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ON CONDITION NUMBERS OF QUATERNION MATRIX INVERSE AND

QUATERNION LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES∗
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Abstract. This paper is devoted to the condition numbers of quaternion linear system with multiple right-hand sides and

the associated condition numbers of the quaternion matrix inverse as well. The explicit expressions of the unstructured and

structured normwise, mixed, and componentwise condition numbers for the system are given. To reduce the computational

cost of the condition numbers, compact and tight upper bounds for these condition numbers are proposed. For general sparse

and badly scaled problems, numerical examples show that mixed and componentwise condition numbers are preferred than the

normwise condition number for estimating the forward error of the solution, and structured condition numbers are tighter than

the unstructured ones for some specific structured problems.

Key words. Quaternion linear system, Multiple right-hand sides, Quaternion matrix inverse, Normwise condition number,

Mixed condition number, Componentwise condition number, Structured condition number.

AMS subject classifications. 15A12, 65F35.

1. Introduction. Quaternions, invented by W. Hamilton in 1843 [10] and quaternion matrices [38],

have been widely used in many research fields such as quaternionic quantum [5], group representations

[30, 31], field theory [3], and image processing [14, 15, 16]. As a basic tool, the n×n nonsingular quaternion

linear system

(1.1) AX = B,

with t right-hand sides has attracted much attention, both in numerical computations and theoretical proper-

ties. For example, in the quaternion toolbox for MATLAB (QTFM) [29], Sangwine and Le Bihan developed

quaternion LU on the basis of quaternion arithmetic operations. By exploring the real counterpart of a

quaternion matrix, the authors in [21, 32] developed real structure-preserving LU algorithms to improve

the efficiency of the computation. Liu et al., [24] studied the accuracy and stability of quaternion LU and

quaternion Gaussian elimination. For further information on other quaternion matrix factorizations such as

quaternion Cholesky, quaternion QR [23], and quaternion SVD [22, 23], we refer to [14, 15, 16, 17] and the

monographs [13, 34] for more information on quaternion matrix computation problems.

It is of interest that when a numerical algorithm applied to (1.1) is backward stable, how close the

numerical solution is to the exact solution. The condition number is a vital tool that measures the worst-

case sensitivity of its solution to small perturbations in the input data. Combined with backward errors, it

provides a (possibly approximate) upper bound for the forward error, i.e., the difference between a perturbed

solution and the exact solution. The problem with a large condition number is called an ill-posed problem
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[12]. This paper focuses on the condition numbers of quaternion linear system (1.1) and quaternion matrix

inverse. How the perturbations affect the quaternion solution remains unknown. To our knowledge, no

literature has specifically addressed this issue.

A frequently used tool in the real conditioning analysis is based on the concept of normwise condition

number [6, 26], mixed, and componentwise condition numbers [2, 7]. Let x = φ(a) be a nonzero continuous

and Fréchet differentiable mapping from Rp to Rq. Set δx = φ(a+ δa)− φ(a) and let dφ(a) be the Fréchet

derivative of φ at a. The normwise, mixed, and componentwise condition number are defined and formulated

as

κ(φ, a) := lim
ε→0

sup
‖δa‖2≤ε‖a‖2

‖δx‖2/‖x‖2
‖δa‖2/‖a‖2

=
‖dφ(a)‖2‖a‖2
‖φ(a)‖2

,

m(φ, a) := lim
ε→0

sup
|δa|≤ε|a|

‖δx‖∞/‖x‖∞
‖δa/a‖∞

=
‖|dφ(a)||a|‖∞
‖φ(a)‖∞

,

c(φ, a) := lim
ε→0

sup
|δa|≤ε|a|

‖δx/x‖∞
‖δa/a‖∞

=

∥∥∥∥ |dφ(a)||a|
|φ(a)|

∥∥∥∥
∞
,

where |a| denotes a vector by taking the entrywise absolute value, b/a or b
a is the entrywise division. Note

that ξ/0 is interpreted as zero if ξ = 0 and infinity otherwise. In this paper, we only consider the case that

‖b/a‖∞ is finite.

