functional iteration method. Numerical

examples have also been given.

Key words. Quadratic matrix equation, Matrix square root, Interval analysis, Krawczyk oper-

ator, Automatic result verification.

AMS subject classifications. 65G20, 65F30.

1. Introduction. Many applications such as multivariate rational expectations

models [3], noisy Wiener-Hopf problems for Markov chains [11], quasi-birth death

process [14], and the quadratic eigenvalue problem

Q(λ)ν = (λ2A+ λB + C)ν = 0, λ ∈ C, ν ∈ C
n,(1.1)

which comes from the analysis of damped structural systems, vibration problems

[14, 15], and gyroscopic systems [12, 27] require the solution of the quadratic matrix

equation

Q(X) = AX2 +BX + C = 0.(1.2)

In (1.2) the known real matrices A,B,C and the unknown matrix X are of dimension

n×n. A matrix S satisfying Q(S) = 0 is called a solvent of Q(X). The matrix square

root problem is a special case of the quadratic matrix equation (1.2). More precisely

for A = I, B = 0 and C replaced by −C we have F (X) = X2 − C = 0 and every

square root S of the matrix C satisfies the equation F (S) = 0.

∗Received by the editors January 21, 2010. Accepted for publication August 16, 2010. Handling

Editor: Daniel B. Szyld.
†Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirk-

abir University of Technology, No.424 Hafez Avenue, Tehran 15914, Iran (hashemi am@aut.ac.ir,

mdehghan@aut.ac.ir).

519

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

520 B. Hashemi and M. Dehghan

The quadratic matrix equation (1.2) can have no solvents, a finite positive num-

ber, or infinitely many, as follows immediately from the theory of matrix square roots

[19]. Suppose that A is nonsingular in (1.2). Then Q(λ) in (1.1) has 2n eigenvalues,

all finite and can be ordered by their absolute values as

|λ1| ≥ |λ2| ≥ ≥ |λ2n|.(1.3)

A solvent S1 of Q(X) is called a dominant solvent if λ(S1) = {λ1, λ2, ..., λn} and

|λn| > |λn+1|, where the eigenvalues λi of Q(λ) are ordered as in (1.3). A solvent S2

of Q(X) is called a minimal solvent if λ(S2) = {λn+1, λn+2, ..., λ2n} and |λn| > |λn+1|.

Theorem 1.1. [19] Assume that the eigenvalues of Q(λ), ordered according to

(1.3) satisfy |λn| > |λn+1| and that corresponding to {λi}
n
i=1 and {λi}

2n
i=n+1 there are

two sets of linearly independent eigenvectors

{ν1, ν2, ..., νn}, {νn+1, νn+2, ..., ν2n}.

Then there exists a dominant solvent and a minimal solvent of Q(X). If, further, the

eigenvectors of Q(λ) are distinct then the dominant and minimal solvents are unique.

Research on the quadratic matrix equation (1.2) goes back at-least to the works

by Sylvester in the 1800s [19]. The problem of reducing an algebraic Riccati equa-

tion to (1.2) has been analyzed in [4]. Numerical methods for solving (1.2) has been

considered including two linearly convergent algorithms for computing a dominant

solvent [8, 10]. Davis [6, 7] used Newton’s method for solving (1.2). Kim [19, 20] and

Higham and Kim [14, 15] investigated theoretical and numerical results for solving the

quadratic matrix equation (1.2). They improved the global convergence properties of

Newton’s method with exact line searches and gave a complete characterization of so-

lutions in terms of the generalized Schur decomposition. Other numerical techniques,

including the functional iteration methods based on Bernoulli’s method, are described

and compared in [14]. Recently, Long, Hu and Zhang [23] used Newton’s method with

S̆amanskii technique to obtain a faster convergence than Newton’s method with exact

line searches.

All the above-mentioned numerical techniques rely on floating point arithmetic

and thus cannot provide an exact solvent of the quadratic matrix equation (1.2).

Indeed, they always obtain only approximations to an exact solvent. In this paper

we use interval arithmetic to provide reliable error bounds for each entry of an exact

solvent of (1.2). We start with an approximate solvent X̃, obtained by one of the

above-mentioned floating point methods, and aim at computing a tight interval matrix

X which contains an exact solvent of (1.2). Actually we use interval arithmetic to

find an interval matrix which is guaranteed to contain the error of an approximate

solution obtained by a floating point algorithm. In this manner our approach is an

example of dynamic error monitoring. The same task has been done by Frommer and

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 521

Hashemi for the matrix square root problem in [9]. Here, we try to generalize the

approach of [9] to obtain verified solvents of (1.2).

We assume that the reader is familiar with basic results of interval analysis [2, 26].

The reader can obtain more insight into verified numerical computations based on

interval analysis (also called scientific computing with automatic result verification,

self-validating methods, or inclusion theory) through hundreds of related publications

including many books like [1, 25]. In order to apply techniques of verified numerical

computations one needs a correct implementation of machine interval arithmetic. It

means that outward rounding has to be applied at each step of a numerical compu-

tation on a computer. A website that listed all the interval software is

http://www.cs.utep.edu/intervalcomp/intsoft.html.

An attractive interval arithmetic software is Intlab [32] which is a Matlab toolbox

supporting real and complex interval scalars, vectors, and matrices, as well as sparse

real and complex interval matrices. Intlab is available online at

http://www.ti3.tu-harburg.de/rump/intlab/.

