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SHELL EXTREMAL EIGENVALUES OF TRIDIAGONAL TOEPLITZ MATRICES∗

CHRISTOS CHORIANOPOULOS†

Abstract. The shell of a complex tridiagonal Toeplitz matrix is studied. Closed formulas for all quantities involved in its

equation are presented. Necessary and sufficient conditions for a Toeplitz tridiagonal matrix to have shell extremal eigenvalues

are given. Several, recently introduced, geometric quantities related to the shell are studied as measures of non-normality of

these extremal eigenvalues of such matrices. These quantities are also proposed as measures of non-normality for the matrix

itself.
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1. Introduction and preliminaries. Let C be the complex field. For a ∈ C, we denote by Re{a} and

Im{a} the real and imaginary parts of a, respectively. Mn(C) is the vector space of n×n complex matrices.

For A ∈ Mn(C), H(A) =
A+A∗

2
and K(A) =

A−A∗

2
are the hermitian and skew-hermitian parts of A,

respectively. We denote by δi(A), i = 1, · · · , n the eigenvalues of H(A) in decreasing order and by yi their

corresponding eigenvectors. Let also u(A) = Im{y∗1K(A)y1} and ν(A) = ‖K(A)y1‖22, where ‖ · ‖2 denotes

the euclidean norm. The standard numerical range F (A) of a square matrix A is the set of quadratic forms

x∗Ax, where the complex n dimensional vectors x are of euclidean norm one (see Chapter 1 in [11]).

The shell of a square matrix A [2] is the cubic curve Γ(A) defined as

(1.1) Γ(A) = {z = x+ iy, x, y ∈ R : gA(x, y) = 0},

(1.2) gA(x, y) = [(δ1(A)− x)2 + (u(A)− y)2](δ2(A)− x) + (δ1(A)− x)(ν(A)− u(A)2).

The curve Γ(A) is symmetric with respect to the horizontal line ` = {t + iu(A), t ∈ R} and provides

interesting spectral localization results. In fact for every eigenvalue λ of A it holds that λ ∈ Γin(A), where

Γin(A) = {z = x+ iy, x, y ∈ R : gA(x, y) ≥ 0}. Much of this analysis is based on the sign of the discriminant

D(A) = (δ1(A)− δ2(A))2− 4(ν(A)−u(A)2). Specifically, when D(A) < 0, then Γ(A) is a simple unbounded

open curve that leaves all eigenvalues of A to its left. When D(A) = 0, it creates a node point and when

D(A) > 0 it consists of two branches, a closed branch (loop) that surrounds a unique simple eigenvalue and

an open branch that has all its remaining eigenvalues to its left. Note that Γ(A) always shares at least one

common boundary point with F (A), namely δ1(A) + iu(A). The shell of a square matrix can also be used

to generate a spectral inclusion subset of the standard numerical range, the envelope, which is defined as

E(A) =
⋂

θ∈[0,2π]

e−iθΓin(eiθA). For more information on the envelope, see [3], [4], [14], [15] and the references

therein.

Below, some properties of the shell are listed for reference. Let A ∈Mn(C), then
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(S1) Γ(V ∗AV ) = Γ(A), for any unitary matrix V ∈Mn(C).

(S2) Γ(A+ rIn) = Γ(A) + r, for all r ∈ C.

(S3) If A is a real matrix, then Γ(A) is symmetric with respect to the real axis.

As a comment on Property S2, note that

u(A+ rIn) = Im{y∗1K(A+ rIn)y1} = u(A) + Im{r},(1.3)

ν(A+ rIn) = ‖K(A+ rIn)y1‖22 = ν(A) + Im{r}2 + 2 Im{r}u(A).(1.4)

Equations (1.3) and (1.4) yield one more property for the quantities ν(A), u(A), and D(A), which will be

used throughout the text.

(S4) ν(A+ rIn)− u(A+ rIn)2 = ν(A)− u(A)2 and D(A+ rIn) = D(A), for all r ∈ C.

(S5) If A ∈ Mn(C) is normal matrix, then the quantity ν(A) − u(A)2 vanishes and the shell is reduced

to the union of the straight line `2 = {δ2(A) + it, t ∈ R} and the singleton {δ1(A) + iu(A)}.

For more details on the shell, its properties, and its various forms, see [2], [6], [14], and [15].

An eigenvalue on the boundary of the convex hull of the spectrum of A is called an extremal eigen-

value. An eigenvalue with equal algebraic and geometric multiplicities that its corresponding eigenspace is

orthogonal to the eigenspaces of all other eigenvalues is called normal. In [6], focus was given to the case

where D(A) > 0 and several geometric aspects of the closed branch of the shell were studied and proposed

as measures of non-normality of the extremal eigenvalues of a square matrix A that can be surrounded by

closed branches of the shells Γ(eiθA), θ ∈ [0, 2π].

Definition 1.1. Let A ∈Mn(C), and let λ0 be an extremal eigenvalue.

(i) If for some θ ∈ [0, 2π] it is D(eiθA) > 0 and λ0 is surrounded by the closed branch of the curve

e−iθΓ(eiθA), then λ0 is called a shell extremal eigenvalue of A.

(ii) A(λ0) = {θ ∈ [0, 2π] : D(eiθA) > 0 and λ0 is surrounded by the closed branch of e−iθΓ(eiθA)}.

Here, we list a series of properties of shell extremal eigenvalues and the closed branches of the shells that

surround them [6].

(SE1) If λ0 is a shell extremal eigenvalue of a matrix A ∈ Mn(C), then eiθλ0 is the rightmost eigenvalue

of the matrix eiθA for all θ ∈ A(λ0). Moreover, it is the unique eigenvalue that lies in the complex

zone Z = {z = x+ iy :
δ1(eiθA) + δ2(eiθA) +

√
D(eiθA)

2
≤ x ≤ δ1(eiθA), y ∈ R, θ ∈ A(λ0)}.

(SE2) Let A ∈Mn(C) with D(A) > 0 and let λ0 be the shell extremal eigenvalue surrounded by the closed

branch of Γ(A). Then A(λ0) ⊂ (3π/2, 0] ∪ [0, π/2). If A is real and D(A) > 0 (resp. D(−A) > 0),

then A(λ0) is of the form (2π − a, 2π] ∪ [0, a) (resp. (π − a, π + a)), for some a ∈ (0, π/2) where λ0

is the simple eigenvalue surrounded by the closed branch of Γ(A) (resp. −Γ(−A)).

(SE3) If λ1, λ2, · · · , λk are the shell extremal eigenvalues of A ∈Mn(C), then A(λi)∩A(λj) = ∅, for i 6= j,

i, j = 1, . . . , k and {θ ∈ [0, 2π] : D(eiθA) > 0} =
k⋃
i=1

A(λi).

