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REVERSE ORDER LAW AND FORWARD ORDER LAW FOR THE (b, c)-INVERSE∗

JELENA VIŠNJIĆ† , IVANA STANIŠEV‡ , AND YUANYUAN KE§

Abstract. The reverse order law and the forward order law have been studied for various types of generalized inverses.

The (b, c)-inverse is a generalization of some well known generalized inverses, such as the Moore-Penrose inverse, the Drazin

inverse, the core inverse, etc. In this paper, the reverse order law for the (b, c)-inverse, in a unital ring, is investigated and an

equivalent condition for this law to hold for the (b, c)-inverse is derived. Also, some known results on this topic are generalized.

Furthermore, the forward order law for the (b, c)-inverse in a ring with a unity is introduced, for different choices of b and c.

Moreover, as corollaries of obtained results, equivalent conditions for the reverse order law and the forward order law for the

inverse along an element are derived.
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1. Introduction. The theory of generalized inverses has its beginning in the early years of the twentieth

century [2]. Namely, in 1903, Fredholm defined a particular generalized inverse of an integral operator [12].

In 1920, an abstract of a talk, given by Moore at a meeting of the American Mathematical Society, had

appeared in print [22]. In this abstract, Moore defined a unique generalized inverse for every finite matrix. In

1951, Bjerhammar [5, 6, 7] rediscovered Moore’s inverse, and in 1955, Penrose [25] extended Bjerhammar’s

results. This inverse is now called the Moore–Penrose inverse, and it has been widely investigated by many

authors. In 1958, Drazin [10] introduced a new generalized inverse, in associative rings, which was later

called the Drazin inverse. Baksalary and Trenkler [1], in 2010, introduced a new generalized inverse – the

core inverse, for complex matrices. Moreover, in 2011, Mary [18] defined a new generalized inverse using

Green’s preorders and named it the inverse along an element. In 2012, Drazin [11] introduced the concept of

the (b, c)-inverse in semigroups and rings. The inverse along an element and the (b, c)-inverse both generalize

some well-known generalized inverses, such as the Moore–Penrose, the Drazin inverse, the core and dual core

inverse, and others. In 2021, it was proved that the inverse along an element and the (b, c)-inverse are

equivalent concepts [19]. Many other generalized inverses were defined and studied.

Throughout this paper, we assume that R is a unital ring with the unity 1. It is well known that if

a,w ∈ R−1, then aw is also invertible and

(1.1) (aw)−1 = w−1a−1.
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Equality (1.1) is known as the reverse order law. Since the reverse order law holds for the classical inverse,

it is natural to investigate if this equality is valid for different generalized inverses. In 1966, Greville [13] was

the first who studied this topic for the Moore-Penrose inverse for the product of two matrices and derived

a necessary and sufficient condition for the reverse order law to hold for the Moore-Penrose inverse. Since

then, many authors have been investigated under which conditions the reverse order law holds for various

types of generalized inverses (e.g., see [4, 9, 19, 23, 24, 28, 33, 37]). In the second section of this paper, we

will investigate the reverse order law for the (b, c)-inverse. Namely, we derive an equivalent condition for the

reverse order law rule:

(1.2) (aw)(b,c) = w(b,c2)a(b1,c).

Note that (aw)(b,c) = w(b,c)a(b,c), (aw)(b,c) = w(b,c)a(b1,c) and (aw)(b,c) = w(b,c2)a(b,c) are all special cases of

(1.2).

Let b, c ∈ R. An element a ∈ R is (b, c)-invertible [11], if there exists y ∈ R such that

y ∈ (bRy) ∩ (yRc), yab = b, cay = c.

If such y exists, it is unique and it is called the (b, c)-inverse of a, denoted by a(b,c). By R(b,c), we will denote

the set of all (b, c)-invertible elements of a ring R. For more properties of the (b, c)-inverse, we refer the

reader to see [3, 14, 15, 19, 23, 27, 29, 34].

Now, consider the following equality:

(1.3) (aw)−1 = a−1w−1.

Equality (1.3) is called the forward order law. Contrary to the reverse order law, even if a and w are both

invertible, the forward order law is not valid in general. In 2003, Wang et al. [30] studied the forward

order law for the outer inverse with prescribed range and null space in the matrix concept and derived

necessary and sufficient conditions for the forward order law for the Moore-Penrose inverse, the weighted

Moore-Penrose inverse, the Drazin inverse and the group inverse. After the mentioned publication, this

topic has been investigated by some scholars, for different kinds of generalized inverses (see [8, 21, 35] for the

Moore-Penrose inverse and [31, 32, 36] for {1}-, {1, 2}-, {1, 2, 3}- and {1, 2, 4}-inverses), but not so widely

as the reverse order law. Recently, Kumar and Mishra [16] and also Li, Mosić and Chen [17] studied the

forward order law for the core inverse. However, in the present, there are no publications on the forward

order for the (b, c)-inverse. In the third section of this paper, we will investigate the forward order law for

the (b, c)-inverse in a unital ring. Actually, we obtain a necessary and sufficient condition for the forward

order law rule:

(1.4) (aw)(b,c) = a(b,c1)w(b2,c).

Some special cases of (1.4) are (aw)(b,c) = a(b,c)w(b,c), (aw)(b,c) = a(b,c1)w(b,c), and (aw)(b,c) = a(b,c)w(b2,c).

Note that if (R, ·) is a ring, then (R, ∗) is also a ring if we consider a ∗ b = b · a. Therefore, the obtained

results of the manuscript can be dualized with no problem.

In what follows, we give some definitions, which we will use to obtain our results. An element a ∈ R is

regular if there exists y ∈ R such that aya = a. Any inner inverse of a will be denoted by a−. The set of

all regular elements of a ring R will be denoted by R−. For a ∈ R, we define image ideals aR and Ra by
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aR = {ax : x ∈ R} and Ra = {xa : x ∈ R}, respectively. Moreover, by a◦ and ◦a, we denote kernel ideals

(also known as annihilators) a◦ = {x ∈ R : ax = 0} and ◦a = {x ∈ R : xa = 0}, respectively.