Based on the real condition number theory, condition numbers of the real matrix inverse and real linear

system have been widely studied in the literature. We refer the reader to [2, 4, 9, 11, 12, 27, 28, 36]. For

quaternion linear systems, these conditioning theories are not necessarily applicable. In order to establish

the perturbation results of the quaternion system based on the existing condition number theory, in this

paper, we transform (1.1) into a real linear system involving four Kronecker products by making use of the

real counterpart of a quaternion matrix. Different from the work [1, 4, 19, 39, 35] for studying condition

numbers of the real Kronecker product linear system such as (C ⊗D)X = F , the quaternion linear system

(1.1) is equivalent to a real system like
∑4
i=1(Ci ⊗Di)X = F . The condition numbers of such linear system

with four Kronecker products are generally quite difficult to analyze. Fortunately, some matrices in the

equivalent Kronecker product system of (1.1) take special forms and are not perturbed, which allows explicit

expressions for the first order perturbation estimate of (1.1). Based on this observation, the normwise,

mixed, and componentwise condition numbers are established, and the condition numbers of the inverse of

nonsingular quaternion matrices can also derived by setting B = In in (1.1) and restricting no perturbations

on B.

Before our discussion, some notations are required. Rm×n and Qm×n denote the spaces of m × n real

and quaternion matrices, respectively. In denotes the n × n identity matrix. Om×n, On denote the m × n,

n×n zero matrices, respectively. en×1 denotes an n×1 vector of all ones. If subscripts are ignored, the sizes

of identity and zero matrices are clear from the context. ‖ · ‖2, ‖ · ‖∞ and ‖ · ‖F denote 2-norm , ∞-norm

and Frobenius norm of their arguments, respectively. For a real matrix A, |A| is a matrix by taking the

entrywise absolute value, ‖A‖max denotes the maximal absolute value of elements in A, AT is the transpose

of A. vec(A) is an operator, which stacks the columns of A one underneath the other.

For matrices A ∈ Rm×n, B ∈ Rp×q, the Kronecker product [20] of A and B denoted by A⊗B = [aijB]

has the following properties [8, 20]:

|A⊗B| = |A| ⊗ |B|, ‖(A⊗B)‖2 = ‖A‖2‖B‖2,(1.2)

(A⊗B)⊗ C = A⊗ (B ⊗ C),(1.3)
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(A⊗ C)(B ⊗D) = (AB)⊗ (CD),(1.4)

(A⊗B)T = AT ⊗BT ,(1.5)

vec(AXB) = (BT ⊗A)vec(X),(1.6)

vec(A⊗B) = (In ⊗Πq,m ⊗ Ip)[vec(A)⊗ vec(B)],(1.7)

where Πq,m is a qm× qm permutation matrix such that vec(CT ) = Πq,mvec(C) for any C ∈ Rq×m.

2. Preliminaries. In this section, we first introduce some basic information for quaternion matrices.

A quaternion q ∈ Q has one real part and three imaginary parts as

q = q1 + q2i + q3j + q4k,

where q1, q2, q3, q4 ∈ R, and i, j and k are three imaginary units satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Note that quaternion skew-field Q is an associative but noncommutative algebra of rank four over R. The

conjugate, modulus of q are defined by

q∗ = q1 − q2i− q3j− q4k, ‖q‖ =
√
q2
1 + q2

2 + q2
3 + q2

4 ,

and the inverse of q is given by q−1 = q∗/‖q‖2 provided that ‖q‖ 6= 0.

For any quaternion matrices P = P1 + P2i + P3j + P4k ∈ Qm×n, Q = Q1 + Q2i + Q3j + Q4k ∈ Qm×n,

the conjugate of Q is given by Q∗ = QT1 −QT2 i−QT3 j−QT4 k, and the sum of P,Q is

P +Q = (P1 +Q1) + (P2 +Q2)i + (P3 +Q3)j + (P4 +Q4)k.

For the quaternion matrix S ∈ Qn×`, the multiplication QS is given by

(Q1S1 −Q2S2 −Q3S3 −Q4S4) + (Q1S2 +Q2S1 +Q3S4 −Q4S3)i+

(Q1S3 −Q2S4 +Q3S1 +Q4S2)j + (Q1S4 +Q2S3 −Q3S2 +Q4S1)k.

Let

(2.8) ΥQ =


Q1 −Q2 −Q3 −Q4

Q2 Q1 −Q4 Q3

Q3 Q4 Q1 −Q2

Q4 −Q3 Q2 Q1

 ∈ R4m×4n,

be a linear homeomorphic mapping from the quaternion matrix Q ∈ Qm×n to its real counterpart. Even

though there are many different real counterparts (see, e.g., [17, 23]), it is interesting to note that they are

permutation equivalent (see [18, Remark 4.7]) and the real counterpart has the following properties [17, 23]:

(2.9)

i) Υk1P+k2Q = k1ΥP + k2ΥQ, k1, k2 ∈ R;

ii) Υk1Q∗ = k1ΥT
Q, ΥQS = ΥQΥS ;

iii) ΥQ−1 = (ΥQ)−1if Q is invertible;

iv) 2‖Q‖F = ‖ΥQ‖F , ‖Q‖2 = ‖ΥQ‖2.
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This means the real algebraic symmetry structure of ΥQ is preserved under above arithmetic operations.