(SE4) The radius of curvature of Γ(eiθA) at δ1(eiθA) + iu(eiθA), θ ∈ [0, 2π] is

RΓ(eiθA)(δ1(eiθA) + iu(eiθA)) =
ν(eiθA)− u(eiθA)2

2 (δ1(eiθA)− δ2(eiθA))
.
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(SE5) For θ ∈ [0, 2π] such that D(eiθA) > 0, the maximum distance between two points on the boundary

of the closed branch is

dh(eiθA) =
δ1(eiθA)− δ2(eiθA)−

√
D(eiθA)

2
.

(SE6) λ0 is a normal shell extremal eigenvalue of a matrix A if and only if the closed branches of the curves

e−iθΓ(eiθA) are reduced to singletons for all θ ∈ A(λ0).

In this work, we examine the shell and the existence of shell extremal eigenvalues of non-normal tridi-

agonal Toeplitz matrices Tn(c, b, a) ∈Mn(C) of the form

(1.5) Tn(c, b, a) =


a b 0 · · · 0

c a b · · · 0
...

. . .
. . .

. . .
...

0 · · · c a b

0 · · · 0 c a

 , |bc| 6= 0, |b| 6= |c|, n ≥ 2.

Throughout the text, we set b = |b|eiθb and c = |c|eiθc , when needed. The eigenvalues, and right and left

eigenvectors of Tn(c, b, a) are

λk = a+ 2
√
bc cos

(
kπ

n+ 1

)
, k = 1, 2, . . . , n, and(1.6)

xk = [xk,1, xk,2, · · · , xk,n]T , xk,j =
(c
b

) j
2

sin

(
kjπ

n+ 1

)
, j = 1, 2, . . . , n,(1.7)

xl,k = [wk,1, wk,2, · · · , wk,n]T , wk,j =

(
b

c

) j
2

sin

(
kjπ

n+ 1

)
, j = 1, 2, . . . , n,(1.8)

respectively (see [3], [5], [13] and the references therein). The eigenvalues of Tn(c, b, a) are collinear. The

reason why we assume |b| 6= |c| is because if |b| = |c| then Tn(c, b, a) is a normal matrix, which follows directly

by requiring Tn(c, b, a)Tn(c, b, a)∗ = Tn(c, b, a)∗Tn(c, b, a). Then the shells Γ(eiθTn(c, b, a)) reduce to unions

of straight lines and singletons as is described in property S5. This particular case is of no interest for the

present work and it is mostly ignored unless stated otherwise.

The structure of the paper is as follows. In Section 2, a complete description of the shells of the matrices

eiθTn(c, b, a), θ ∈ [0, 2π] is given and closed formulas for their related quantities are obtained. In Section 3,

necessary and sufficient conditions are given for the existence of shell extremal eigenvalues for Tn(c, b, a)

and the angular sets A(λ) are fully described. In Section 4, some shell related quantities that measure

the non-normality of shell extremal eigenvalues are evaluated. It is shown that these quantities are also

measures of non-normality for the entire matrix Tn(c, b, a) and a comparison to other such measures is done.

In Section 5, some numerical examples are presented to illustrate the results.

2. The shell of eiθTn(c, b, a). We begin by describing the shell of eiθTn(c, b, a) in (1.5). To that end,

for the sake of simplicity of calculations and in view of properties S2 and S4, in some proofs we consider the

translation

(2.9) eiθTn(c, b, 0) = eiθ(Tn(c, b, a)− aIn), |bc| 6= 0, |b| 6= |c|.

The hermitian and skew-hermitian parts of eiθTn(c, b, 0) are

(2.10) H(eiθTn(c, b, 0)) =
1

2
Tn(p(θ), p(θ), 0), p(θ) = eiθb+ e−iθc,
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and

(2.11) K(eiθTn(c, b, 0)) =
1

2
Tn(−q(θ), q(θ), 0), q(θ) = eiθb− e−iθc,

respectively. The eigenvalues of H(eiθTn(c, b, 0)) are

(2.12) δk(eiθTn(c, b, 0)) = |p(θ)| cos

(
kπ

n+ 1

)
, k = 1, 2, · · · , n,

with a choice for a corresponding unit eigenvector for δk(eiθTn(c, b, 0)) being

(2.13) yk(θ) =

√
2

n+ 1
[yk,1, yk,2, . . . , yk,n]T , yk,j = α(θ)

j
2 sin

(
kjπ

n+ 1

)
, j = 1, 2, · · · , n,

where

(2.14) α(θ) =
p(θ)

p(θ)
.

The formulas in equations (2.12), (2.13), and (2.14) can also be found in [3].

The assumption that |b| 6= |c| ensures that |p(θ)| 6= 0. First a lemma is presented that connects all the

quantities b, c, α(θ), p(θ), and q(θ).

Lemma 2.1. For the quantities p(θ), q(θ), and α(θ) in (2.10), (2.11), and (2.14), respectively, it is

|q(θ)|2 − Im
{
q(θ)α(θ)

1
2

}2

=

(
|b|2 − |c|2

)2
|p(θ)|2

, θ ∈ [0, 2π], |b| 6= |c|.

Proof.

|q(θ)|2 − Im
{
q(θ)α(θ)

1
2

}2

= |q(θ)|2 +
1

4

(
q(θ)α(θ)

1
2 − q(θ)α(θ)

1
2

)2

= |q(θ)|2 +
1

4

(
q(θ)2α(θ) + q(θ)

2
α(θ)− 2|q(θ)|2

)
=
|q(θ)|2

2
+

1

2
Re
{
q(θ)2α(θ)

}
,

which yields

(2.15) |q(θ)|2 − Im
{
q(θ)α(θ)

1
2

}2

=
1

2|p(θ)|2
[
|q(θ)p(θ)|2 + Re

{
(q(θ)p(θ))2

}]
.

Note that |q(θ)|2 = (beiθ − ce−iθ)(be−iθ − ceiθ) = |b|2 + |c|2 − 2|bc| cos(2θ + θb + θc), and similarly

|p(θ)|2 = (beiθ + ce−iθ)(be−iθ + ceiθ) = |b|2 + |c|2 + 2|bc| cos(2θ + θb + θc), so that

(2.16) |q(θ)p(θ)|2 = (|b|2 + |c|2)2 − 4|bc|2 cos2(2θ + θb + θc).

The real part involved in (2.15) is

Re
{

(q(θ)p(θ))2
}

= Re
{(

(beiθ − ce−iθ)(be−iθ + ceiθ)
)2}
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= Re

{(
|b|2 − |c|2 + |bc|ei(2θ+θb+θc) − |bc|e−i(2θ+θb+θc)

)2
}

= Re
{(
|b|2 − |c|2 + 2|bc|i sin(2θ + θb + θc)

)2}
= Re

{
(|b|2 − |c|2)2 − 4|bc|2 sin2(2θ + θb + θc) + 4i(|b|2 − |c|2)|bc| sin(2θ + θb + θc)

}
,

so that

(2.17) Re
{

(q(θ)p(θ))2
}

= (|b|2 − |c|2)2 − 4|bc|2 sin2(2θ + θb + θc).

Substituting (2.16) and (2.17) in (2.15) yields the result.