Let d ∈ R. An element a ∈ R is said to be invertible along d [18], if there exists y ∈ R such that

yad = d = day, yR ⊆ dR, Ry ⊆ Rd.

If such y exists, it is unique and it is called the inverse along an element d, denoted by a‖d. We use notation

R‖d to denote the set of all elements of R which are invertible along d. Obviously, the inverse along an

element d is the (b, c)-inverse (for b = c = d, we have a‖d = a(d,d)). Recently, it was proved that the converse

is also true [19, Theorem C.4, p.260]. More precisely, the (b, c)-inverse and the inverse along an element

in a semigroup are actually genuine inverse when considered as morphisms in the Schutzenberger category

of the semigroup [19]. For more properties of the inverse along an element, we suggest the reader to see

[4, 19, 20, 37, 38].

Now, we will list some auxiliary lemmas, which we will use in our sequel development.

Lemma 1.1. ([11, Theorem 2.2]) For a, b, c ∈ R, the following statements are equivalent:

(i) a(b,c) exists.

(ii) b ∈ Rcab and c ∈ cabR.

Lemma 1.2. ([9, Lemma 2.1]) Let a, b, c ∈ R. The following statements are equivalent:

(i) a(b,c) exists;

(ii) b, c ∈ R− and there exists y ∈ R such that yab = b, cay = c, y = bb−y = yc−c.

In that case, y = a(b,c).

Lemma 1.3. ([14, Theorem 2.9]) Let a, b, c ∈ R. The following statements are equivalent:

(i) a ∈ R(b,c);

(ii) there exists y ∈ R such that yay = y, yR = bR and Ry = Rc;

(ii)′ b ∈ R− and there exists y ∈ R such that yay = y, ◦y = ◦b and Ry = Rc;

(ii)′′ c ∈ R− and there exists y ∈ R such that yay = y, yR = bR and y◦ = c◦;

(ii)′′′ b, c ∈ R− and there exists y ∈ R such that yay = y, ◦y = ◦b and y◦ = c◦;

(iii) b ∈ R−, ◦a ∩Rc = {0} and R = Rca⊕ ◦b;

(iii)′ c ∈ R−, a◦ ∩ bR = {0} and R = abR⊕ c◦.

In this case, y = a(b,c).

Lemma 1.4. ([34, Lemma 3.11]) Let a, b1, b2, c1, c2 ∈ R. If b1R = b2R and Rc1 = Rc2, then a is

(b1, c1)-invertible if and only if a is (b2, c2)-invertible. In this case, we have a(b1,c1) = a(b2,c2).

Lemma 1.5. ([29, Lemma 4.1]) Let b, c ∈ R and a,w ∈ R(b,c). Then, w(b,c) = w(b,c)aa(b,c) = a(b,c)aw(b,c).

Lemma 1.6. ([14, Lemma 2.8]) Let b1, b2 ∈ R−. Then, the following hold:

(i) the condition b1R = b2R is equivalent to ◦b1 = ◦b2;

(ii) the condition Rb1 = Rb2 is equivalent to b◦1 = b◦2.

Lemma 1.7. ([26, Theorem 3.3]) Let b, c, w ∈ R and a ∈ R(b,c). Then, cab = cwb if and only if w ∈ R(b,c)

and a(b,c) = w(b,c).
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Proof. Let cab = cwb and let y = a(b,c). Hence, b ∈ Rcab = Rcwb and c ∈ cabR = cwbR. Thus, by

Lemma 1.1, we have that w ∈ R(b,c). Furthermore, we have ca − cw ∈ ◦b. By Lemma 1.3 (ii)′, we have
◦b = ◦y, and therefore, cay− cwy = 0, that is c = cwy. Further, we have ab−wb ∈ c◦. By Lemma 1.3 (ii)′′,

c◦ = y◦ holds, so we get yab−ywb = 0 and thereby ywb = b. Since y = a(b,c), we have that y ∈ (bRy)∩(yRc).

Therefore, by the definition of the (b, c)-inverse, we have that w(b,c) = y.

Now, let us prove that the converse also holds. Let a,w ∈ R(b,c) and y = a(b,c) = w(b,c). Then,

b = yab = ywb, so we have y(ab − wb) = 0. Hence, ab − wb ∈ y◦. By Lemma 1.3 (ii)′′, we have y◦ = c◦.

Thus, cab− cwb = 0.

Lemma 1.8. ([26, Theorem 4.4]) Let b, c ∈ R and a, 1 ∈ R(b,c). Then, a(b,c) = a(b,c)1(b,c) = 1(b,c)a(b,c).

Proof. By Lemma 1.5, for every a,w ∈ R(b,c), a(b,c) = a(b,c)ww(b,c) = w(b,c)wa(b,c) holds. Hence, taking

w = 1, we get that the statement of this lemma is valid.

Lemma 1.9. ([27, Theorem 3.2]) Let b, c ∈ R and a ∈ R(b,c). If aa(b,c) = a(b,c)a, then 1 ∈ R(b,c) and

1(b,c) = aa(b,c) = a(b,c)a.

Lemma 1.10. ([27, Theorem 3.1]) Let b, c ∈ R and a ∈ R(b,c). Then, a(b,c) ∈ R(b,c) if and only if

1 ∈ R(b,c). In that case, (a(b,c))(b,c) = 1(b,c)a1(b,c).

2. Reverse order law. We begin this section with the following example, where we show that the

reverse order law (and also the forward order law) is not valid for the (b, c)-inverse in general.

Example 2.1. Let M2 stands for the algebra of 2 × 2 complex matrices and let b, c, α ∈ M2 be such

that:

b =

[
1 0

0 0

]
, c =

[
0 0

0 1

]
and α =

[
α1 α2

α3 α4

]
, where α3 6= 0.

We will use Lemma 1.2 to prove that α is (b, c)-invertible. Namely, we should prove that there exists y ∈M2,

y =

[
y1 y2
y3 y4

]
, such that yαb = b, cαy = c and y = bb−y = yc−c is satisfied. We have that:

b− =

[
1 b2
b3 b4

]
, c− =

[
c1 c2
c3 1

]
, for arbitrary b2, b3, b4, c1, c2, c3 ∈ C.