We use

Qr = [Q1 Q2 Q3 Q4], Qc = [QT1 QT2 QT3 QT4 ]T ,

to denote the row and column representations of Q. In the latter analysis, we also use col(Qr) instead of Qc

to stack the block columns of Qr one underneath another.

For the quaternion linear system (1.1) with t right-hand sides, write A = A1 + A2i + A3j + A4k. Let

Ãi = Ai + ∆Ai, B̃i = Bi + ∆Bi, where ∆Ai and ∆Bi denote the perturbations to the four parts of A and

B, respectively. For the data space Rn×4n × Rn×4t, we use the weighted norm

‖[∆Ar ∆Br]‖F =
√
‖∆Aαr ‖2F + ‖∆Bβr ‖2F ,

where

∆Aαr = [α1∆A1 α2∆A2 α3∆A3 α4∆A4], ∆Bβr = [β1∆B1 β2∆B2 β3∆B3 β4∆B4].

Here the positive numbers αi and βi (i = 1, . . . , 4) are designed to monitor the perturbations on Ai and Bi in

the flexible norms. For instance, when α1 tends to infinity, it enables to obtain condition number problems

where A1 is not perturbed. The idea of using parameters to unify the perturbations and conditions was first

proposed in [9] and then used or extended in [33, 37].

Due to the difficulties in dealing with the perturbation analysis for four parts of ∆X, we use (2.9) to

transform (1.1) into the real linear system ΥAΥX = ΥB . Since ΥX has the special algebraic symmetry

structure, we only consider its first block column, i.e.,

(2.10) ΥAXc = Bc,

and define the mapping φ : R4n2+4nt 7−→ Rkt with

φ(a) := vec(LTΥ−1
A Bc) for a :=

[
vec(Ar)

vec(Bc)

]
,

where L is a 4n-by-k(k ≤ 4n) matrix introduced for the selection of the solution components. For example,

when LT = I4n, all the 4n rows of the solution Xc are equally selected. When LT = eTi , i.e., the ith row

of I4n, only the ith row of the solution is selected. We can also choose appropriate LT to select rows of Xc

corresponding to real/imaginary parts in the quaternion solution.

For the quaternion linear system (1.1), the normwise condition number κ(L,Ar, Br), the mixed condition

number m(L,Ar, Br), and the componentwise condition number c(L,Ar, Br) are defined as follows.

Definition 2.1.

κ(L,Ar, Br) = lim
ε→0

sup
‖[∆Ar ∆Br]‖F≤ε‖[Ar Br]‖F

‖LT∆Xc‖F
ε‖LTXc‖F

,(2.11)

m(L,Ar, Br) = lim
ε→0

sup
|∆Ar ∆Br|≤ε|Ar Br|

‖LT∆Xc‖max

ε‖LTXc‖max
,(2.12)

c(L,Ar, Br) = lim
ε→0

sup
|∆Ar ∆Br|≤ε|Ar Br|

1

ε

∥∥∥∥ |LT∆Xc|
|LTXc|

∥∥∥∥
max

.(2.13)
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According to the concept of condition numbers in Section 1, it is obvious that

m(L,Ar, Br) =
‖|dφ(a)||a|‖∞
‖φ(a)‖∞

, c(L,Ar, Br) =

∥∥∥∥ |dφ(a)||a|
|φ(a)|

∥∥∥∥
∞
.

As for the formula for the flexible normwise condition number κ(L,Ar, Br), we need to define the mapping

φ̄ as

vec(LTXc) = φ̄(ā) with ā :=

[
vec(Aαr )

vec(Bβc )

]
,

where Bβc = col(Bβr ). The normwise condition number is then formulated as

κ(L,Ar, Br) =
‖dφ̄(ā)‖2‖ā‖2
‖φ̄(ā)‖2

.

If we take Br = [In On On On] and ∆Br to be a zero matrix in the definition, we obtain the condition

numbers of the quaternion matrix inverse A−1.