Another new verification software is Versoft [29] which is a collection of Intlab

programs and is freely available at

http://uivtx.cs.cas.cz/~rohn/matlab/index.html.

The organization of this paper is as follows. In Section 2, we introduce our

notation and review some basic definitions and concepts. In Section 3 we present

the standard Krawczyk operator and show its formulation and difficulties once it has

been applied to the quadratic matrix equation (1.2). Section 4 contains our modified

Krawczyk operator for enclosing solutions of the quadratic matrix equation (1.2)

which dramatically reduces the computational cost of standard Krawczyk operator.

In Section 5 we propose a different enclosure method based on a functional iteration

method for the case that A is singular. Section 6 ends this paper with some numerical

examples.

2. Notation and preliminary concepts. Throughout this paper lower case

letters are used for scalars and vectors and upper case letters for matrices. We use

the standard notations of interval analysis [18]. So, all interval quantities will be

typeset in boldface. R denotes the field of real numbers, Rn×n the vector space of

n× n matrices with real coefficients, IR the set of intervals and IRn×n the set of all

n × n interval matrices. If x ∈ IR, then minx := x and maxx := x are the lower

and upper bounds of x, respectively. The width of x is widx := x − x ≥ 0, its

radius is radx := 1
2 (x− x), its midpoint is midx := 1

2 (x+ x), and the absolute value

of x is abs x := max{|x| | x ∈ x} = max{|x|, |x|}. Moreover, int(x) denotes the

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

522 B. Hashemi and M. Dehghan

topological interior of x. We also use the notation ICn×n the set of all n×n complex

interval matrices. There are at least two kinds of complex intervals: rectangular

intervals and circular intervals [2]. Circular complex interval arithmetic has better

algebraic properties than rectangular complex interval arithmetic [2]. We can also

implement circular arithmetic completely in terms of BLAS routines to speed up

interval computations [31]. This is one of the reasons why Intlab uses circular intervals

while working with complex intervals. In this paper we also use circular complex

intervals denoted by ICdisc. So, in the remaining part of this paper we use the

convention that each complex interval in IC is represented by a circular interval

in ICdisc. For interval vectors and matrices the above-mentioned operations will

be applied componentwise. Hence, for a complex (real) interval matrix A we can

write A = [midA− radA,mid A+ radA] where midA and radA are the complex

(real) center matrix and the complex (real) radius matrix of the interval matrix A,

respectively.

For two real matrices A ∈ Cm×n and B ∈ Ck×t the Kronecker product A⊗ B is

given by the mk × nt block matrix

A⊗B =







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






.

For A = (aij) ∈ Cm×n the vector vec(A) ∈ Cmn is obtained by stacking the columns

of A. We use a convention on the implicit relation between upper and lower case

letters when denoting variables, so z = vec(Z), u = vec(U) etc. For an interval

matrix A ∈ ICm×n the vector vec(A) is analogously defined to be an interval vector

a = vec(A) ∈ IC
mn.

The Hadamard (pointwise) division of two matrices A,B ∈ Cn×m which we de-

note as ·/ is

A · /B = C ∈ C
n×m, where C = (cij) with cij = aij/bij .

For d = (d1, . . . , dn)
T ∈ Cn, the matrix Diag (d) denotes the diagonal matrix in

C
n×n whose i-th diagonal entry is di. Also for D ∈ C

n×m we put Diag (D) =

Diag (vec(D)) ∈ Cnm×nm. The following properties of the Kronecker product, vec

operator and Hadamard division will be used several times in this paper.

Lemma 2.1. [16, 9] For real matrices A,B,C and D with compatible sizes we

have

a) (A⊗B)(C ⊗D) = (AC ⊗BD).

b) vec(ABC) = (CT ⊗A)vec(B).

c) Diag (A)−1vec(B) = vec(B · /A).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 523

The above identities do not hold if we replace the matrices by interval matrices.

However, the following enclosure properties are still valid.

Lemma 2.2. [9] Let A,B,C be interval matrices of compatible sizes. Then

{(CT ⊗A)vec(B) : A ∈ A, B ∈ B, C ∈ C} ⊆ vec((AB)C).

{(CT ⊗A)vec(B) : A ∈ A, B ∈ B, C ∈ C} ⊆ vec(A(BC).

The Fréchet derivative of a matrix function G : Cn×n → Cn×n at X ∈ Cn×n is a

linear mapping

C
n×n → C

n×n,

E 7−→ G′(X)E,

such that for all E ∈ Cn×n

G(X + E)−G(X)−G′(X)E = o(||E||),

and G′(X)E is said to be the Fréchet derivative of G applied to the direction E [13].

3. Standard Krawczyk operator and its use for the quadratic matrix

equation (1.2). Let f(x) = 0, f : D ⊆ Cn → Cn be a nonlinear system of equation

with a continuously differentiable function f , x̃ ∈ Cn, and x ∈ ICn. A mapping

S : D ×D → Cn×n is called a slope for f if

f(y)− f(x) = S(y, x)(y − x) for all x, y ∈ D.