The following trigonometric identities will be used to find formulas for the quantities involved in the

equations of the shells Γ(eiθTn(c, b, a)), θ ∈ [0, 2π].

Lemma 2.2. For any n ∈ N, n ≥ 2,

(i)
n−1∑
k=2

[
sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)]
=

1

2

(
n cos

(
2π

n+ 1

)
+ 1

)
.

(ii)
n−1∑
k=1

[
sin

(
kπ

n+ 1

)
sin

(
(k + 1)π

n+ 1

)]
=
n+ 1

2
cos

(
π

n+ 1

)
.

Proof. (i)

n−1∑
k=2

[
cos

(
(k − 1)π

n+ 1

)
cos

(
(k + 1)π

n+ 1

)]

=
1

2

n−1∑
k=2

[
cos

(
2π

n+ 1

)
− cos

(
2kπ

n+ 1

)]

=
n− 2

2
cos

(
2π

n+ 1

)
− 1

2

n−1∑
k=2

cos

(
2kπ

n+ 1

)
=
n− 2

2
cos

(
2π

n+ 1

)
− 1

2

(
−1− cos

(
2π

n+ 1

)
− cos

(
2nπ

n+ 1

))
=

1

2

[
(n− 2) cos

(
2π

n+ 1

)
+ 1 + 2 cos

(
2π

n+ 1

)]
=

1

2

(
n cos

(
2π

n+ 1

)
+ 1

)
.

(ii)

n−1∑
k=1

[
sin

(
kπ

n+ 1

)
sin

(
(k + 1)π

n+ 1

)]

=

n−1∑
k=1

[
sin

(
kπ

n+ 1

)(
sin

(
kπ

n+ 1

)
cos

(
π

n+ 1

)
+ sin

(
π

n+ 1

)
cos

(
kπ

n+ 1

))]

= cos

(
π

n+ 1

) n−1∑
k=1

sin2

(
kπ

n+ 1

)
+

1

2
sin

(
π

n+ 1

) n−1∑
k=1

sin

(
2kπ

n+ 1

)
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= cos

(
π

n+ 1

)[
n+ 1

2
− sin2

(
nπ

n+ 1

)]
+

1

2
sin

(
π

n+ 1

)
sin

(
2π

n+ 1

)
= cos

(
π

n+ 1

)[
n+ 1

2
− sin2

(
nπ

n+ 1

)]
+ sin2

(
π

n+ 1

)
cos

(
π

n+ 1

)
=
n+ 1

2
cos

(
π

n+ 1

)
.

Proposition 2.3. Let Tn(c, b, a) and Tn(c, b, 0) be as in (1.5) and in (2.9), respectively. Then,

(i) ν(eiθTn(c, b, 0)) =
(n− 1)|q(θ)|2

n+ 1
sin2

(
π

n+ 1

)
+

Im
{
q(θ)α(θ)

1
2

}2

n+ 1

(
n cos

(
2π

n+ 1

)
+ 1

)
,

(ii) u(eiθTn(c, b, 0)) = Im
{
q(θ)α(θ)

1
2

}
cos

(
π

n+ 1

)
,

(iii) ν(eiθTn(c, b, a))− u(eiθTn(c, b, a))2 =
n− 1

n+ 1
sin2

(
π

n+ 1

)
(|b|2 − |c|2)2

|p(θ)|2
.

Proof. Let

w(θ) = K(eiθTn(c, b, 0))y1(θ) =
1

2
Tn(−q(θ), q(θ), 0)y1(θ)

or,

w(θ) =
1

2

√
2

n+ 1


0 q(θ) 0 · · · 0

−q(θ) 0 q(θ) · · · 0
...

. . .
. . .

. . .
...

0 · · · −q(θ) 0 q(θ)

0 · · · 0 −q(θ) 0





α(θ)
1
2 sin

(
π
n+1

)
α(θ)

2
2 sin

(
2π
n+1

)
...

α(θ)
n−1
2 sin

(
(n−1)π
n+1

)
α(θ)

n
2 sin

(
nπ
n+1

)


or,

(2.18) w(θ) =

√
1

2(n+ 1)



q(θ)α(θ) sin
(

2π
n+1

)
−q(θ)α(θ)

1
2 sin

(
π
n+1

)
+ q(θ)α(θ)

3
2 sin

(
3π
n+1

)
...

−q(θ)α(θ)
n−2
2 sin

(
(n−2)π
n+1

)
+ q(θ)α(θ)

n
2 sin

(
nπ
n+1

)
−q(θ)α(θ)

n−1
2 sin

(
(n−1)π
n+1

)


.

(i) Since |α(θ)| = 1, we have

ν(eiθTn(c, b, 0)) =
∥∥K(eiθTn(c, b, 0))

∥∥2

2
=

∥∥∥∥1

2
Tn(−q(θ), q(θ), 0)y1(θ)

∥∥∥∥2

2

= ‖w(θ)‖22

=
1

2(n+ 1)

{
|q(θ)|2 sin2

(
2π

n+ 1

)
+

n−1∑
k=2

∣∣∣∣−q(θ)α(θ)
k−1
2 sin

(
(k − 1)π

n+ 1

)
+ q(θ)α(θ)

k+1
2 sin

(
(k + 1)π

n+ 1

)∣∣∣∣2
+ |q(θ)|2 sin2

(
(n− 1)π

n+ 1

)}
.(2.19)
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Let us simplify the quantities involving k:∣∣∣∣−q(θ)α(θ)
k−1
2 sin

(
(k − 1)π

n+ 1

)
+ q(θ)α(θ)

k+1
2 sin

(
(k + 1)π

n+ 1

)∣∣∣∣2
=

(
−q(θ)α(θ)

k−1
2 sin

(
(k − 1)π

n+ 1

)
+ q(θ)α(θ)

k+1
2 sin

(
(k + 1)π

n+ 1

))
×
(
−q(θ)α(θ)

k−1
2 sin

(
(k − 1)π

n+ 1

)
+ q(θ) α(θ)

k+1
2 sin

(
(k + 1)π

n+ 1

))
= |q(θ)|2

(
sin2

(
(k − 1)π

n+ 1

)
+ sin2

(
(k + 1)π

n+ 1

))
−
(
q2(θ)α(θ) + q2(θ)α(θ)

)
sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)
.

By adding and subtracting 2|q(θ)|2 sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)
, the complex modulus becomes

∣∣∣∣−q(θ)α(θ)
k−1
2 sin

(
(k − 1)π

n+ 1

)
+ q(θ)α(θ)

k+1
2 sin

(
(k + 1)π

n+ 1

)∣∣∣∣2
= |q(θ)|2

{
sin2

(
(k − 1)π

n+ 1

)
+ sin2

(
(k + 1)π

n+ 1

)
− 2 sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)}
−
(
q2(θ)α(θ) + q2(θ)α(θ)− 2|q(θ)|2

)
sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)
= |q(θ)|2

{
sin2

(
(k − 1)π

n+ 1

)
+ sin2

(
(k + 1)π

n+ 1

)
− 2 sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)}
−
(

2i Im
{
q(θ)α(θ)

1
2

})2

sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)
.