3. Condition numbers for unstructured matrices. In this section, we evaluate the condition

number of quaternion linear equation (1.1), where the quaternion matrices A, B are unstructured. Write

ΥA in (2.10) as

(3.14) ΥA = S1 ⊗A1 + S2 ⊗A2 + S3 ⊗A3 + S4 ⊗A4,

where

(3.15)

S1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, S2 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

, S3 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

, S4 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

.
The real linear system (2.10) now becomes

(3.16)

4∑
i=1

(Si ⊗Ai)Xc = Bc,

and in the perturbed system, the matrices S1, S2, S3, S4 are not perturbed. For perturbations small enough,

ΥA+∆A is nonsingular, and the perturbed system takes the form

(3.17)

4∑
i=1

(Si ⊗ (Ai + ∆Ai))(Xc + ∆Xc) = Bc + ∆Bc.

Theorem 3.1. With the notation in (3.14)–(3.17), let si = vec(Si) for i = 1, 2, . . . , 4 and set the 16-by-4

matrix S = [s1 s2 s3 s4]. For the Fréchet differential of the solution, we have

vec(LTdXc) = K

[
vec(dAr)

vec(dBc)

]
,

where

(3.18) K := dφ

([
vec(Ar)

vec(Bc)

])
= (It ⊗ (LTΥ−1

A )) [−Q(S ⊗ In2) I4nt] ,

with Q = (XT
c ⊗ I4n)(I4 ⊗Πn,4 ⊗ In).
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Proof. We have the differential of the system (3.16) as

4∑
i=1

(Si ⊗Ai)(dXc) +

4∑
i=1

(Si ⊗ dAi)Xc = dBc.

It follows that

(3.19) LTdXc = LTΥ−1
A (dBc −

4∑
i=1

(Si ⊗ dAi)Xc).

Therefore, we obtain from the properties in (1.6)–(1.7) that

vec(LTdXc) = (It ⊗ (LTΥ−1
A ))

(
vec(dBc)−

4∑
i=1

(XT
c ⊗ I4n)vec(Si ⊗ dAi)

)
= (It ⊗ (LTΥ−1

A ))
(

vec(dBc)− (XT
c ⊗ I4n)(I4 ⊗Πn,4 ⊗ In)

4∑
i=1

vec(Si)⊗ vec(dAi)
)

= (It ⊗ (LTΥ−1
A ))

(
vec(dBc)−Q

4∑
i=1

(vec(Si)⊗ In2)vec(dAi)
)

= (It ⊗ (LTΥ−1
A ))

[
−Q(S ⊗ In2) I4nt

] [vec(dAr)

vec(dBc)

]
.(3.20)

We derive that

dφ

([
vec(Ar)

vec(Bc)

])
= (It ⊗ (LTΥ−1

A )) [−Q(S ⊗ In2) I4nt] .

This completes the proof.

For positive numbers αi and βi, it should be noted that

(3.21) vec(LTdXc) = K̄

[
vec(dAαr )

vec(dBβc )

]
,

where

(3.22)
K̄ = (It ⊗ (LTΥ−1

A ))
[
−Q(Sα ⊗ In2) Tβ

]
with

Sα = [α−1
1 s1 α−1

2 s2 α−1
3 s3 α−1

4 s4], Tβ = It ⊗ diag(β−1
1 In, β

−1
2 In, β

−1
3 In, β

−1
4 In).

By the concept of the normwise condition number defined in section 2, we derive the normwise condition

number for (1.1) as below

(3.23) κ(L,Ar, Br) =
∥∥K̄∥∥

2

‖[Ar Br]‖F
‖LTXc‖F

.

It is observed that the explicit expression in (3.23) involves the Kronecker product operations which

might lead to large storage and computational cost. The following theorem gives the compact upper bound

of the normwise condition number.

Theorem 3.2. With the notation of Theorem 3.1 and the expressions in (3.21)–(3.22), the normwise

condition number given in (3.23) has the compact upper bound as

(3.24) κu(L,Ar, Br) =
(
c1‖Xc‖22 + c2

)1/2

‖LTΥ−1
A ‖2

‖[Ar Br]‖F
‖LTXc‖F

,

where c1 = max
1≤i≤4

{4α−2
i }, c2 = max

1≤i≤4
{β−2

i }.
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Proof. In (3.22), by setting M =
[
−Q(Sα ⊗ In2) Tβ

]
, we obtain from (1.2) to (1.5) that

‖MMT ‖2 = ‖Q(SαS
T
α ⊗ In2)QT + TβT

T
β ‖2(3.25)

≤ ‖Q‖22‖(SαSTα )⊗ In2‖2 + ‖TβTTβ ‖2
= ‖Xc‖22‖STαSα‖2 + c2 = c1‖Xc‖22 + c2,

where we have used the facts that

‖Q‖22 = ‖QQT ‖2 = ‖(XT
c Xc)⊗ I4n‖2 = ‖Xc‖22,

STαSα = diag(4α−2
1 , 4α−2

2 , 4α−2
3 , 4α−2

4 ).