Let S be an interval matrix containing all slopes S(y, x) for y ∈ x. If x ∈ x the stan-

dard choice is S = f ′(x), the interval arithmetic evaluation of f ′(x) which contains

the set {f ′(y) : y ∈ x}. For real case this follows from the mean-value theorem ap-

plied to each component fi, but for the complex case this is not correct and we cannot

use the mean-value theorem. However, for the complex function under consideration

in this paper, we can still enclose slopes by the interval arithmetic evaluation of the

derivative. This has been proved in Theorem 3.1 in the following.

Various fixed-point theorems applicable in finite or infinite dimensional spaces,

state roughly that, if a mapping maps a set into itself, then that mapping has a fixed-

point within that set [17]. For example, the Brouwer fixed-point theorem states that,

if D is homeomorphic to the closed unit ball in Rn and g is a continuous mapping

such that g maps D into D, then g has a fixed-point in D, i.e., there is an x ∈ D with

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

524 B. Hashemi and M. Dehghan

x = g(x). An interval extension g of g has the property that, if x is an interval vector

with x ⊆ D, then g(x) contains the range {g(x) : x ∈ x}. This interval extension

once evaluated with outward rounding can be used so that the floating point intervals

rigorously contain the actual range of g. Thus, if g(x) ⊆ x, we conclude that g has a

fixed point within x [5, 17, 28].

As a most popular fixed point form for f(x) = 0 one can define

g(x) = x−Rf(x),(3.1)

where R is usually taken to be a nonsingular matrix (a nonsingular linear operator in

D if D is a general linear space [28]). However, it is clear that one can define other

fixed point forms for f(x) = 0 depending on the function. Krawczyk interval operator

k(x̃,x) is actually based on a mean value extension of the fixed point form g in (3.1).

For a given matrix R ∈ Cn×n, the Krawczyk operator k(x̃,x) defined by

k(x̃,x) = x̃−Rf(x̃) + (I −R · S)(x− x̃), x̃ ∈ x ⊂ D.(3.2)

can then be used to find an enclosures for the solution of the nonlinear system of

equations f(x) = 0. Assume that S is an interval matrix containing all slopes S(y, x̃)

for y ∈ x. If

k(x̃,x) ⊆ intx,(3.3)

then f has a zero x∗ in k(x̃,x). Moreover, if S also contains all slopes S(y, x) for

x, y ∈ x, the zero x∗ is the only zero of f in x [21, 22, 24].

Let us note that the relation (3.3) is likely to hold only if R · S is close to the

identity, (i.e., R is a good approximation to the inverse of midS which is the standard

choice for R) and x̃ is a good a good approximation to a zero of f . A method for

obtaining trial interval vectors x around x̃ for which the relation (3.3) can be expected

to hold is the so-called ǫ-inflation [30].

Let F be the set of floating-point numbers following IEEE standard 754. By

A ∈ Fn×n we mean that A is an n×nmatrix with entries that are exactly representable

by a floating-point number in F. In this paper we consider the quadratic matrix

equation (1.2) and suppose that A,B,C ∈ Fn×n. The solution matrixX can, however,

be a matrix in Cn×n and we aim at computing enclosures for each entry of X . The

quadratic matrix equation (1.2) can be reformulated, interpreting matrices as vectors

in Cn2

via x = vec(X), a = vec(A), b = vec(B), c = vec(C) and using Lemma 2.1 as

q(x) = (XT ⊗A)x + (In ⊗B)x + c = 0.(3.4)

Because

Q(X + E) = Q(X) +AEX + (AX +B)E +AE2,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 525

the Fréchet derivative of the quadratic matrix equation (1.2) at X applied to the

direction E is given by

Q′(X)E = AEX + (AX +B)E.

Higham and Kim [15] note that if A is nonsingular then Q′(X) is nonsingular at a

dominant or minimal solvent and also at all solvents X if the eigenvalues of Q(λ) are

distinct. By Lemma 2.1, this translates into

q′(x)e = [XT ⊗ A+ In ⊗ (AX +B)]e, and q′(x) = XT ⊗A+ In ⊗ (AX +B).

Theorem 3.1. Consider the quadratic matrix equation (1.2). Then the interval

arithmetic evaluation of the derivative of q(x), i.e., the interval matrix XT ⊗A+ I⊗

(AX +B) contains slopes S(y, x) for all x, y ∈ x.

Proof. For x, y ∈ x we have

Q(Y)−Q(X) = AY 2 +BY + C −AX2 −BX − C = A(Y 2 −X2) +B(Y −X)

=
1

2
A(Y +X)(Y −X) +

1

2
A(Y −X)(Y +X) +B(Y −X)

= [
1

2
A(Y +X) +B](Y −X) +

1

2
A(Y −X)(Y +X).

So, using part b) of Lemma 2.1 we have

q(y)− q(x) = [I ⊗ (
1

2
A(Y +X) +B)](y − x) + (

1

2
(Y +X)T ⊗A)(y − x),

which means that

S(y, x) = I ⊗ [
1

2
A(Y +X) +B] +

1

2
(Y +X)T ⊗A,

is a slope for q. Therefore, for x, y ∈ x, the slope S(y, x) is contained in

S(x,x) = I ⊗ (AX +B) +XT ⊗A,

which is the interval arithmetic evaluation of derivative of the function q(x) = 0.

We note in passing that this theorem also justifies the use of interval arithmetic

evaluation of the derivative of the nonlinear function X2 − A = 0 for enclosing its

slopes in [9].