Keeping in mind that sin

(
(n− 1)π

n+ 1

)
= sin

(
2π

n+ 1

)
, equation (2.11) becomes

ν(eiθTn(c, b, 0)) =
|q(θ)|2

2(n+ 1)
×

{
2 sin2

(
2π

n+ 1

)
+

n−1∑
k=2

[
sin2

(
(k − 1)π

n+ 1

)
+ sin2

(
(k + 1)π

n+ 1

)]

− 2

n−1∑
k=2

sin

(
(k − 1)π

n+ 1

)
sin

(
(k + 1)π

n+ 1

)}

+2
Im
{
q(θ)α(θ)

1
2

}2

n+ 1

n−1∑
k=2

sin

(
(k + 1)π

n+ 1

)
sin

(
(k − 1)π

n+ 1

)
.

Now, with the use of the identity
n∑
k=1

sin2

(
kπ

n+ 1

)
=
n+ 1

2
observe that

n−1∑
k=2

[
sin2

(
(k + 1)π

n+ 1

)
+ sin2

(
(k − 1)π

n+ 1

)]
= n+ 1− 2 sin2

(
π

n+ 1

)
− 2 sin2

(
2π

n+ 1

)
,
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and with the use of item (i) of Lemma 2.2, we obtain

ν(eiθTn(c, b, 0)) =
|q(θ)|2

2(n+ 1)

{
n+ 1− 2 sin2

(
π

n+ 1

)
− n cos

(
2π

n+ 1

)
− 1

}

+
Im
{
q(θ)α(θ)

1
2

}2

n+ 1

(
n cos

(
2π

n+ 1

)
+ 1

)

=
(n− 1)|q(θ)|2

n+ 1
sin2

(
π

n+ 1

)
+

Im
{
q(θ)α(θ)

1
2

}2

n+ 1

(
n cos

(
2π

n+ 1

)
+ 1

)
,

which completes item (i).
(ii)

u(eiθTn(c, b, 0)) =
1

2
Im
{
y1(θ)∗Tn(−q(θ), q(θ), 0)y1(θ)

}
,

or,

u(eiθTn(c, b, 0)) =
1

2
Im {y1(θ)∗w(θ)} .

With the use of equation (2.18), we have

1

2
y1(θ)∗w(θ)

=
1

n+ 1

[
α(θ)

1
2 sin

(
π

n+ 1

)
, α(θ) sin

(
2π

n+ 1

)
, · · · , α(θ)

n
2 sin

(
nπ

n+ 1

)]

×



q(θ)α(θ) sin
(

2π
n+1

)
−q(θ)α(θ)

1
2 sin

(
π
n+1

)
+ q(θ)α(θ)

3
2 sin

(
3π
n+1

)
...

−q(θ)α(θ)
n−2
2 sin

(
(n−2)π
n+1

)
+ q(θ)α(θ)

n
2 sin

(
nπ
n+1

)
−q(θ)α(θ)

n−1
2 sin

(
(n−1)π
n+1

)



=
1

n+ 1

{
q(θ)α(θ)

1
2 sin

(
π

n+ 1

)
sin

(
2π

n+ 1

)
− q(θ) α(θ)

1
2 sin

(
(n− 1)π

n+ 1

)
sin

(
nπ

n+ 1

)
+ q(θ)α(θ)

1
2

n−1∑
k=2

sin

(
(k + 1)π

n+ 1

)
sin

(
kπ

n+ 1

)
− q(θ) α(θ)

1
2

n−1∑
k=2

sin

(
kπ

n+ 1

)
sin

(
(k − 1)π

n+ 1

)}

=
1

n+ 1

(
q(θ)α(θ)

1
2 − q(θ) α(θ)

1
2

) n−1∑
k=1

sin

(
(k + 1)π

n+ 1

)
sin

(
kπ

n+ 1

)
,

which the use of item (ii) of Lemma 2.2 yields

1

2
y1(θ)∗w(θ) =

q(θ)α(θ)
1
2 − q(θ) α(θ)

1
2

2
cos

(
π

n+ 1

)
,
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or

1

2
y1(θ)∗w(θ) = i Im

{
q(θ)α(θ)

1
2

}
cos

(
π

n+ 1

)
,

which completes the proof of item (ii).

(iii)

ν(eiθTn(c, b, 0))− u(eiθTn(c, b, 0))2 = ν(eiθTn(c, b, 0))− n+ 1

n+ 1
u(eiθTn(c, b, 0))2

=
(n− 1)|q(θ)|2

n+ 1
sin2

(
π

n+ 1

)
+

Im
{
q(θ)α(θ)

1
2

}2

n+ 1

{
n cos

(
2π

n+ 1

)
+ 1− (n+ 1) cos2

(
π

n+ 1

)}

=
(n− 1)|q(θ)|2

n+ 1
sin2

(
π

n+ 1

)
+

Im
{
q(θ)α(θ)

1
2

}2

n+ 1
(1− n) sin2

(
π

n+ 1

)
,

and so

ν(eiθTn(c, b, 0))− u(eiθTn(c, b, 0))2 =
n− 1

n+ 1
sin2

(
π

n+ 1

)(
|q(θ)|2 − Im

{
q(θ)α(θ)

1
2

}2
)
.

Applying Lemma 2.1 and property S4 completes the proof.

For the remainder and for the sake of brevity, we assign

(2.20) A(n) =

(
cos

(
π

n+ 1

)
− cos

(
2π

n+ 1

))2

,

and

(2.21) B(n) =
n− 1

n+ 1
sin2

(
π

n+ 1

)
.

Corollary 2.4. Let Tn(c, b, a) be as in (1.5). Then,

(i) D(eiθTn(c, b, a)) = |p(θ)|2A(n)− 4B(n)
(|b|2 − |c|2)2

|p(θ)|2
.

(ii) If for some θ ∈ [0, 2π] it is D(eiθTn(c, b, a)) > 0, then

(a) dh(eiθTn(c, b, a)) =

√
|p(θ)|2A(n)−

√
|p(θ)|2A(n)− 4B(n)

(|b|2 − |c|2)2

|p(θ)|2

2
,

(b) RΓ(eiθTn(c,b,a))(δ1(eiθTn(c, b, a)) + iu(eiθTn(c, b, a))) =
B(n)(|b|2 − |c|2)2

2
√
A(n)|p(θ)|3

.

Proof. With the use of equations (2.12) and (2.20), observe that

δ1(eiθTn(c, b, a))− δ2(eiθTn(c, b, a)) = |p(θ)| cos

(
π

n+ 1

)
+ Re{a} − |p(θ)| cos

(
2π

n+ 1

)
− Re{a}

= |p(θ)|
√
A(n).(2.22)
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(i) With the use of Proposition 2.3 (iii)

D(eiθTn(c, b, a)) =
(
δ1(eiθTn(c, b, a))

)
− δ2(eiθTn(c, b, a)))2 − 4

(
ν(eiθTn(c, b, a))− u(eiθTn(c, b, a))2

)
= |p(θ)|2A(n)− 4

n− 1

n+ 1
sin2

(
π

n+ 1

)
(|b|2 − |c|2)2

|p(θ)|2
.