Now, we get:

bb−y =

[
y1 + b2y3 y2 + b2y4

0 0

]
and yc−c =

[
0 y1c2 + y2
0 y3c2 + y4

]
.

From the conditions bb−y = y and yc−c = y, we get that y1 = y3 = y4 = 0. Further, we obtain:

yαb =

[
y2α3 0

0 0

]
and cαy =

[
0 0

0 α3y2

]
.

Now, from the conditions yαb = b and cαy = c, we obtain y2 = α−13 . Therefore, we get that yαb = b, cαy = c

and y = bb−y = yc−c is satisfied for

y =

[
0 α−13

0 0

]
.

Hence, by Lemma 1.2, α is (b, c)-invertible and α(b,c) = y. Now, consider matrices

a =

[
0 0

2 1

]
, w =

[
1 0

1 0

]
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 379-394, July 2023.

383 Reverse order law and forward order law for the (b, c)-inverse

We have that a, w, and aw =

[
0 0

3 0

]
are all (b, c)-invertible and:

a(b,c) =

[
0 1

2

0 0

]
, w(b,c) =

[
0 1

0 0

]
and (aw)(b,c) =

[
0 1

3

0 0

]
.

However, we have that

w(b,c)a(b,c) = a(b,c)w(b,c) =

[
0 0

0 0

]
.

Hence, (aw)(b,c) 6= w(b,c)a(b,c) and (aw)(b,c) 6= a(b,c)w(b,c).

Now, we give the next result, which will be one of our main tools in investigating the reverse order law for

the (b, c)-inverse. Namely, in [29, Lemma 4.1], Wang, Castro–González, and Chen proved that for arbitrary

a,w ∈ R(b,c), a(b,c) = a(b,c)ww(b,c) = w(b,c)wa(b,c) is valid. In the following two theorems, we generalize this

result.

Theorem 2.2. Let a, b1, b2, c1, c2 ∈ R, w ∈ R(b2,c2) and b1R = b2R. The following conditions are

equivalent:

(i) a ∈ R(b1,c1);

(ii) a ∈ R(b2,c1).

Moreover, if any of the above conditions is satisfied, then

(2.5) a(b1,c1) = a(b2,c1) = w(b2,c2)wa(b1,c1).

Proof. Since b1R = b2R, applying Lemma 1.4, we get that a ∈ R(b1,c1) if and only if a ∈ R(b2,c1).

Further, in that case:

(2.6) a(b1,c1) = a(b2,c1).

Now, let a ∈ R(b1,c1), w ∈ R(b2,c2) and let us prove that w(b2,c2)wa(b1,c1) is the (b2, c1)-inverse of a. By

the hypothesis and by Lemma 1.2, we have b1, b2, c1, c2 ∈ R−. Denote by y1 = a(b1,c1), y2 = w(b2,c2), and

y = y2wy1. Since b1R = b2R, we have b1 = b2x and b2 = b1z, for some x, z ∈ R. Therefore,

(2.7) yab2 = y2wy1ab2 = y2w(y1ab1)z = y2w(b1z) = y2wb2 = b2.

Further, since y1 = a(b1,c1), we have that y1 ∈ b1Ry1. Thereby, there exists u ∈ R such that y1 = b1uy1.

Thus, we have:

(2.8)
c1ay = c1ay2wy1 = c1ay2wb1uy1 = c1a(y2wb2)xuy1

= c1a(b2x)uy1 = c1a(b1uy1) = c1ay1 = c1.

Moreover, we have:

(2.9) b2b
−
2 y = (b2b

−
2 w

(b2,c2))wa(b1,c1) = y,

(2.10) yc−1 c1 = w(b2,c2)w(a(b1,c1)c−1 c1) = y.

Now, from (2.7), (2.8), (2.9), and (2.10), using Lemma 1.2, we get that y = a(b2,c1). Further, from (2.6), we

get that (2.5) is valid.
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As a direct corollary of Theorem 2.2, we get the following result.

Corollary 2.3. Let a, b, c1, c2 ∈ R and a ∈ R(b,c1). Then for arbitrary, but fixed c2 ∈ R and for every

w ∈ R(b,c2), the following is valid:

a(b,c1) = w(b,c2)wa(b,c1).

Next theorem is dual to Theorem 2.2, and therefore, its proof is omitted.

Theorem 2.4. Let a, b1, b2, c1, c2 ∈ R, w ∈ R(b2,c2) and Rc1 = Rc2. The following conditions are

equivalent:

(i) a ∈ R(b1,c1);

(ii) a ∈ R(b1,c2).

Moreover, if any of the above conditions is satisfied, then

a(b1,c1) = a(b1,c2) = a(b1,c1)ww(b2,c2).

Now, we give the following corollary of Theorem 2.4.

Corollary 2.5. Let b1, c ∈ R and a ∈ R(b1,c). Then for arbitrary, but fixed b2 ∈ R and for every

w ∈ R(b2,c), the following holds:

a(b1,c) = a(b1,c)ww(b2,c).

Remark 2.6. Note that, by Lemma 1.6, the condition b1R = b2R from Theorem 2.2 can be replaced by

conditions b1 ∈ R− and ◦b1 = ◦b2. Similarly, by Lemma 1.6, the condition Rc1 = Rc2 from Theorem 2.4

can be replaced by conditions c1 ∈ R− and c◦1 = c◦2.

In the following corollary, we give some special cases of Corollary 2.3 and Corollary 2.5, which will be

useful in our sequel development.

Corollary 2.7. Let b1, b2, c1, c2 ∈ R.

(i) If a ∈ R(b,c1) and 1 ∈ R(b,c2), then:

(a) 1(b,c2)a(b,c1) = a(b,c1);

(b) a(b,c1)a1(b,c2) = 1(b,c2).

(ii) If a ∈ R(b1,c) and 1 ∈ R(b2,c), then:

(c) a(b1,c)1(b2,c) = a(b1,c);

(d) 1(b2,c)aa(b1,c) = 1(b2,c).