Consequently,

‖K̄K̄T ‖2 = ‖(It ⊗ (LTΥ−1
A ))MMT (It ⊗ (LTΥ−1

A ))T ‖2
≤ ‖(It ⊗ (LTΥ−1

A ))‖22‖MMT ‖2
≤ ‖LTΥ−1

A ‖22(c1‖Xc‖22 + c2),

from which we deduce that

‖K̄‖2 = ‖K̄K̄T ‖1/22 ≤ ‖LTΥ−1
A ‖2

(
c1‖Xc‖22 + c2

)1/2

.

This yields the estimate in (3.24).

Theorem 3.3. With the notation of Theorem 3.1, let

M = −(It ⊗ (LTΥ−1
A ))Q(S ⊗ In2), N = It ⊗ (LTΥ−1

A ).

Then, the mixed and componentwise condition numbers of the quaternion linear system (1.1) have the fol-

lowing forms:

m(L,Ar, Br) =
‖|M|vec(|Ar|) + |N |vec(|Bc|)‖∞

‖LTXc‖max
,

c(L,Ar, Br) =
∥∥∥ |M|vec(|Ar|) + |N ||vec(|Bc|)

vec(LTXc)

∥∥∥
∞
.

They have sharp bounds as

m(L,Ar, Br) ≤

∥∥∥|LTΥ−1
A |
(

Υ|A|∗ |Xc|+ |Bc|
)∥∥∥

max∥∥∥LTXc

∥∥∥
max

,(3.26)

c(L,Ar, Br) ≤
∥∥∥ |LTΥ−1

A |Υ|A|∗ |Xc|+ |LTΥ−1
A ||Bc|

|LTXc|

∥∥∥
max

,(3.27)

where Υ|A|∗ is the real counterpart of |A|∗ with |A|∗ defined by |A|∗ = |A1|+ |A2|i + |A3|j + |A4|k.
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Proof. From Theorem 3.1 and Definition 2.1, it is straightforward that

m(L,Ar, Br) =

∥∥∥∥|(It ⊗ (LTΥ−1
A ))

[
−Q(S ⊗ In2) I4nt

]
|
[

vec(|Ar|)
vec(|Bc|)

]∥∥∥∥
∞∥∥LTXc

∥∥
max

≤

∥∥∥∥∥∥(It ⊗ |LTΥ−1
A |)|Q|

4∑
j=1

(|vec(Sj)| ⊗ In2)vec(|Aj |) + |(It ⊗ (LTΥ−1
A ))|vec(|Bc|)

∥∥∥∥∥∥
∞∥∥LTXc

∥∥
max

=

∥∥∥∥∥∥|LTΥ−1
A |

4∑
j=1

(|Sj | ⊗ |Aj |)|Xc|+ |LTΥ−1
A ||Bc|

∥∥∥∥∥∥
max∥∥LTXc

∥∥
max

,

in which
4∑
j=1

(vec(|Sj |)⊗ |Aj |) is just the real counterpart of |A|∗. The above relations yield the formula and

upper bound for the mixed condition number. The upper bound for c(L,Ar, Br) can be obtained in a similar

way.

For the condition numbers of the quaternion matrix inverse, we denote A−1 = Ā = Ā1 +Ā2i+Ā3j+Ā4k,

and rewrite (2.10) as ΥAĀc = Bc with Bc = [In On On On]T . Note that Bc is not perturbed. Thus, the

normwise condition number of Āc can be obtained by letting βi →∞ in (3.24) for i = 1, 2, 3, 4. The mixed

and componentwise condition numbers can be derived by setting ∆Bc and dBc to be zero in (3.17) and

(3.20), from which we obtain dφ(vec(Ar)) =M and the theorem as follows.

Theorem 3.4. Let c1, M and |A|∗ be defined in Theorems 3.2 and 3.3. Set ‖Ar‖f := ‖[Ar On×4n]‖F .