Using (2.21), the result follows.

(ii) Item (ii,a) follows by combining property SE5, equation (2.22), and item (i). Item (ii,b) follows by

property SE4, Proposition 2.3(iii), and equation (2.22).

The shell of tridiagonal Toeplitz matrices satisfies certain symmetries. In [3], the authors in the process

of showing that the envelope of the Toeplitz tridiagonal matrix in (1.5) is symmetric with respect to the

point a ∈ C showed the following (see proof of Theorem 2.1 in [3]).

Proposition 2.5. For the matrix Tn(c, b, a) it is Γ(eiθTn(c, b, a)) = Γ(ei(π+θ)Tn(c, b, a)), for all θ ∈
[0, 2π].

3. Shell extremal eigenvalues. As is described in the introduction, the existence of shell extremal

eigenvalues for a square matrix A depends on whether the function D(eiθA), θ ∈ [0, 2π] assumes positive

values or not.

Proposition 3.1. Let Tn(c, b, a) be as in (1.5). Then, D(eiθTn(c, b, a)) > 0 for some θ ∈ [0, 2π] if and

only if
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
.

Proof. Recalling that |p(θ)|2 = p(θ)p(θ) = |b|2+|c|2+2|bc| cos(2θ+θb+θc) and assigning φ = 2θ+θb+θc,

we have

D(eiθTn(c, b, a)) > 0⇔

|p(θ)|2A(n)− 4B(n)
(|b|2 − |c|2)2

|p(θ)|2
> 0⇔

|p(θ)|4A(n)− 4B(n)(|b|2 − |c|2)2 > 0⇔
(|b|2 + |c|2 + 2|bc| cos(φ))2A(n)− 4B(n)(|b|2 − |c|2)2 > 0

which yields

(3.23) 4|bc|2A(n) cos2(φ) + 4|bc|(|b|2 + |c|2)A(n) cos(φ) +A(n)(|b|2 + |c|2)2 − 4B(n)(|b|2 − |c|2)2 > 0.

The quadratic polynomial in (3.23) is in cos(φ). Its discriminant is

∆ = 16|bc|2(|b|2 + |c|2)2A(n)2 − 16|bc|2A(n)
[
A(n)(|b|2 + |c|2)2 − 4B(n)(|b|2 − |c|2)2

]
= 16|bc|2A(n)

[
(|b|2 + |c|2)2A(n)−A(n)(|b|2 + |c|2)2 + 4B(n)(|b|2 − |c|2)2

]
= 64|bc|2(|b|2 − |c|2)2A(n)B(n) > 0,

and its two distinct roots are

r1 = −|b|
2 + |c|2

2|bc|
−
∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
,
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and

r2 = −|b|
2 + |c|2

2|bc|
+

∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
.

Therefore, the quadratic attains positive values for some φ when [−1, 1] is not a subset of [r1, r2], r1 < r2.

Since |bc| 6= 0 and |b| 6= |c|, it is (|b| − |c|)2 > 0 ⇒ |b|2 + |c|2 > 2|bc| ⇒ −|b|
2 + |c|2

2|bc|
< −1 which then

yields that r1 < −1. As r1 < −1, the quadratic is positive for some φ (and so does D(eiθTn(c, b, a))) if and

only if r2 < 1. That is because if r2 < 1 then, as φ = 2θ + θb + θc, θ ∈ [0, 2π], there is some φ such that

r2 < cos(φ) < 1. Thus,

r2 < 1

⇔ −|b|
2 + |c|2

2|bc|
+

∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
< 1

⇔
∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
<
|b|2 + |c|2

2|bc|
+ 1

⇔
∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
<

(|b|+ |c|)2

2|bc|

⇔ ||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
,

which completes the proof.

All eigenvalues of Tn(c, b, a) are extremal eigenvalues since they are collinear. Combining this with

property SE1 leads to the obvious conclusion that Tn(c, b, a) can have at most two shell extremal eigenvalues,

namely λ1 = a + 2
√
bc cos( π

n+1 ) and λn = a + 2
√
bc cos( nπ

n+1 ). Proposition 2.5 ensures that if λ1 is a shell

extremal eigenvalue the same will be true for λn, and conversely. Therefore, with the use of Proposition 3.1,

the next result is evident.

Proposition 3.2. Tn(c, b, a) as in (1.5) has either none or two shell extremal eigenvalues. The latter

occurs if and only if
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
.

Corollary 3.3. Let Tn(c, b, a) as in (1.5) have two shell extremal eigenvalues, that is,
||b| − |c||
|b|+ |c|

√
B(n)

A(n)

<
1

2
. Then every principal submatrix of the form Tm(c, b, a), 2 ≤ m < n obtained by deleting the last n−m

rows and columns of Tn(c, b, a) also has shell extremal eigenvalues.

Proof. By Proposition 3.2, it suffices to show that the sequence

√
B(k)

A(k)
, k ≥ 2, is increasing.

√
B(k)

A(k)
=

√
k − 1

k + 1
·

sin

(
π

k + 1

)
cos

(
π

k + 1

)
− cos

(
2π

k + 1

)
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=

√
k − 1

k + 1
·

2 sin

(
π

2(k + 1)

)
cos

(
π

2(k + 1)

)
2 sin

(
π

2(k + 1)

)
sin

(
3π

2(k + 1)

)

=

√
k − 1

k + 1
·

cos

(
π

2(k + 1)

)
sin

(
3π

2(k + 1)

) ,
which is the product of two positive increasing sequences, and the proof is complete.

Remark 3.4. By Corollary 2.4, we can see that the function D(eiθTn(c, b, a)), θ ∈ [0, 2π] attains its

maximum where |p(θ)| also does. Recall that |p(θ)|2 = |b|2 + |c|2 + 2|bc| cos(2θ + θb + θc) which attains its

maximum at φ1 = − θb+θc2 and φ2 = π − θb+θc
2 , and |p(φi)|2 = (|b|+ |c|)2, i = 1, 2.

Slightly altering a technique in [9], the next lemma reveals something interesting about the rotations φ1

and φ2 of Tn(c, b, 0).

Lemma 3.5. Tn(c, b, 0) in (2.9) is rotationally unitarily similar to a real matrix.

Proof. We will show that for the matrix e−i
θb+θc

2 Tn(c, b, 0) = Tn(ĉ, b̂, 0), b̂ = |b|ei
θb−θc

2 , ĉ = |c|e−i
θb−θc

2 ,

there is a unitary transformation that turns it into a real tridiagonal matrix. Consider the unitary diagonal

matrix U with diagonal entries ui = ei(i−2)
θb−θc

2 , i = 1, 2, · · · , n. Then,

UTn(ĉ, b̂, 0)U∗ =


u1

u2

. . .

un−1

un




0 b̂

ĉ 0 b̂
. . .

. . .
. . .