In the next theorem, we show that (b, c)-invertibility of the unity, for specific b and c, is a necessary

condition for the reverse order law to hold for the (b, c)-inverse in a ring. We remark that the condition

1 ∈ R(b,c) coincides with the condition cb is a trace product (b ∈ Rcb and c ∈ cbR) of [19]. Therefore,

Theorem 2.8 and Theorem 2.9 follow from the results of [19, Theorem C.2, p.264] and [19, Theorem C.7,

p.262]. In the present paper, these theorems are proved in the ring setting, using direct sum decompositions.

Theorem 2.8. Let b, b1, c, c2 ∈ R, a ∈ R(b1,c), w ∈ R(b,c2) and aw ∈ R(b,c). If (aw)(b,c) = w(b,c2)a(b1,c),

then 1 ∈ R(b1,c2).

Proof. Let the assumptions of the theorem hold. Using Lemma 1.3 (ii), we have:

Rc = R(aw)(b,c) = Rw(b,c2)a(b1,c) = Rc2a
(b1,c).
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Since a ∈ R(b1,c), by Lemma 1.3 (iii), we have R = Rca⊕ ◦b1. Thus,

R = Rc2a
(b1,c)a⊕ ◦b1.

Therefore, there exist some u, v ∈ R, such that 1 = uc2a
(b1,c)a+ v and vb1 = 0. Hence, b1 = uc2a

(b1,c)ab1 =

uc2b1 and thereby:

(2.11) b1 ∈ Rc2b1.

Moreover, using Lemma 1.3 again, we get:

bR = (aw)(b,c)R = w(b,c2)a(b1,c)R = w(b,c2)b1R.

Since w ∈ R(b,c2), by Lemma 1.3 (iii’), we get R = wbR⊕ c◦2. Hence,

R = ww(b,c2)b1R⊕ c◦2.

Thus, there are some s, t ∈ R, such that 1 = ww(b,c2)b1s + t and c2t = 0. Therefore, c2 = c2ww
(b,c2)b1s =

c2b1s. Hence,

(2.12) c2 ∈ c2b1R.

Using Lemma 1.1, by (2.11) and (2.12), we get that 1 ∈ R(b1,c2).

The following result will be our key tool for obtaining equivalent conditions for the reverse order law

and the forward order law to hold, for the (b, c)-inverse. Namely, in [27, Theorem 3.1], authors proved that

in the case when a,w, 1 ∈ R(b,c), then a1(b,c)w ∈ R(b,c) and (a1(b,c)w)(b,c) = w(b,c)a(b,c). In the next theorem,

we generalize this result.

Theorem 2.9. Let b, b1, c, c2 ∈ R, a ∈ R(b1,c), w ∈ R(b,c2) and 1 ∈ R(b1,c2). Then a1(b1,c2)w ∈ R(b,c)

and

(a1(b1,c2)w)(b,c) = w(b,c2)a(b1,c).

Proof. Let the assumptions of the theorem hold. We will prove that w(b,c2)a(b1,c) is the (b, c)-inverse

of a1(b1,c2)w. By Corollary 2.7 (a) and (d), we have 1(b1,c2)a(b1,c) = a(b1,c) and 1(b1,c2) = 1(b1,c2)ww(b,c2).

Hence, we have:

(2.13) ca1(b1,c2)ww(b,c2)a(b1,c) = ca1(b1,c2)a(b1,c) = caa(b1,c) = c.

Using Corollary 2.7 (b) and (c), we get that a(b1,c)a1(b1,c2) = 1(b1,c2) and w(b,c2)1(b1,c2) = w(b,c2). There-

fore:

(2.14) w(b,c2)a(b1,c)a1(b1,c2)wb = w(b,c2)1(b1,c2)wb = w(b,c2)wb = b.

Moreover, we have that:

(2.15) bb−w(b,c2)a(b1,c) = w(b,c2)a(b1,c),

(2.16) w(b,c2)a(b1,c)c−c = w(b,c2)a(b1,c).

By (2.13), (2.14), (2.15) and (2.16), using Lemma 1.2, we get that a1(b1,c2)w ∈ R(b,c) and

(a1(b1,c2)w)(b,c) = w(b,c2)a(b1,c).
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Now we can derive an equivalent condition for the reverse order law rule (aw)(b,c) = w(b,c2)a(b1,c) to

hold.

Theorem 2.10. Let b, b1, c, c2 ∈ R, a ∈ R(b1,c) and w ∈ R(b,c2). The following conditions are equivalent:

(i) aw ∈ R(b,c) and (aw)(b,c) = w(b,c2)a(b1,c);

(ii) 1 ∈ R(b1,c2) and 1(b1,c2) = a(b1,c)aww(b,c2).

Proof. Let a ∈ R(b1,c) and w ∈ R(b,c2).

(i) ⇒ (ii). Let aw ∈ R(b,c) and (aw)(b,c) = w(b,c2)a(b1,c). By Theorem 2.8, it follows that 1 ∈ R(b1,c2).

Further, by Theorem 2.9, we have that a1(b1,c2)w ∈ R(b,c) and (a1(b1,c2)w)(b,c) = w(b,c2)a(b1,c). Hence,

(aw)(b,c) = (a1(b1,c2)w)(b,c). By Lemma 1.7, it follows that:

cawb = ca1(b1,c2)wb.

Therefore, awb− a1(b1,c2)w ∈ c◦. By Lemma 1.3, we have c◦ = (a(b1,c))◦ and thereby:

a(b1,c)awb− a(b1,c)a1(b1,c2)wb = 0.

Using Corollary 2.7 (b), we get a(b1,c)a1(b1,c2) = 1(b1,c2). Hence,

a(b1,c)awb− 1(b1,c2)wb = 0.

Thus, a(b1,c)aw − 1(b1,c2)w ∈◦ b. By Lemma 1.3, we have ◦b =◦ (w(b,c2)), so:

a(b1,c)aww(b,c2) − 1(b1,c2)ww(b,c2) = 0.

By Corollary 2.7 (d), we have 1(b1,c2)ww(b,c2) = 1(b1,c2). Therefore, a(b1,c)aww(b,c2) − 1(b1,c2) = 0.