The standard Krawczyk operator (3.2) for the particular function q(x) is given as

k(x̃,x) = x̃−R
(

(X̃T ⊗A)x̃+ (In ⊗B)x̃+ c
)

+(3.5)

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

526 B. Hashemi and M. Dehghan

[In2 −R
(

midXT ⊗A+ I ⊗ (A ·midX +B)
)

](x− x̃),

where R ∈ Cn2
×n2

is an approximate inverse of q′(x) = midXT ⊗I+I⊗(A ·midX+

B). Generally computing such an approximate inverse R requires O(n6) operations.

On the other hand, the n2 × n2 matrix R does not have a nice Kronecker structure,

and it will usually be a full matrix. Each of the n2 columns of (I⊗(AX+B)+XT⊗A)

has n2 non-zeros. So, computing the product of R with (I⊗(AX+B)+XT ⊗A) will

require n4 operations for each entry, i.e. a total cost of O(n6). Overall, the dominant

cost in evaluating k(x̃,x) is O(n6). Therefore, the main disadvantage of the standard

Krawczyk operator (3.5) for enclosing a solvent of the quadratic matrix equation (1.2)

is its huge computational complexity.

So, we need an enclosing method which has been specially designed for the

quadratic matrix equation (1.2) and can exploit its structure so that we would be able

to obtain an enclosure more cheaply. To our best knowledge there is not any other

verification algorithm available in the literature which can be used for the quadratic

matrix equation (1.2). The next section is aimed at introducing such an approach.

4. A modified Krawczyk operator for the quadratic matrix equation

(1.2). The following slight generalization of (3.3) which expresses the essence of all

Krawczyk type verification methods has been proved in [9]. In its formulation we

represent x as x̃ + z, thus separating the approximate zero x̃ from the enclosure of

its error, z.

Theorem 4.1. [9] Assume that f : D ⊂ Cn → Cn is continuous in D. Let x̃ ∈ D

and z ∈ ICn be such that x̃ + z ⊆ D. Moreover, assume that S ⊂ Cn×n is a set of

matrices containing all slopes S(x̃, y) of f for y ∈ x̃+ z =: x. Finally, let R ∈ Cn×n.

Define the set Kf (x̃, R, z,S) by

Kf (x̃, R, z,S) := {−Rf(x̃) + (I −RS)z : S ∈ S, z ∈ z}.(4.1)

Then, if

Kf (x̃, R, z,S) ⊆ intz,(4.2)

the function f has a zero x∗ in x̃+ Kf (x̃, R, z,S) ⊆ x. Moreover, if S also contains

all slope matrices S(y, x) for x, y ∈ x, then this zero is unique in x.

We now develop another version of the Krawczyk operator, relying on Theo-

rem 4.1, which has a reasonable computational cost of O(n3), provided that A is

nonsingular, and X̃ and X̃+A−1B are diagonalizable. The non-singularity condition

of the matrix A in not so restrictive, because the matrix A in the quadratic matrix

equation (1.2) is often nonsingular, e.g., in applications in the overdamped quadratic

eigenvalue problems [19], gyroscopic systems [12, 27], noisy Wiener-Hopf problems for

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 527

Markov chains [11] and for the special case of matrix square roots. Assume that we

have the following spectral decompositions for X and X +A−1B

X = VXDXWX , with DX = Diag (λ1, . . . , λn) diagonal, VXWX = I,(4.3)

and

X +A−1B = VTDTWT , with DT = Diag (µ1, . . . , µn) diagonal, VTWT = I,(4.4)

in which VX , DX ,WX , VT , DT ,WT ∈ Cn×n. Here, VX and VT are the matrices of

right eigenvectors, and WX , WT are the matrices of left eigenvectors.

If X is an accurate approximate solvent of (1.2) then V −1
X XVX and WT (X +

A−1B)W−1
T will be close to the diagonal matrices DX and DT , respectively. Because

q′(x) = XT ⊗A+ In ⊗ (AX +B) = (In ⊗A) ·
(

XT ⊗ In + In ⊗ (X +A−1B)
)

=

(In ⊗A) · (WT
X ⊗ VT) ·

(

V T
XXTV −T

X ⊗ I + I ⊗ (WT (X +A−1B)W−1
T)

)

· (V T
X ⊗WT),

an approximate inverse for q′(x) would be in factorized form

R = (V −T
X ⊗W−1

T) ·∆−1 · (V T
X ⊗WT) · (In ⊗A−1),(4.5)

where ∆ = I ⊗DT +DX ⊗ I. We assume that VX ,WX , DX and VT ,WT , DT are ap-

proximated using a floating point method for computing the spectral decompositions

(4.3) and (4.4) like MATLAB’s eig function, So, we do not assume that VXWX = I

and VTWT = I hold exactly. Moreover, the diagonal matrices DX and DT will gen-

erally not have the exact eigenvalues of X and T on their diagonal. In other words,

VX ,WX , DX and VT ,WT , DT are all approximations (not the exact quantities) ob-

tained by a floating point algorithm.

We now introduce Algorithm 1 which by using Part b of Lemma 2.1 efficiently

compute

l = vec(L) := −R · q(x) = −(V −T
X ⊗W−1

T)∆−1(V T
X ⊗WT)(In ⊗A−1) · q(x).