ĉ 0 b̂

ĉ 0




u1

u2

. . .

un−1

un



=


0 u1u2b̂

u1u2ĉ 0 u2u3b̂
. . .

. . .
. . .

un−2un−1ĉ 0 un−1unb̂

un−1unĉ 0

 .

The nonzero entries of UAU∗ are

uiui+1b̂ = |b|ei(i−2−i+1+1)
θb−θc

2 = |b| ∈ R, i = 1, · · · , n,

and

uiui+1ĉ = |c|ei(−i+2+i−1−1)
θb−θc

2 = |c| ∈ R, i = 1, · · · , n,

which completes the proof.

Next, a complete characterization of the angular sets A(λk), k = 1, n of Definition 1.1 is given.
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Proposition 3.6. Let Tn(c, b, a) as in (1.5) be such that
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
and let r2 = −|b|

2 + |c|2

2|bc|

+

∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
. Then, the angular sets A(λk), k = 1, n are determined by

θ1 =

(
−arccos(r2)

2
− θb + θc

2

)
mod 2π, θ2 =

(
arccos(r2)

2
− θb + θc

2

)
mod 2π,

θ3 = (π + θ1) mod 2π, θ4 = (π + θ2) mod 2π,

and they can be of the following forms:

(θ1, θ2) or (θ1, 2π) ∪ [0, θ2), and (θ3, θ4) or (θ3, 2π) ∪ [0, θ4).

Proof. In view of property S2 in the introduction, without loss of generality we can work with Tn(c, b, 0).

According to Proposition 3.2, the assumption that
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
ensures the existence of shell

extremal eigenvalues, and therefore, the non-emptiness of A(λk), k = 1, n. By Definition 1.1, property

SE3 and the fact that Tn(c, b, 0) has two shell extremal eigenvalues, namely λ1 = 2
√
bc cos

(
π
n+1

)
= −λn,

it is A(λ1) ∪ A(λn) = {θ ∈ [0, 2π] : D(eiθTn(c, b, 0)) > 0}. Moreover, observe that by Corollary 2.4

D(eiθTn(c, b, 0)) is continuous in θ. Thus, the angular sets A(λk) ⊂ [0, 2π], k = 1, n, are either connected or

they are the union of intervals (the latter is because we demand the sets A(λk) to be a subsets of [0, 2π]).

Observe that,

D(eiθTn(c, b, 0)) = D

(
e

i
(
θ+

θb+θc
2

)
e−i

θb+θc
2 Tn(c, b, 0)

)
= D

(
e

i
(
θ+

θb+θc
2

)
Tn(ĉ, b̂, 0)

)
= D(eiθ̂Tn(ĉ, b̂, 0)),

where θ̂ = θ+ θb+θc
2 , b̂ = |b|ei

θb−θc
2 and ĉ = |c|e−i

θb−θc
2 . The condition of Proposition 3.2 is still satisfied

and since Tn(ĉ, b̂, 0) is unitarily similar to a real matrix with D(±Tn(ĉ, b̂, 0)) > 0, properties SE2, SE3 and

Proposition 2.5 yield A(λ̂1) = (2π − a, 2π] ∪ [0, a), A(λ̂n) = (π − a, π + a) = {π + r : r ∈ A(λ̂1)}, for some

a ∈ (0, π/2) and A(λ̂1) ∪ A(λ̂2) = {θ̂ ∈ [0, 2π] : D(eiθ̂Tn(ĉ, b̂, 0)) > 0}, where λ̂k, k = 1, n are the two

shell extremal eigenvalues of Tn(ĉ, b̂, 0). As was seen in the proof of Proposition 3.1, D(eiθ̂Tn(ĉ, b̂, 0)) > 0

if and only if cos(2θ̂ + θb̂ + θĉ) > r2, therefore D(eiθTn(c, b, 0)) = D(eiθ̂Tn(ĉ, b̂, 0)) > 0 if and only if

r2 < cos(2θ̂ + θb̂ + θĉ), and observing that θb̂ + θĉ = 0, we have

− arccos(r2) < 2θ̂ < arccos(r2)⇔ −arccos(r2)

2
< θ̂ <

arccos(r2)

2
.

Without loss of generality, we consider arccos(r2) ∈ (0, π) ⇒ a =
arccos(r2)

2
∈ (0, π/2). Recalling that

θ̂ = θ + θb+θc
2 , we can conclude that one of the sets A(λk), k = 1, n is of one of the forms (θ1, θ2) or

(θ1, 2π) ∪ [0, θ2) and the other one is of the form (θ3, θ4) or (θ3, 2π) ∪ [0, θ4).

We conclude this section with some remarks on the envelope E(Tn(c, b, a)) related to what has preceded.

The envelope of a square matrix A gives a better spectral approximation in comparison to the standard

numerical range, but it is not in general connected. Moreover, sufficient conditions for the connectedness of
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the envelope and lower or upper bounds for the number of its connected components are yet to arise in the

literature. However, for the 2-rank numerical range [7, 8, 12, 16] defined as

F2(A) =
⋂

θ∈[0,2π]

{e−iθ(x+ iy) : x, y ∈ R, x ≤ δ2(eiθA)},

it holds F2(A) ⊆ E(A) (Theorem 3.1 of [15]).

Proposition 3.7. Let Tn(c, b, a) be as in (1.5), n ≥ 3.

(i) The eigenvalues λk, k = 2, · · · , n− 1 belong to a single connected component of E(Tn(c, b, a)).

(ii) If
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
, then E(Tn(c, b, a)) is disconnected. Especially, 3 is a lower bound for the

number of its connected components.

Proof. (i) For n = 3, the result is evident. For n ≥ 4 in view of properties P2, P3, and P4 in [15]

and Lemma 3.5, without loss of generality we can work with the matrix Tn(c, b, 0), c > 0, b > 0.

Also in view of property (i) of Section 2 in [8] and Theorem 3.1 of [15] it suffices to show that

the real eigenvalues λk = 2
√
bc cos

(
kπ
n+1

)
∈ F2(Tn(c, b, 0)), k = 2, 3, · · · , n − 1. F2(Tn(c, b, 0)) is

an elliptical disc with major length L =

√
2
(

1 + cos
(

4π
n+1

))
(b + c) and foci the eigenvalues λ2

and λn−1 = −λ2 (Theorem 12 and Proposition 13 of [1]). Thus, the convexity of F2(Tn(c, b, a))

yields that the line segment created by these two eigenvalues, and which contains λ3, λ4, · · · , λn−2,

is contained if F2(Tn(c, b, a)), which proves item (i).

(ii) A sufficient condition for E(Tn(c, b, a)) to be disconnected is, of course,
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
. Then

for some θ0, in view of Propositions 3.1 and 2.5, the shells Γ(eiθ0Tn(c, b, a)) and Γ(ei(π+θ0)Tn(c, b, a))

are not connected, forcing the envelope to be as such. Both these shells form closed branches that

contain one of each shell extremal eigenvalue. Item (i) completes the proof.