(ii) ⇒ (i). Let 1 ∈ R(b1,c2) and a(b1,c)aww(b,c2) = 1(b1,c2). Denote by y = w(b,c2)a(b1,c). We will prove

that y is the (b, c)-inverse of aw. By Corollary 2.7 (a), we have that 1(b1,c2)a(b1,c) = a(b1,c). Thus,

cawy = caww(b,c2)a(b1,c) = caa(b1,c)aww(b,c2)a(b1,c) = ca1(b1,c2)a(b1,c) = caa(b1,c) = c.

Further, by Corollary 2.7 (c), w(b,c2)1(b1,c2) = w(b,c2). Hence,

yawb = w(b,c2)a(b1,c)awb = w(b,c2)a(b1,c)aww(b,c2)wb = w(b,c2)1(b1,c2)wb = b.

Moreover,

bb−y = (bb−w(b,c2))a(b1,c) = y and yc−c = w(b,c2)(a(b1,c)c−c) = y.

Now, by Lemma 1.2, we have that aw ∈ R(b,c) and (aw)(b,c) = y.

Remark 2.11. Using Lemma 1.4 and Theorem 2.10, one can get an equivalent condition for the reverse

order law rule (aw)(b,c) = w(b2,c2)a(b1,c1) to hold, under assumptions bR = b2R and Rc = Rc1. Namely, let

b, b1, b2, c, c1, c2 ∈ R, a ∈ R(b1,c1) and w ∈ R(b2,c2). If bR = b2R and Rc = Rc1, then the following conditions

are equivalent:

(i) aw ∈ R(b,c) and (aw)(b,c) = w(b2,c2)a(b1,c1);

(ii) 1 ∈ R(b1,c2) and 1(b1,c2) = a(b1,c1)aww(b2,c2).

Remark 2.12. Note that the reverse order law rules (aw)(b,c) = w(b,c2)a(b,c), (aw)(b,c) = w(b,c)a(b1,c),

and (aw)(b,c) = w(b,c)a(b,c) are all special cases of the reverse order law rule investigated in Theorem 2.10.
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Recently, in [27, Theorem 3.8], Vǐsnjić et al. proved that if ww(b,c) = w(b,c)w, then (aw)(b,c) = w(b,c)a(b,c).

And in [28, Corollary 3.4], Wang proved that if aa(b,c) = a(b,c)a, then the reverse order law rule (aw)(b,c) =

w(b,c)a(b,c) holds. In the following theorems, we generalize these results.

Theorem 2.13. Let b, c, c2 ∈ R, a ∈ R(b,c) and w ∈ R(b,c2). If ww(b,c2) = w(b,c2)w, then aw ∈ R(b,c) and

(aw)(b,c) = w(b,c2)a(b,c).

Proof. Let the assumptions of the theorem hold and let ww(b,c2) = w(b,c2)w. By Lemma 1.9, it follows

that 1 ∈ R(b,c2) and ww(b,c2) = w(b,c2)w = 1(b,c2). Moreover, by Corollary 2.7 (b), we have a(b,c)a1(b,c2) =

1(b,c2). Hence,

a(b,c)aww(b,c2) = a(b,c)a1(b,c2) = 1(b,c2).

Now, using Theorem 2.10 for b1 = b, we get that aw ∈ R(b,c) and (aw)(b,c) = w(b,c2)a(b,c).

Theorem 2.14. Let b, b1, c ∈ R, a ∈ R(b1,c) and w ∈ R(b,c). If aa(b1,c) = a(b1,c)a, then aw ∈ R(b,c) and

(aw)(b,c) = w(b,c)a(b1,c).

Example 2.15. Let b, b1, c, α, β ∈M2 be such that:

b =

[
0 0

0 1

]
, b1 =

[
0 1

0 0

]
, c =

[
0 0

1 0

]
, α =

[
α1 α2

α3 α4

]
and β =

[
β1 β2
β3 β4

]
,

where α1 6= 0 and β2 6= 0. By Lemma 1.2, we get that α is (b1, c)-invertible, β is (b, c)-invertible and:

α(b1,c) =

[
α−11 0

0 0

]
, β(b,c) =

[
0 0

β−12 0

]
.

Now, let a,w ∈ M2 be such that a =

[
a1 0

0 a4

]
, w =

[
0 w2

w3 w4

]
, where a1 6= 0 and w2 6= 0. We have

that w and aw are both (b, c)-invertible and

w(b,c) =

[
0 0

w−12 0

]
and (aw)(b,c) =

[
0 0

a−11 w−12 0

]
.

Since cab =

[
0 0

0 0

]
, using Lemma 1.1, we get that a is not (b, c)-invertible. Thereby, the reverse order

law rule (aw)(b,c) = w(b,c)a(b,c) does not hold. However, we have that a is (b1, c)-invertible and

a(b1,c) =

[
a−11 0

0 0

]
.

Moreover, one can easily check that aa(b1,c) = a(b1,c)a, and therefore, we can apply Theorem 2.14. Thus, the

reverse order law rule (aw)(b,c) = w(b,c)a(b1,c) holds.

As a direct corollary of Theorem 2.10, in the case when b1 = b = c2 = c, we get a necessary and sufficient

condition for the reverse order law to hold for the inverse along an element.

Corollary 2.16. Let d ∈ R and a,w ∈ R‖d. The following are equivalent:

(i) aw ∈ R‖d and (aw)‖d = w‖da‖d;

(ii) 1 ∈ R‖d and 1‖d = a‖daww‖d.

For more results on the reverse order law for the inverse along an element, we refer the reader to see

[4, 19, 37].
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3. Forward order law. As for the reverse order law (Theorem 2.8), we first prove that the forward

order law for the (b, c)-inverse implies (b, c)-invertibility of the unity 1. Our results on the forward order law

will follow.

Theorem 3.1. Let b, b2, c, c1 ∈ R, a ∈ R(b,c1), w ∈ R(b2,c) and aw ∈ R(b,c). If (aw)(b,c) = a(b,c1)w(b2,c),

then 1 ∈ R(b2,c1).

Proof. The proof is close to that of Theorem 2.8. By Lemma 1.3 (ii), we have:

Rc = R(aw)(b,c) = Ra(b,c1)w(b2,c) = Rc1w
(b2,c),

bR = (aw)(b,c)R = a(b,c1)w(b2,c)R = a(b,c1)b2R.