Algorithm 1 Efficient computation of l = −Rq(x)

1: Compute Q = AX2 + BX + C

2: Compute G1 = A−1Q

3: Compute G2 = WTG1VX

4: Compute H = G2./D

5: Compute L = −W−1
T HV −1

X

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

528 B. Hashemi and M. Dehghan

On the other hand we need to compute (I −Rq′(x))z. For any matrix X ∈ Cn×n

and any vector z ∈ Cn2

we have

(

I −R ·
(

XT ⊗A+ I ⊗ (AX +B)
)

)

· z =

(V −T
X ⊗W−1

T)·∆−1·
(

∆− I ⊗ (WT (X +A−1B)W−1
T)− (V −1

X XVX)T ⊗ I
)

·
(

V T
X ⊗WT

)

·z.

The latter expression is rich in Kronecker products, so that using Lemma 2.1 b) we

can efficiently compute u = (I −R(XT ⊗A+ I ⊗ (AX +B)))z. See Algorithm 2.

Algorithm 2 Efficient computation of u = (I −Rq′(x))z

1: Compute Y = WTZVX {The j-th column of Y will be denoted Yj}

2: Compute S = V −1
X XVX {S is an n× n matrix with entries Sij}

3: Compute T = WT (X +A−1B)W−1
T

4: for i = 1, . . . , n do {Compute columns fi of matrix F}

5: Compute fi = (Diag (di)−SiiI−T)Yi {∆ = Diag (D), D = [d1| . . . |dn] ∈ Cn×n}

6: end for

7: Compute P = −Y S0 + [f1| . . . |fn] where S0 = S −Diag (S11, . . . , Snn)

8: Compute N = P · /D

9: Compute U = W−1
T NV −1

X

Lines 4-7 in Algorithm 2 compute

p = vec(P) :=

(

∆− I ⊗
(

WT (X +A−1B)W−1
T

)

− (V −1
X XVX)T ⊗ I

)

y.

We defined the matrix S0 in line 7 of the algorithm so that the diagonal entries of S

are replaced by zeros in S0. The reason for defining S0 is to prevent the use of Level

1 BLAS, since machine interval arithmetic as implemented in Intlab is particularly

efficient if the Level 2 and Level 3 BLAS are used as much as possible.

We are now in a position to use Algorithm 1 and Algorithm 2 to efficiently com-

pute an interval vector containing the set Kf (x̃, R, z,S) in (4.1) with f(x) replaced

by q(x)

S = q′(x̃+ z) = (X̃ +Z)T ⊗ In + In ⊗
(

A(X̃ +Z)B
)

.

Algorithm 3 obtains an interval vector k = vec(K) = vec(L) + vec(U) containing

Kq(x̃, R, z, q′(x̃+ z)) = {−Rq(x̃) + (I −RS)z : S ∈ q′(x̃+ z), z ∈ z}.

We need to replace the point quantities X and Z from Algorithm 1 by X̃+Z and Z in

Algorithm 3 because of the inclusion property of interval arithmetic. Moreover, note

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 529

that V −1
X and W−1

T will usually not be available as exact inverses of the computed

matrices VX and WT , because they have been obtained using a floating point algo-

rithm. Actually we need to use enclosures for the exact values of V −1
X and W−1

T . Such

enclosures can be obtained by using methods of interval analysis like the verifylss

command of Intlab. So, we replace V −1
X and W−1

T by interval enclosures IVX
, IWT

which we know that contain their exact values, respectively. The same holds for lines

2 and 8 of Algorithm 3, where we replaced A−1 by the interval matrix IA. Note also

that in general for three interval matrices E,F ,G we have (E · F) ·G 6= E · (F ·G)

because of the subdistributive law of interval arithmetic. But in Algorithm 3 we do

not need to indicate the order of interval matrix multiplications; see Lemma 2.2 which

guarantees k ⊇ Kq(x̃, R, z, q′(x̃ + z)) for whatever order we choose for the interval

matrix multiplications.

Algorithm 3 Computation of an interval matrix K such that vec(K) contains Kq

with x̃ instead of x

1: Compute Q = A · X̃2 +B · X̃ + C {Q is an interval matrix due to outward

rounding}

2: Compute G1 = IAQ

3: Compute G2 = WTG1VX {WT and VX are obtained from the spectral

decompositions of X̃ +A−1B and X̃, respectively}

4: Compute H = G2 · /D

5: Compute L = −IWT
HIVX

6: Compute Y = WTZVX {The j-th column of Y will be denoted Y j}

7: Compute S = IVX
(Z + X̃)VX {S is an n× n interval matrix with entries Sij}

8: Compute T = WT (Z + X̃ + IAB)IWT

9: for i = 1, . . . , n do

10: compute f i = (Diag (di)− SiiI − T)Y i

11: end for

12: Compute P = −Y S0 + [f1| . . . |fn]

13: Compute N = P · /D

14: Compute U = IWT
NIVX

15: Compute K = L+U

The following theorem analyzes the cost of Algorithm 3.

Theorem 4.2. Algorithm 3 requires O(n3) arithmetic operations.

Proof. Since the main operations in lines 1-8 include interval matrix-matrix mul-

tiplications, the computation of Q,G1,G2,H ,L,Y ,S and T costs O(n3). In lines

9-11, the cost for each i is O(n2), since we have an interval matrix-vector multipli-

cation for a matrix of size n × n and a vector of size n × 1. These matrix-vector

multiplications have to be done n times. So, overall the for-loop also has cost O(n3).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

530 B. Hashemi and M. Dehghan

Since lines 12-15 have also cost O(n3), the theorem is proved.