4. Measures of non-normality. Motivated by property SE6 in the introduction, the following quan-

tities can be considered as measures of non-normality of a shell extremal eigenvalue λ0 of A ∈ Mn(C) as

they vanish if and only if λ0 is a normal eigenvalue [6].

• η1,A(λ0) = inf
{
dh
(
eiθA

)
: θ ∈ A(λ0)

}
,

• η2,A(λ0) = inf
{
ν
(
eiθA

)
− u

(
eiθA

)2
: θ ∈ A(λ0)

}
,

• η3,A(λ0) = inf
{
RΓ(eiθA)(δ1(eiθA) + iu(eiθA)) : θ ∈ A(λ0)

}
.

The next proposition gives explicit expressions for the measures of non-normality of shell extremal

eigenvalues ni,Tn(c,b,a)(·), i = 1, 2, 3.

Proposition 4.1. Let Tn(c, b, a) in equation (1.5), be such that
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
. Let also λk, k =

1, n be the two shell extremal eigenvalues. Then,

(i) n1,Tn(c,b,a)(λk) =
1

2

(√
(|b|+ |c|)2A(n)−

√
(|b|+ |c|)2A(n)− 4B(n)(|b| − |c|)2

)
, k = 1, n,

(ii) n2,Tn(c,b,a)(λk) = B(n)(|b| − |c|)2, k = 1, n,
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(iii) n3,Tn(c,b,a)(λk) =
B(n)(|b| − |c|)2

2
√
A(n)(|b|+ |c|)

, k = 1, n.

Moreover, the infima are obtained at the same points for λ1 and λn, respectively.

Proof. As is described in Remark 3.4, |p(θ)|, θ ∈ [0, 2π], attains its maximum at φ1 = − θb+θc2 and

φ2 = π − θb+θc
2 , and |p(φ1)|2 = |p(φ2)|2 = (|b| + |c|)2. By Propositions 2.3 (iii) and Corollary 2.4, it is

evident that both ν(eiθTn(c, b, a))−u(eiθTn(c, b, a))2 and RΓ(eiθTn(c,b,a))(δ1(eiθTn(c, b, a)) + iu(eiθTn(c, b, a)))

are minimized where |p(θ)| is maximum. Thus,

n2,Tn(c,b,a)(λk) = B(n)(|b| − |c|)2, k = 1, n,

and

n3,Tn(c,b,a)(λk) =
B(n)(|b| − |c|)2√
A(n)(|b|+ |c|)

, k = 1, n.

Finally, observe that

dh(eiθTn(c, b, a)) =

√
|p(θ)|2A(n)−

√
|p(θ)|2A(n)− 4B(n)

(|b|2 − |c|2)2

|p(θ)|2

2

or,

dh(eiθTn(c, b, a)) =

2B(n)
(|b|2 − |c|2)2

|p(θ)|2√
|p(θ)|2A(n) +

√
|p(θ)|2A(n)− 4B(n)

(|b|2 − |c|2)2

|p(θ)|2

,

and dh(eiθTn(c, b, a)) is minimized where |p(θ)| is maximum. Substituting |p(φ1)|2 = |p(φ2)|2 = (|b| + |c|)2

into item (iia) of Corollary 2.4 yields the result for n1,Tn(c,b,a)(λk).

As was previously discussed, a tridiagonal Toeplitz matrix Tn(c, b, a) is normal if and only if |b| = |c|. It is

only natural to expect that measures of non-normality of such matrices will vanish if and only if |b|− |c| = 0.

In [13], it was shown that the (Henrici) departure from normality [10] is equal to

(4.24) ∆F (Tn(c, b, a)) =
√
n− 1 ||b| − |c|| ,

and the structured distance from normality is equal to

(4.25) δF (Tn(c, b, a),NT ) =

√
n− 1

2
||b| − |c|| ,

where both are considered with respect to the Frobenius norm (hence the index F in both ∆F and δF ). In

equation (4.25) NT denotes not the set of normal matrices of Mn(C), but the set of normal complex tridiag-

onal Toeplitz matrices. Observe that the difference |b| − |c| appears also in all the quantities ni,Tn(c,b,a)(·).
The next proposition illustrates why this is so.

Proposition 4.2. The matrix Tn(c, b, a) in equation (1.5) (but with the condition |b| 6= |c| relaxed) is

normal if and only if it has one normal eigenvalue.

Proof. If Tn(c, b, a) is normal, then the normality of all eigenvalues follows. For the converse, let λk =

a+2
√
bc cos

(
kπ

n+ 1

)
for some k ∈ {1, 2, ..., n} be a normal eigenvalue of Tn(c, b, a). Then, its one-dimensional
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right eigenspace coincides with its left eigenspace. The right and left eigenvectors xk and xl,k of Tn(c, b, a)

for λk are given in (1.7) and (1.8), respectively. So there must be a nonzero m ∈ C such that

xk = mxl,k.

As,

xk =

[(c
b

) 1
2

sin

(
kπ

n+ 1

)
,
(c
b

) 2
2

sin

(
2kπ

n+ 1

)
, · · · ,

(c
b

)n
2

sin

(
nkπ

n+ 1

)]T
,

and

xl,k =

[(
b

c

) 1
2

sin

(
kπ

n+ 1

)
,

(
b

c

) 2
2

sin

(
2kπ

n+ 1

)
, · · · ,

(
b

c

)n
2

sin

(
nkπ

n+ 1

)]T
,

it must be (c
b

) j
2

sin

(
jkπ

n+ 1

)
= m

(
b

c

) j
2

sin

(
jkπ

n+ 1

)
, j = 1, · · · , n,

or (
|c|
|b|

)j
= m, j = 1, · · · , n.

The last condition must hold for all j = 1, · · · , n, which clearly yields m = 1 and |b| = |c|, that is, Tn(c, b, a)

is a normal matrix.

As a consequence of Proposition 4.2, we can conclude that measures of non-normality of an eigenvalue

of Tn(c, b, a) are actually measures of non-normality for the entire matrix. Thus, in the case where Tn(c, b, a)

has shell extremal eigenvalues and with the use of a continuity argument of ni,Tn(c,b,a) with respect to b and

c the following result follows readily.

Corollary 4.3. Let Tn(c, b, a) be as in equation (1.5) (but with the condition |b| 6= |c| relaxed) such

that
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
. Then Tn(c, b, a) is normal if and only if ni,Tn(c,b,a)(λk) = 0, i = 1, 2, 3, k = 1, n.

Corollary 4.4. Let Tn(c, b, a) in equation (1.5), be such that
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
<

1

2
. Let also λk, k =

1, n be the two shell extremal eigenvalues. Then,

(i) n1,Tn(c,b,a)(λk) ≤ 4δF (Tn(c, b, a)) ≤ 4∆F (Tn(c, b, a)).

(ii)
√
n2,Tn(c,b,a)(λk) ≤ δF (Tn(c, b, a)) ≤ ∆F (Tn(c, b, a)).