Moreover, since w ∈ R(b2,c) and a ∈ R(b,c1), by Lemma 1.3 (iii) and (iii)’, we have R = Rcw ⊕ ◦b2 and

R = abR⊕ c◦1. Hence,

R = Rc1w
(b2,c)w ⊕ ◦b2 and R = aa(b,c1)b2R⊕ c◦1.

Therefore, there exist some u, s ∈ R, v ∈ ◦b2 and t ∈ c◦1, such that 1 = uc1w
(b2,c)w+v and 1 = aa(b,c1)b2s+t.

Thus,

b2 = uc1w
(b2,c)wb2 = uc1b2 and c1 = c1aa

(b,c1)b2s = c1b2s.

Hence, b2 ∈ Rc1b2 and c1 ∈ c1b2R. Using Lemma 1.1 completes the proof.

In the next theorem, we derive necessary and sufficient conditions for the forward order law rule

(aw)(b,c) = a(b,c1)w(b2,c) to hold.

Theorem 3.2. Let b, b2, c, c1 ∈ R, a ∈ R(b,c1) and w ∈ R(b2,c). The following conditions are equivalent:

(i) aw ∈ R(b,c) and (aw)(b,c) = a(b,c1)w(b2,c);

(ii) 1 ∈ R(b2,c1) and 1(b2,c1) = w(b2,c)awa(b,c1).

Proof. Using the similar method as in the proof of Theorem 2.10, one can get that the statement of this

theorem is true. Here we give just key steps.

(i) ⇒ (ii). If aw ∈ R(b,c) and (aw)(b,c) = a(b,c1)w(b2,c), then by Theorem 3.1 1 ∈ R(b2,c1). Moreover,

by Theorem 2.9 w1(b2,c1)a ∈ R(b,c) and (w1(b2,c1)a)(b,c) = a(b,c1)w(b2,c). Now, by Lemma 1.7, we have

cawb = cw1(b2,c1)ab. Using Lemma 1.3 (ii)′′′, we get w(b2,c)awa(b,c1) = 1(b2,c1).

(ii) ⇒ (i). If 1 ∈ R(b2,c1) and w(b2,c)awa(b,c1) = 1(b2,c1), then a(b,c1)w(b2,c) is the (b, c)-inverse of aw.

Indeed, denote by y = a(b,c1)w(b2,c). Using Corollary 2.7 (a) and (c), one can get that cawy = c and yawb = b.

Moreover, y = bb−y = yc−c holds and thereby, by Lemma 1.2, aw ∈ R(b,c) and (aw)(b,c) = a(b,c1)w(b2,c).

Remark 3.3. By Lemma 1.4 and Theorem 3.2, we can obtain a necessary and sufficient condition for

the forward order law rule (aw)(b,c) = a(b1,c1)w(b2,c2) to hold, under assumptions bR = b1R and Rc = Rc2.

Actually, we have that the following is valid. Let b, b1, b2, c, c1, c2 ∈ R, a ∈ R(b1,c1) and w ∈ R(b2,c2). If

bR = b1R and Rc = Rc2, then the following conditions are equivalent:

(i) aw ∈ R(b,c) and (aw)(b,c) = a(b1,c1)w(b2,c2);

(ii) 1 ∈ R(b2,c1) and 1(b2,c1) = w(b2,c2)awa(b1,c1).

Remark 3.4. Note that the forward order law rules (aw)(b,c) = a(b,c1)w(b,c), (aw)(b,c) = a(b,c)w(b2,c) and

(aw)(b,c) = a(b,c)w(b,c) are all special cases of the forward order law rule studied in Theorem 3.2.
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It is well known that, for two square and nonsingular matrices a and w, the forward order law (aw)−1 =

a−1w−1 holds if and only if aw = wa. In the following example, we consider two square matrices a and w,

for which aw 6= wa and for which the forward order law rule (aw)(b,c) = a(b,c)w(b2,c) holds.

Example 3.5. Let b, b2, c, a, w ∈M2 be such that:

b =

[
0 0

0 1

]
, b2 =

[
0 1

0 0

]
, c =

[
0 0

1 0

]
, a =

[
0 a2
a3 a4

]
and w =

[
w1 w2

w3 w1

]
,

where a2 6= 0, a4 6= 0, w1 6= 0 and w2 6= 0. It can be checked easily that aw 6= wa. Moreover, using Example

2.15, we get that a is (b, c)-invertible, w is (b2, c)-invertible and

a(b,c) =

[
0 0

a−12 0

]
, w(b2,c) =

[
w−11 0

0 0

]
.

Furthermore, we have that the identity matrix u =

[
1 0

0 1

]
is (b2, c)-invertible and u(b2,c) =

[
1 0

0 0

]
. By

straightforward computation, we get u(b2,c) = w(b2,c)awa(b,c). Hence, by Theorem 3.2, aw is (b, c)-invertible

and the forward order law rule (aw)(b,c) = a(b,c)w(b2,c) holds.

In the sequel, we study the forward order law for the (b, c)-inverse, for different choices of b and c.

Theorem 3.6. Let b, c, c1 ∈ R, a ∈ R(b,c1) and w ∈ R(b,c). If awa(b,c1) = wa(b,c1)a and w(b,c)aw =

aw(b,c)w, then aw ∈ R(b,c) and

(aw)(b,c) = a(b,c1)w(b,c).

Proof. Let the hypothesis of the theorem hold. We will prove that 1 ∈ R(b,c1) and 1(b,c1) = w(b,c)awa(b,c1).

Indeed,

w(b,c)(awa(b,c1)) · 1 · b = w(b,c)wa(b,c1)ab = w(b,c)wb = b.

Moreover, by Corollary 2.3, we have w(b,c)wa(b,c1) = a(b,c1) and thereby:

c1 · 1 · (w(b,c)aw)a(b,c1) = c1aw
(b,c)wa(b,c1) = c1aa

(b,c1) = c1.

Further, bb−w(b,c)awa(b,c1) = w(b,c)awa(b,c1) = w(b,c)awa(b,c1)c−1 c1. Using Lemma 1.2, we get that 1 ∈ R(b,c1)

and 1(b,c1) = w(b,c)awa(b,c1). Hence, using Theorem 3.2 for b2 = b, we get that the statement of the theorem

is true.