Then, the condition numbers of Ā := A−1 are given as follows

κ(L,Ar) = ‖M‖2
‖Ar‖f
‖LT Āc‖2

≤ c1/21 ‖Āc‖2‖LTΥ−1
A ‖2

‖Ar‖f
‖LT Āc‖F

,

m(L,Ar) =
‖|M|vec(|Ar|)‖∞
‖LT Āc‖max

≤

∥∥∥|LTΥ−1
A |Υ|A|∗ |Āc|

∥∥∥
max∥∥∥LT Āc

∥∥∥
max

,

c(L,Ar) =
∥∥∥ |M|vec(|Ar|)

vec(LT Āc)

∥∥∥
∞
≤
∥∥∥ |LTΥ−1

A |Υ|A|∗ |Āc|
|LT Āc|

∥∥∥
max

.

Remark 3.5. If the quaternion linear system becomes a real system such that A1X = B1, then in

(2.10), ΥA = diag(A1, A1, A1, A1), Bc = [BT1 , On, On, On]T and the solution Xc = [XT , On, On, On]T . It

also corresponds to (1.1) in which the input matrices have zero imaginary parts that are not perturbed. By

Theorems 3.2 and 3.3, we can recover the condition number of real linear system A1X = B1 by taking

LT = I4n and letting the parameters αi, βi for i ≥ 2 tend to infinity. The estimate in (3.24) becomes

κu(A1, B1) =

(
4

α2
1

+
1

β2
1‖X‖2F

)1/2

‖A−1
1 ‖2‖[α1A1 β1B1]‖F .
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The above upper bound is a little overestimated due to the zero submatrices in Xc. As a matter of fact, the

matrix Q(Sα ⊗ In2) in (3.25) takes the form

Q̂ := Q(Sα ⊗ In2) = ([XT O O O]⊗ I4n)(I4 ⊗Πn,4 ⊗ In)([α−1
1 s1 0 0 0]⊗ In2)

= (XT ⊗ I4n)[Πn,4 ⊗ In O O O][α−1
1 vec(S1)⊗ In2 O O O]

= α−1
1 (XT ⊗ I4n)[(Πn,4vec(S1e1)⊗ In))⊗ In O O O]

= α−1
1 ((XT ⊗ I4)⊗ In)[(e1 ⊗ In)⊗ In O O O],

where e1 is the first column in I4. Thus, ‖Q̂‖22 = ‖Q̂Q̂T ‖2 ≤ α−2
1 ‖X‖22 and the upper bound κu(A1, B1) for

the real linear system is modified as

κu(A1, B1) =

(
1

α2
1

+
1

β2
1‖X‖2F

)1/2

‖A−1
1 ‖2‖[α1A1 β1B1]‖F .

This upper bound is exactly the normwise condition number of A1X = B1. When the right-hand side is single

(i.e., t = 1), it reduces to the normwise condition number for the single right-hand side system presented in

[9].

By taking L = I4n, the upper bounds of the mixed and componentwise condition numbers in (3.26)–(3.27)

become

mu(A1, B1) =

∥∥∥|A−1
1 |(|A1||X|+ |B1|)

∥∥∥
max

‖LTX‖max

, cu(A1, B1) =
∥∥∥ |A−1

1 |(|A1||X|+ |B1|)
|LTX|

∥∥∥
max

.

These upper bounds are attainable by simple calculations from (3.19) for dAi = 0(i ≥ 2). When t = 1, they

exactly reduce to the mixed and componentwise condition numbers of linear system A1x = b, as also proved

in [36]. Similar technique applied to Theorem 3.4 gives the mixed and componentwise condition numbers of

A−1
1 as

mu(A−1
1 ) =

∥∥∥|A−1
1 ||A1||A−1

1 |
∥∥∥

max

‖A−1
1 ‖max

, cu(A−1
1 ) =

∥∥∥ |A−1
1 ||A1||A−1

1 |
A−1

1

∥∥∥
max

.

They are the same as those in [11, 12, 36].

Remark 3.6. In Theorem 3.3, if the right-hand side of the quaternion linear system (1.1) is not per-

turbed, and perturbation only happens on the quaternion matrix A, then the mixed and componentwise con-

dition numbers take the forms as

mA(L,Ar, Br) =
‖|M|vec(|Ar|)‖∞
‖LTXc‖max

≤

∥∥∥|LTΥ−1
A |Υ|A|∗ |Xc|

∥∥∥
max∥∥∥LTXc

∥∥∥
max

,

cA(L,Ar, Br) =
∥∥∥ |M|vec(|Ar|)

vec(LTXc)

∥∥∥
∞
≤
∥∥∥ |LTΥ−1

A |Υ|A|∗ |Xc|
|LTXc|

∥∥∥
max

.