(iii) n3,Tn(c,b,a)(λk) ≤ δF (Tn(c, b, a)) ≤ ∆F (Tn(c, b, a)).

Proof. By Corollary 3.14 of [6] we have that n1,Tn(c,b,a)(λk) ≤ 4n3,Tn(c,b,a)(λk). Moreover,

n3,Tn(c,b,a)(λk) =
B(n)(|b| − |c|)2√
A(n)||b|+ |c||

<
B(n) ||b| − |c||√

A(n)
=
n− 1

n+ 1

sin2

(
π

n+ 1

)
cos

(
π

n+ 1

)
− cos

(
2π

n+ 1

) ||b| − |c||

=
n− 1

n+ 1

4 sin2

(
π

2(n+ 1)

)
cos2

(
π

2(n+ 1)

)
2 sin

(
3π

2(n+ 1)

)
sin

(
π

2(n+ 1)

) ||b| − |c||
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= 2
n− 1

n+ 1

sin

(
π

2(n+ 1)

)
sin

(
3π

2(n+ 1)

) cos2

(
π

2(n+ 1)

)
||b| − |c||

≤ 2
n− 1

n+ 1
1 · 1 ||b| − |c|| ≤

√
n− 1

2
||b| − |c|| <

√
n− 1||b| − |c||.

This proves items (i) and (iii). For item (ii), observe that√
n2,Tn(c,b,a)(λk) =

√
B(n)||b| − |c|| <

√
n− 1

2
||b| − |c|| <

√
n− 1||b| − |c||.

5. An example. Consider the matrices T7 = T7(3− 4i, 2 + 3i, 0) and T30 = T30(3− 4i, 2 + 3i, 0). The

notation T7 and T30 is for the sake of brevity. Here |b| =
√

13 and |c| = 5. Evaluating,
||b| − |c||
|b|+ |c|

√
B(n)

A(n)
for

both matrices yields

5−
√

13

5 +
√

13

√
6

8

sin
(
π
8

)
cos
(
π
8

)
− cos

(
2π
8

) = 0.2477 <
1

2
, for T7,

and
5−
√

13

5 +
√

13

√
29

31

sin
(
π
31

)
cos
(
π
31

)
− cos

(
2π
31

) = 1.0337 >
1

2
, for T30.

According to Propositions 3.1 and 3.2 , T7 has two shell extremal eigenvalues, namely

λ1 = 2
√

((3− 4i)(2 + 3i)) cos
(π

8

)
= 7.8424 + 0.2177i = −λ7,

and T30 has none. This can also be verified by the graphs of the functions D(eiθT7) and D(eiθT30) in Fig. 1.

Calculating the angular sets of Proposition 3.6 for T7, that is the θ ∈ [0, 2π] such that D(eiθT7) > 0 (see also

Fig. 1), we have

Figure 1. The functions D(eiθT7(3 − 4i, 2 + 2i, 0)) and D(eiθT30(3 − 4i, 2 + 3i, 0)). T7(3 − 4i, 2 + 3i, 0) has two
shell extremal eigenvalues and their corresponding angular sets are formed by the zeroes of D(eiθT7(3− 4i, 2 + 3i, 0)).
D(eiθT30(3− 4i, 2 + 3i, 0)) is negative for all θ ∈ [0, 2π] verifying that the matrix has no shell extremal eigenvalues.
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Figure 2. The curves e−iθΓ(eiθT7(3 − 4i, 2 + 2i, 0)) for θ = −0.5,−0.02775, 0.5 (on the left), and on the right
a magnified version illustrating the closed branches of these shells that surround the shell extremal eigenvalue λ1 =
7.8424 + 0.2177i. The convex curve in red is the boundary of the numerical range F (T7(3− 4i, 2 + 2i, 0)) which shares
common boundary points with the loops of the shells.

A(λ1) = [0, 0.7758) ∪ (5.4519, 2π) and A(λ7) = (2.3103, 3.9174).

This can be verified by evaluating the quantities involved in Proposition 3.6. So,

r2 = −|b|
2 + |c|2

2|bc|
+

∣∣|b|2 − |c|2∣∣
|bc|

√
B(n)

A(n)
= − 38

10
√

13
+

12

5
√

13

√
6

8

sin
(
π
8

)
cos
(
π
8

)
− cos

(
2π
8

) = −0.0363,

arccos(r2) = 1.6071 and
θb + θc

2
=

arg(2 + 3i) + arg(3− 4i)

2
= 0.0277.

Therefore,

θ1 =

(
−arccos(r2)

2
− θb + θc

2

)
mod 2π = 5.4519 and θ2 =

(
arccos(r2)

2
− θb + θc

2

)
mod 2π = 0.7758.

It is a matter of simple calculations to see that A(λ1) = (θ1, 2π) ∪ [0, θ2) and that A(λ2) = ((π + θ1)

mod 2π, π + θ2), verifying Proposition 3.6.

Next, in Fig. 2 we draw the shells e−iθΓ(eiθT7) for θ = −0.5, θ = −θb + θc
2

= −0.02775 and θ = 0.5 and

in Table 1 we evaluate the related quantitiesD(eiθT7), ν(eiθT7)−u(eiθT7)2, dh(eiθT7) andRΓ(eiθT7)(δ1(eiθT7)+

iu(eiθT7)). The last three quantities attain their minima at θ = −0.02775 as Proposition 4.1 requires. To

verify this, we calculate the quantities ni(T7) i = 1, 2, 3. Note that A(7) =
(
cos
(
π
8

)
− cos

(
2π
8

))2
= 0.0470

and B(7) =
6

8
sin2

(
π
8

)
= 0.1098. So,

n1(T7(3− 4i, 2 + 3i, 0)) =
1

2

(√
(|b|+ |c|)2A(n)−

√
(|b|+ |c|)2A(n)− 4B(n)(|b| − |c|)2

)
= 0.1225,

n2(T7(3− 4i, 2 + 3i, 0)) = B(n)(|b| − |c|)2 = 0.2136 and n3(T7(3− 4i, 2 + 3i)) =
B(n)(|b| − |c|)2

2
√
A(n)(|b|+ |c|)

= 0.0572.

Moreover,
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Table 1

The values of D(eiθT7), ν(eiθT7) − u(eiθT7)2, dh(eiθT7) and RΓ(eiθT7)(δ1(eiθT7) + iu(eiθT7)) at θ = −0.5,−0.02775, 0.5.

θ −0.5 −0.02775 0.5

D(eiθT7) 1.7089 2.6256 1.4861

ν(eiθT7)− u(eiθT7)2 0.2675 0.2136 0.2836

dh(eiθT7) 0.1799 0.1225 0.1999

RΓ(eiθT7)(δ1(eiθT7) + iu(eiθT7)) 0.0802259 0.0572443 0.0875975

∆F (T7(3− 4i, 2 + 3i, 0)) =
√

6(5−
√

13) = 3.4157 and δF (T7(3− 4i, 2 + 3i, 0)) =
√

3(5−
√

13) = 2.4153.

We can also see that the inequalities of Corollary 4.4 are satisfied.
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