Dually, we have the following result.

Theorem 3.7. Let b, b2, c ∈ R, a ∈ R(b,c) and w ∈ R(b2,c). If awa(b,c) = aa(b,c)w and w(b2,c)aw =

ww(b2,c)a, then aw ∈ R(b,c) and

(aw)(b,c) = a(b,c)w(b2,c).

As we have proved in Theorem 3.1, (b, c)-invertibility of 1 (for suitable choices of b and c) is a necessary

condition for the forward order law to hold for the (b, c)-inverse. In other words, if 1 is not (b, c)-invertible

for suitable choices of b and c, then the forward order law for the (b, c)-inverse does not hold. Hence, it is

natural to assume that 1 is (b, c)-invertible, for appropriate b and c, in investigations concerning the forward

order law for the (b, c)-inverse. In the next theorem, we suppose that 1 ∈ R(b,c1), and we obtain that the

forward order law rule (aw)(b,c) = a(b,c1)w(b,c) holds if only one of two conditions (awa(b,c1) = wa(b,c1)a and

w(b,c)aw = aw(b,c)w) of Theorem 3.6 is valid.
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Theorem 3.8. Let b, c, c1 ∈ R, a ∈ R(b,c1), w ∈ R(b,c) and 1 ∈ R(b,c1). Consider the conditions:

(i) awa(b,c1) = wa(b,c1)a;

(ii) w(b,c)aw = aw(b,c)w.

If any of the above conditions is satisfied, then aw ∈ R(b,c) and

(aw)(b,c) = a(b,c1)w(b,c).

Proof. Let the assumptions of the theorem hold.

(i). Let awa(b,c1) = wa(b,c1)a. We will prove that, for b2 = b, the condition (ii) of Theorem 3.2 holds.

By Lemma 1.5, we have a(b,c1)a1(b,c1) = 1(b,c1). Also, by Corollary 2.7 (b), we have w(b,c)w1(b,c1) = 1(b,c1).

Therefore,

w(b,c)awa(b,c1) = w(b,c)(awa(b,c1))1(b,c1) = w(b,c)w(a(b,c1)a1(b,c1))

= w(b,c)w1(b,c1) = 1(b,c1).

Hence, by Theorem 3.2, aw ∈ R(b,c) and (aw)(b,c) = a(b,c1)w(b,c).

(ii). Let w(b,c)aw = aw(b,c)w. By Corollary 2.7 (a), we have 1(b,c1)w(b,c) = w(b,c). Moreover, by Corollary

2.3, we have w(b,c)wa(b,c1) = a(b,c1). Thus,

w(b,c)awa(b,c1) = 1(b,c1)(w(b,c)aw)a(b,c1) = 1(b,c1)a(w(b,c)wa(b,c1))

= 1(b,c1)aa(b,c1) = 1(b,c1).

Analogously as in the previous theorem, in the next theorem we assume that 1 ∈ R(b2,c) and we derive

that the forward order law rule (aw)(b,c) = a(b,c)w(b2,c) is valid if only one of two conditions (awa(b,c) =

aa(b,c)w and w(b2,c)aw = ww(b2,c)a) of Theorem 3.7 holds.

Theorem 3.9. Let b, b2, c ∈ R, a ∈ R(b,c), w ∈ R(b2,c) and 1 ∈ R(b2,c). Consider the conditions:

(i) awa(b,c) = aa(b,c)w;

(ii) w(b2,c)aw = ww(b2,c)a.

If any of the above conditions is satisfied, then aw ∈ R(b,c) and

(aw)(b,c) = a(b,c)w(b2,c).

Now, we consider the forward order law rule (aw)(b,c) = a(b,c)w(b,c). Actually, in the similar manner as

in [29, Theorem 4.4], where authors offered equivalent conditions for the reverse order law to hold for the

(b, c)-inverse, we derive equivalent conditions for the forward order law rule (aw)(b,c) = a(b,c)w(b,c) to hold.

Theorem 3.10. Let b, c ∈ R and a,w ∈ R(b,c). The following conditions are equivalent:

(i) aw ∈ R(b,c) and (aw)(b,c) = a(b,c)w(b,c);

(ii) w(b,c) = w(b,c)awa(b,c)w(b,c) = a(b,c)w(b,c)aww(b,c);

(iii) a(b,c) = a(b,c)awa(b,c)w(b,c) = a(b,c)w(b,c)awa(b,c).

Proof. Let the assumptions of the theorem hold.
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(i) ⇒ (ii). Let aw ∈ R(b,c) and (aw)(b,c) = a(b,c)w(b,c). By Lemma 1.5, we get:

w(b,c) = w(b,c)aw(aw)(b,c) = w(b,c)awa(b,c)w(b,c),

w(b,c) = (aw)(b,c)aww(b,c) = a(b,c)w(b,c)aww(b,c).

(ii) ⇒ (iii). Assume that (ii) holds, that is:

(3.17) w(b,c) = w(b,c)awa(b,c)w(b,c),

(3.18) w(b,c) = a(b,c)w(b,c)aww(b,c).

If we multiply (3.17) by a(b,c)w on the left side and applying Lemma 1.5, we get:

a(b,c) = (a(b,c)w)w(b,c) = a(b,c)ww(b,c)awa(b,c)w(b,c) = a(b,c)awa(b,c)w(b,c).

Similarly, if we multiply (3.18) by wa(b,c) on the right side and using Lemma 1.5, we get:

a(b,c) = w(b,c)(wa(b,c)) = a(b,c)w(b,c)aw(w(b,c)wa(b,c)) = a(b,c)w(b,c)awa(b,c).

(iii) ⇒ (i). Let a(b,c) = a(b,c)awa(b,c)w(b,c) = a(b,c)w(b,c)awa(b,c). Denote by y = a(b,c)w(b,c). We will prove

that y is the (b, c)-inverse of aw. Since b = a(b,c)ab, we have:

yawb = a(b,c)w(b,c)awb = (a(b,c)w(b,c)awa(b,c))ab = a(b,c)ab = b.