We now use Algorithm 3 to construct our final algorithm that states the use of

Krawczyk operator for enclosing an exact solvent of the quadratic matrix equation

(1.2). See Algorithm 4.

Algorithm 4 If successful this algorithm provides an interval matrix X containing

an exact solvent of the quadratic matrix equation (1.2)

1: Use a floating point algorithm to get an approximate solvent X̃ of (1.2).

{Use Newton’s method with exact line searches, e.g.}

2: Use a floating point algorithm to get approximations for VX ,WX , DX and

VT ,WT , DT in the spectral decomposition of X̃ and X̃ +A−1B, resp.

{Use Matlab’s eig, e.g.}

3: Compute interval matrices IVX
, IWT

and IA containing V −1
X , W−1

T , and A−1

resp. {Take verifylss.m from INTLAB, e.g.}

4: Compute L, an interval matrix containing −Rq(x̃) as in lines 1-5 of Algorithm 3.

5: Z = L

6: for k = 1, . . . kmax do

7: ǫ-inflate Z

8: compute U for input X̃,Z as in lines 6-14 of Algorithm 3

9: if K := L+U ⊆ intZ then {successful}

10: output X = X̃ +K and stop

11: else {second try}

12: put Z(2) = Z ∩K

13: compute U (2) for input X̃,Z(2) as in lines 6-14 of Algorithm 3

14: if K(2) = L+U (2) ⊆ intZ(2) then {successful}

15: output X = X̃ +K(2) and stop

16: else

17: overwrite Z as Z ∩K(2)

18: end if

19: end if

20: end for

5. Enclosures based on a functional iteration method in the case that

A is singular. We can use iterative interval methods, like the Krawczyk operator,

for enclosing solutions to an equation in fixed-point form. It may happen that the

matrix A in (1.2) is nearly singular or even singular as in the second example given in

the next section. In such cases the product R ·S in the standard Krawczyk operator

(3.2) will not be close to the identity matrix and so is likely to fail. Our modified

Krawczyk operator cannot also be used, since the nonsingularity of A was necessary

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 531

for the formulation of our algorithms in Section 4. So, in the case that A is singular

or nearly singular, we need an alternative approach.

In Section 3 we noted that Krawczyk interval operators are essentially based on

the fixed point function g(x) = x − Rq(x) with q(x) = 0 in (3.4). However, we can

define other fixed point functions g for q(x) = 0 in a manner which makes possible

the computation of enclosures without inverting the matrix A. In general, given a

fixed point equation x = g(x) we can take an interval extension g of g and set up an

iterative procedure of the following form [25]

xk+1 = g(xk) ∩ xk : k = 0, 1, 2, ...

When A in the quadratic matrix equation (1.2) is singular but B is nonsingular, a

good choice for the fixed point function g is

G(X) = −B−1(AX2 + C),

i.e.,

g(x) = −(In ⊗B−1)
(

(XT ⊗A)x+ c
)

,

in the vector form. Higham and Kim [14] used the above function G(X) to construct

a functional iteration based on the Bernoulli’s method. The floating point iterative

method of [14] is

Xk+1 = −B−1(AX2
k + C),

with X0 = 0n×n.

If IB is an enclosure for B−1, then G(X) = −IB(AX
2 + C) is an interval

extension to the function G in the above. Indeed vec(G(X)) contains the range of g

over x. We define the following iterative interval scheme

Xk+1 = −IB(AX
2
k + C) ∩Xk : k = 0, 1, 2, ...(5.1)

If we start with an interval matrix X0 such that G(X0) ⊆ X0, then (5.1) produces

a nested sequence of interval matrices {Xk} convergent to an interval matrix X∗

which encloses an exact solvent of (1.2) with X∗ = G(X∗) and X∗ ⊆ Xk for all

k = 0, 1, 2,

Theorem 5.1.

a) If there exists a solvent X∗ of (1.2) in Xk, then X∗ ∈ Xk+1 defined by (5.1).

b) If Xk+1 obtained by (5.1) is empty, then there is no solvent of (1.2) in Xk.

Proof. Firstly suppose that there exists a solvent X∗ of (1.2) such that X∗ ∈ Xk.

Then X∗ = G(X∗) = −B−1(AX∗
2

+ C) ∈ −IB(AX
2
k + C), i.e., X∗ ∈ G(Xk). So,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

532 B. Hashemi and M. Dehghan

X∗ ∈ G(Xk) ∩Xk, i.e., X
∗ ∈ Xk+1.

Now consider second part of theorem and suppose that there is a solvent X∗ of

(1.2) in Xk. Then the first part of this theorem shows that X∗ ∈ Xk+1 which is a

contradiction. So, the proof is completed.

We emphasize that the iterative method (5.1) cannot be applied to examples with

a singular or nearly singular matrix B, like the matrix square root problem which has

B = 0n×n, or the last example in the next section where the condition number of B

is 1.1×1018. Another advantage of Algorithm 4 over (5.1) is that different theoretical

and computational aspects of Krawczyk-type methods have been fully analyzed in the

literature. For example the choice of an initial interval vector using ǫ-inflation has

been a subject of research by itself [30].