Likewise, it is obvious that the perturbation only on B leads to the following estimates

mB(L,Ar, Br) =
‖|N |vec(|Bc|)‖∞
‖LTXc‖max

≤

∥∥∥|LTΥ−1
A ||Bc|

∥∥∥
max∥∥∥LTXc

∥∥∥
max

,

cB(L,Ar, Br) =
∥∥∥ |N |vec(|Bc|)

vec(LTXc)

∥∥∥
∞
≤
∥∥∥ |LTΥ−1

A ||Bc|
|LTXc|

∥∥∥
max

.
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4. Structured condition numbers for structured matrices. Suppose that L ⊆ Qn×n is a linear

subspace which consists of a class of structured quaternion matrices. Specially, if there are r(r ≤ n2) linearly

independent real matrices T1, . . . , Tr ∈ L, such that for any A ∈ L, we have

(4.28) A =

r∑
i=1

giTi,

for some g = [g1, . . . , gr]
T ∈ Qr. Then, an equivalent formulation of (4.28) is

(4.29) vec(A) = ϕstruct
A g,

where the real matrix ϕstruct
A = [vec(T1) vec(T2) . . . vec(Tr)] ∈ Rn2×r. For a general quaternion matrix A

without exhibiting any structure, we can take ϕstruct
A = In2 , g = vec(A) in (4.29). Based on the argument

from [12, 27, 28], usually the perturbation ∆A has the same structure as A, and hence, there exists a

quaternion vector ∆g such that vec(∆A) = ϕstruct
A ∆g.

For simplicity, we assume that each matrix A in L only depends on a single component of quaternion

vector g. Several kinds of structured matrix are included in this category, such as Toeplitz, Hankel, and

circulant matrices. For instance, the quaternion circulant matrix associated with a quaternion vector c =

[c0 c1 . . . cn−1]T is defined as

(4.30) C = circ(c0, . . . , cn−1) =


c0 c1 · · · cn−1

cn−1 c0 · · · cn−2

...
... · · ·

...

c1 c2 · · · c0

 .
Obviously, there exist real pattern matrices Z0 = In, Z1, . . . , Zn−1 such that

C = c0Z0 + c1Z1 + . . .+ cn−1Zn−1.

Thus, vec(C) = ϕstruct
C c with ϕstruct

C = [vec(Z0) vec(Z1) . . . vec(Zn−1)].

In the quaternion linear system (1.1), assume that the right-hand matrix B also has some structure such

that

vec(B) = ϕstruct
B h for ϕstruct

B ∈ Rnt×l,

where h = [h1 . . . hl]
T ∈ Ql is some quaternion vector. Then,

vec(Ar) =
(
I4 ⊗ ϕstruct

A

)
gc, vec(Bc) =

(
I4 ⊗ ϕstruct

B

)
hc,

where gc, hc are column vectors by staking the four parts of quaternion vectors g and h one underneath the

other, respectively. Obviously,

(4.31)

[
vec(Ar)

vec(Bc)

]
= Ψstruct

A,B s, Ψstruct
A,B =

[
I4 ⊗ ϕstruct

A 0

0 I4 ⊗ ϕstruct
B

]
,

where s =
[
gTc hTc

]T
.

Assume that vec(∆B) = ϕstruct
B ∆h, set ∆s =

[
∆gTc ∆hTc

]T
, then we have

(4.32)

[
vec(∆Ar)

vec(∆Bc)

]
= Ψstruct

A,B ∆s for ∆s =

[
∆gc

∆hc

]
.
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By Theorem 3.1, for structured linear quaternion system (1.1), we have

vec(LT∆Xc) = Ks∆s+O(‖∆s‖22) with Ks = KΨstruct
A,B .

Define the mapping φ : R4(t+l) → Rkt such that φ(s) = vec(LTXc); then by the concept of three types

of condition numbers in section 1, we have the following theorem.

Theorem 4.1. With the notation of Theorem 3.1 and the relations in (4.28)–(4.32), the structured norm-

wise, mixed, and componentwise condition numbers for the quaternion linear system (1.1) take the following

form

(4.33) κs(L,Ar, Br) =
‖Ks‖2 ‖s‖2
‖LTXc‖F

,

and

(4.34) ms(L,Ar, Br) =
‖|Ks||s|‖∞
‖LTXc‖max

, cs(L,Ar, Br) =

∥∥∥∥ |Ks||s|
vec(LTXc)

∥∥∥∥
∞
.