Further, since c = caa(b,c), we have:

cawy = cawa(b,c)w(b,c) = ca(a(b,c)awa(b,c)w(b,c)) = caa(b,c) = c.

Moreover, bb−y = (bb−a(b,c))w(b,c) = a(b,c)w(b,c) = y and yc−c = a(b,c)(w(b,c)c−c) = a(b,c)w(b,c) = y. Thus,

by Lemma 1.2, we get that aw ∈ R(b,c) and (aw)(b,c) = a(b,c)w(b,c).

As a special case of Theorem 3.2 and Theorem 3.10, we get equivalent conditions for the forward order

law for the inverse along and element to hold.

Corollary 3.11. Let d ∈ R and a,w ∈ R‖d. The following conditions are equivalent:

(i) aw ∈ R‖d and (aw)‖d = a‖dw‖d;

(ii) 1 ∈ R‖d and 1‖d = w‖dawa‖d;

(iii) w‖d = w‖dawa‖dw‖d = a‖dw‖daww‖d;

(iv) a‖d = a‖dawa‖dw‖d = a‖dw‖dawa‖d.

Moreover, as a direct consequence of Theorem 3.6, 3.7, 3.8, and 3.9, we get the following result concerning

the forward order law for the inverse along an element.

Corollary 3.12. Let d ∈ R and a,w ∈ R‖d. Consider the conditions:

(i) awa‖d = wa‖da;

(ii) w‖daw = aw‖dw;

(iii) awa‖d = aa‖dw;
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(iv) w‖daw = ww‖da.

The following statements hold:

(a) If conditions (i) and (ii) are satisfied, then aw ∈ R‖d and (aw)‖d = a‖dw‖d;

(b) If conditions (iii) and (iv) are valid, then aw ∈ R‖d and (aw)‖d = a‖dw‖d;

(c) If 1 ∈ R‖d and any of the conditions (i)–(iv) holds, then aw ∈ R‖d and (aw)‖d = a‖dw‖d.

In order to prove our next result, we obtain the following proposition.

Proposition 3.13. Let b, c ∈ R and a,w ∈ R(b,c). If aw(b,c) = w(b,c)a, then a(b,c)w(b,c) = w(b,c)a(b,c).

Proof. Let the hypothesis of the proposition hold and let

aw(b,c) = w(b,c)a.

If we multiply the above equality by a(b,c) from the left side, we get

a(b,c)aw(b,c) = a(b,c)w(b,c)a.

By Lemma 1.5, we have that a(b,c)aw(b,c) = w(b,c) and therefore

w(b,c) = a(b,c)w(b,c)a.

Now, if we multiply the last equality by a(b,c) from the right side, we get

w(b,c)a(b,c) = a(b,c)w(b,c)aa(b,c).

Using Lemma 1.5 again, we have w(b,c)aa(b,c) = w(b,c) and therefore

w(b,c)a(b,c) = a(b,c)w(b,c).

Now, we consider under which condition the both reverse order law and the forward order law hold for

the (b, c)-inverse. Namely, in the following corollary, we give sufficient conditions for (aw)(b,c) = a(b,c)w(b,c) =

w(b,c)a(b,c) to hold.

Theorem 3.14. Let b, c ∈ R and a,w ∈ R(b,c). Consider the conditions:

(i) aw(b,c) = w(b,c)a;

(ii) wa(b,c) = a(b,c)w.

If any of the above conditions is satisfied, then aw ∈ R(b,c) and

(aw)(b,c) = a(b,c)w(b,c) = w(b,c)a(b,c).

Proof. Let the assumptions of the theorem hold.

(i) Let aw(b,c) = w(b,c)a. By Proposition 3.13, we have that

(3.19) w(b,c)a(b,c) = a(b,c)w(b,c).

Now, we will prove that aw ∈ R(b,c) and (aw)(b,c) = a(b,c)w(b,c), by using Theorem 3.10 (ii). Applying

Lemma 1.5 and (3.19), we get

w(b,c)aw(a(b,c)w(b,c)) = (w(b,c)a)ww(b,c)a(b,c) = a(w(b,c)ww(b,c))a(b,c)

= (aw(b,c))a(b,c) = w(b,c)aa(b,c) = w(b,c).
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Also, we have

a(b,c)(w(b,c)a)ww(b,c) = (a(b,c)aw(b,c))ww(b,c) = w(b,c)ww(b,c) = w(b,c).

Hence, we have that condition (ii) of Theorem 3.10 is satisfied. Thereby, aw ∈ R(b,c) and (aw)(b,c) =

a(b,c)w(b,c).

(ii) Similarly as in the proof of the part (i), from wa(b,c) = a(b,c)w we get that (3.19) holds. Also, it can be

checked that the condition (iii) of Theorem 3.10 is satisfied. Hence, aw ∈ R(b,c) and (aw)(b,c) = a(b,c)w(b,c) =

w(b,c)a(b,c).

Example 3.15. Let b, c, a, w ∈M2 be such that:

b =

[
0 1

0 0

]
, c =

[
0 0

1 0

]
, a =

[
a1 0

0 a4

]
and w =

[
w1 w2

w3 w4

]
,

where a1 6= 0, a4 6= a1, w1 6= 0 and w2 6= 0. Using Example 2.15, we get that a and w are both (b, c)-invertible

and

a(b,c) =

[
a−11 0

0 0

]
, w(b,c) =

[
w−11 0

0 0

]
.

Moreover, we have that aw(b,c) = w(b,c)a. Therefore, by Theorem 3.14, aw is also (b, c)-invertible and

(aw)(b,c) = a(b,c)w(b,c) = w(b,c)a(b,c). We remark that aw 6= wa.

Remark 3.16. Note that for b = c, as a direct consequence of Theorem 3.14, we have that if aw‖d = w‖da

or wa‖d = a‖dw holds, then (aw)‖d = a‖dw‖d = w‖da‖d is valid.
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[21] N. Mihajlović and D.S. Djordjević. Perturbation results and forward order law for the Moore-Penrose inverse in rings with

involution. Georgian Math. J., 29(3):425–439, 2022.

[22] E.H. Moore. On the reciprocal of the general algebraic matrix. Bull. Amer. Math. Soc., 26:394–395, 1920.
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