As a final remark we note that there are still other possibilities for choosing the

fixed point function G like

G(X) = (−A−1(BX + C))1/2(5.2)

as described in [14]. Here, we decided not to work with (5.2), even if A is nonsingular.

The reasons for this are two fold: Firstly, we have Algorithm 4 which works quite well

in the case that A is nonsingular. Secondly, if we want to define an interval iteration

by using G(X) = (−A−1(BX + C))1/2, then we need a definition and method of

efficient computation for enclosures for square roots of interval matrices which has

not been fully examined in the literature. This can also be a direction for a future

research.

6. Numerical experiments. Here we present a comparison of the results ob-

tained by the standard Krawczyk operator (3.5) and our modified Krawczyk operator

(Algorithm 4). For the special case of matrix square roots there is an alternative

algorithm available in the vermatfun routine of Rohn’s Versoft [29]. But, for the case

of quadratic matrix equation (1.2) we could not find any other algorithm to compare

with ours. We performed all our experiments on a 2.00 GHz Pentium 4 with 1 GB

of RAM. t0 will denote the time spent only for computing the approximation X̃ via

Newton’s method with exact line searches and time will represent the total computing

time, i.e. the time for computing X̃ plus the time needed for the verification. To show

the quality of the enclosures obtained, we also report the maximum radius mr of the

components of the enclosing interval matrix X, i.e.

mr =
n

max
i,j=1

rad (Xij).

So, the value − log10 mr is the minimum number of correct decimal digits (including

leading zeros) among all the components that our algorithms can guarantee.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 533

n t0 Standard Krawczyk Algorithm 4

time k mr time k mr

10 0.02 0.10 1 6.3 · 10−16 0.12 1 3.5 · 10−15

20 0.06 2.7 1 6.7 · 10−16 0.21 1 7.6 · 10−15

40 0.29 145.53 1 7.6 · 10−16 0.58 1 1.5 · 10−14

50 0.60 658.42 1 8.1 · 10−16 1.40 1 1.9 · 10−14

100 2.50 - - - 5.73 1 4.0 · 10−14

200 18.48 - - - 39.92 1 8.3 · 10−14

Table 6.1

Results for the damped mass-spring example; all times are in seconds

For the special case of matrix square roots we obtain similar results as those of

Algorithm 4 in Table A.1 of [9].

Our first example is a problem given from [14, 19] which arises in a damped mass-

spring system with A = In,

B =





















20 −10

−10 30 −10

−10 30 −10

−10
. . .

. . .

30 −10

−10 20





















, C =



















15 −5

−5 15 −5

−5
. . .

. . .

. . .
. . . −5

−5 15



















.

Since Newton’s method with exact line searches obtains an approximation to the

minimal solvent in this example [14], our algorithms verify existence and uniqueness

of the exact value of minimal solvent in a quite narrow interval matrix. Table 6.1

reports the numerical results obtained for different values of n. An isolated dash (-)

in Table 6.1 means that the corresponding test needs more than 15 minutes and we

didn’t wait for the standard Krawczyk operator to be completed.

Our second example arises in a quasi-birth-death process with the following ma-

trices [14, 19]

A =















0 0.05 0.055 0.08 0.1

0 0 0 0 0

0 0.2 0 0 0

0 0 0.22 0 0

0 0 0 0.32 0.4















, B =















−1 0.01 0.02 0.01 0

0 −1 0 0 0

0 0.04 −1 0 0

0 0 0.08 −1 0

0 0 0 0.04 −1















,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

534 B. Hashemi and M. Dehghan

C =















0.1 0.04 0.025 0.01 0

0.4 0 0 0 0

0 0.16 0 0 0

0 0 0.1 0 0

0 0 0 0.04 0















.

Here, both matrices A and C are singular and so we cannot apply Algorithm 4. Even

the standard Krawczyk operator fails to verify the answer. Here, we can use the

interval iteration (5.1). Choosing X0 to be intval(zeros(5)); in Intlab notation

we obtain after 0.15 seconds an interval matrix with mr = 9.7× 10−17. In particular

the elements of the first row of the obtained enclosure are

X11 = [0.11186117330535, 0.11186117330536],

X12 = [0.04596260121747, 0.04596260121748],

X13 = [0.02710477934505, 0.02710477934506],

X14 = [0.01026428479283, 0.01026428479284],

X15 = [0.00000000000000, 0.00000000000000].

In our last example we choose A to be the identity matrix, and B and C to

be the matrices frank and gcdmat, respectively. These are matrices from Matlab’s

gallery. We set the size of matrices to n = 20. The matrix B is ill-conditioned with

a condition number of 1.1 × 1018. Both the standard Krawczyk operator and the

iterative scheme (5.1) fail to enclose a solvent. However, Algorithm 4 obtains after

0.8 seconds an enclosure with mr = 2.4× 10−10. Here, we see that Algorithm 4 is not

sensitive to the condition of B, while both the standard Krawczyk method and the

iterative method (5.1) need the matrix B to be well-conditioned.

Acknowledgment. The authors would like to offer particular thanks to the

referee for his/her many valuable suggestions and constructive comments which im-

proved this paper in several manners, particularly in formulating Theorem 3.1. We

are also grateful to Professor Dr. Andreas Frommer for his helpful advice concerning

this paper.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

Enclosures for the Exact Solvents of a Quadratic Matrix Equation 535

REFERENCES

[1] E. Adams and U. Kulisch. (eds.) Scientific Computing with Automatic Result Verification.

Vol. 189 of Mathematics in Science and Engineering, Academic Press Inc., Boston, MA,

1993.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Computer Science and

Applied Mathematics, Academic Press, New York, 1983.

[3] M. Binder and M. Hashem Pesaran. Multivariate rational expectations models and macroe-

conometric modelling: A review and some new results. in Handbook of Applied Economet-

rics: Macroeconomics. M. Hashem Pesaran and M. Wickens. (eds.), Basil Blackwell, pp.

139–187, 1999.

[4] D. Bini, B. Meini, and F. Poloni. From algebraic Riccati equations to unilateral quadratic

matrix equations: old and new algorithms. In Dagstuhl Seminar Proceedings 07461, Nu-

merical Methods for Structured Markov Chains. 2008.

[5] O. Caprani and K. Madsen. Iterative methods for interval inclusion of fixed points. BIT

Numerical Mathematics, 18:42–51, 1978.

[6] G.J. Davis. Numerical solution of a quadratic matrix equation. SIAM Journal on Scientific

and Statistical Computing, 2:164–175, 1981.

[7] G.J. Davis. Algorithm 598: An algorithm to compute solvents of the matrix equation AX2 +

BX + C = 0. ACM Transactions on Mathematical Software, 9:246–254, 1983.

[8] J.E. Dennis, Jr., J.F. Traub, and R.P. Weber. Algorithms for solvents of matrix polynomials.

SIAM Journal on Numerical Analysis, 15:523–533, 1978.

[9] A. Frommer and B. Hashemi. Verified computation of square roots of a ma-

trix. SIAM Journal on Matrix Analysis and Applications, 31:1279–1302, 2009.

Preprint available as technical report BUW-SC 09/2, University of Wuppertal,

(www-ai.math.uni-wuppertal.de/SciComp/preprints/SC0902.pdf)

[10] I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. Academic Press Inc. [Harcourt

Brace Jovanovich Publishers], New York, 1982. Computer Science and Applied Math-

ematics.

[11] C.-H. Guo. On a quadratic matrix equation associated with an M-matrix. IMA Journal of

Numerical Analysis, 23:11–27, 2003.

[12] C.-H. Guo. Numerical solution of a quadratic eigenvalue problem. Linear Algebra and its

Applications, 385:391–406, 2004.

[13] N.J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, 2008.

[14] N.J. Higham and H.-M. Kim. Numerical analysis of a quadratic matrix equation. IMA Journal

of Numerical Analysis, 20:499–519, 2000.

[15] N.J. Higham and H.-M. Kim. Solving a quadratric matrix equation by Newton’s method with

exact line searches. SIAM Journal on Matrix Analysis and Applications, 23:303–316, 2001.

[16] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cam-

bridge, 1994.

[17] R. Kearfott. Interval analysis: Interval fixed point theory. in Encyclopedia of Optimization.

Vol. 3, Dordrecht, Netherlands, Kluwer, pp. 45-51, 2001.

[18] R.B. Kearfott, M. Nakao, A. Neumaier, S. Rump, S. Shary, and P. van Hentenryck. Standard-

ized notation in interval analysis, 2005. (www.mat.univie.ac.at/~neum/ms/notation.pdf)

[19] H.-M. Kim. Numerical Methods for Solving a Quadratic Matrix Equation. PhD thesis, Uni-

versity of Manchester, 2000.

[20] H.-M. Kim. Minimization method for solving a quadratic matrix equation. Kyungpook Math-

ematical Journal, 47:239–251, 2007.

[21] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Com-

puting, 4:187–201, 1969.

[22] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and associated centered

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

ELA

536 B. Hashemi and M. Dehghan

forms. SIAM Journal on Numerical Analysis, 22:604–616, 1985.

[23] J.-H. Long, X.-Y. Hu, and L. Zhang. Improved Newton’s method with exact line searches

to solve quadratic matrix equation. Journal of Computational and Applied Mathematics,

222:645–654, 2008.

[24] R.E. Moore. A test for existence of solutions to nonlinear systems. SIAM Journal on Numerical

Analysis, 14:611–615, 1977.

[25] R.E. Moore, R.B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.

[26] A. Neumaier. Interval Methods for Systems of Equations. No. 37 in Encyclopedia of Mathe-

matics and its Applications, Cambridge University Press, Cambridge, 1990.

[27] J. Qian and W.-W. Lin. A numerical method for quadratic eigenvalue problems of gyroscopic

systems. Journal of Sound and Vibration, 306:284–296, 2007.

[28] L.B. Rall. A theory of interval iteration. Proceedings of the American Mathematical Society,

86:625–631, 1982.

[29] J. Rohn. VERSOFT: Verification Software in MATLAB/INTLAB.

(uivtx.cs.cas.cz/~rohn/matlab)

[30] S.M. Rump. A note on epsilon-inflation. Reliable Computing, 4:371–375, 1998.

[31] S.M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathematics, 39:534–554,

1999.

[32] S.M. Rump. INTLAB – INTerval LABoratory. in Developments in Reliable Computing. T.

Csendes. (ed.), Dordrecht, 1999, Kluwer Academic Publishers, pp. 77-104.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 519-536, August 2010