Theorem 4.2. With the notations of Theorems 3.1–3.3 and the relations in (4.28)–(4.32), let Ms =

M(I4 ⊗ ϕstruct
A ). Then, the structured normwise, mixed, and componentwise condition numbers for the

quaternion matrix inverse Ā := A−1 take the following form

(4.35) κs(L,Ar) =
‖Ms‖2 ‖gc‖2
‖LT Āc‖F

,

and

(4.36) ms(L,Ar) =
‖|Ms||gc|‖∞
‖LT Āc‖max

, cs(L,Ar) =

∥∥∥∥ |Ms||gc|
vec(LT Āc)

∥∥∥∥
∞
.

Remark 4.3. For the quaternion linear system (1.1), if perturbations only happen on the matrix A, then

the structured mixed and componentwise condition numbers reduce to

κs
A =

‖Ms‖2‖gc‖2
‖LTXc‖F

, ms
A =

‖|Ms||gc|‖∞
‖LTXc‖max

, csA =

∥∥∥∥ |Ms||gc|
vec(LTXc)

∥∥∥∥
∞
.

The perturbation only on B gives the structured condition numbers as

κs
B =

‖N s‖2 ‖hc‖2
‖LTXc‖F

, ms
B =

‖|N s||hc|‖∞
‖LTXc‖max

, csB =

∥∥∥∥ |N s||hc|
vec(LTXc)

∥∥∥∥
∞
,

where N s = N (I4 ⊗ ϕstruct
B ).

Remark 4.4. Note that in (4.33)–(4.36), Ks = [Ms N s] and

Ms = −(It ⊗ (LTΥ−1
A )Q([vec(S1) . . . vec(S4)]⊗ [vec(T1) vec(T2) . . . vec(Tr)])

= −(LTΥ−1
A )[η

(1)
1 . . . η

(1)
r η

(2)
1 . . . η

(2)
r . . . η

(4)
1 . . . η

(4)
r ],

where η
(j)
i = vec((Sj ⊗ Ti)Xc) with (Sj ⊗ Ti) being a block component of ΥTi

. In the expression of η
(j)
i ,

(Sj ⊗ Ti)Xc can be computed in Kronecker product-free manner, which needs much cheaper cost than direct

formulation of Ms. The same goes for the computation of N s if ϕstruct
B has some linear structure.
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5. Numerical experiments. In this section, we will test the condition numbers in estimating the

forward error bounds of quaternion linear system (1.1) and quaternion matrix inverse. All the computations

are carried out using Matlab R2012b with the machine precision εM = 2.2× 10−16.

Example 5.1. The aim of this example is to verify the effectiveness of the condition numbers of quater-

nion linear system and quaternion matrix inverse. Let the quaternion matrix A be constructed as

(5.37) A = Y DZ∗ ∈ Qn×n, Y = In − 2yy∗, Z = In − 2zz∗,

where y, z ∈ Qn are random unit quaternion vectors, and D = diag(1, 1/2, ..., 1/(n − 1), δ) ∈ Rn×n with

0 < δ ≤ 1
n . Here, κ = δ−1 is used to control the condition number of A. Take Bc to be a random 4n × t

matrix whose entries are uniformly distributed on the interval [0, 1].

Set

(5.38) ∆Ac = 10−10 ·Ac � rand(4n, n), ∆Bc = 10−10 ·Bc � rand(4n, 1),

where � denotes the entrywise multiplication of two matrices with the same size. Let ∆Xc = X̃c −Xc be

the error of the solutions between the perturbed and original problem. Here, the solutions are obtained via

the partial pivoting real structure-preserving LU algorithm [24].

Choose L = L0 = I4n. Set

(5.39) γκ =
‖LT∆Xc‖F
‖LTXc‖F

, γm =
‖LT∆Xc‖∞
‖LTXc‖∞

, γc =

∥∥∥∥LT∆Xc

LTXc

∥∥∥∥
∞
,

and

(5.40) ε1 :=
‖[∆Ar ∆Br]‖F
‖[Ar Br]‖F

, ε2 := min{ε : |[∆Ar ∆Br]| ≤ ε|[Ar Br]|}.

We can get the upper bounds of γκ, γm, γc as ε1κ(ε1κ
u), ε2m(ε2m

u), ε2c(ε2c
u), respectively, where κ,m, c

denote the normwise, mixed, and componentwise condition numbers, respectively, and κu,mu, cu are, re-

spectively, the upper bounds of κ,m, c given in Theorems 3.2 and 3.3.

In Table 1, we compare the approximate upper bounds with the corresponding relative errors of the

solution to (1.1). It can be seen that for the normwise condition number, the upper bound κu approximates

κ well in all cases, up to a factor about 10; mu and cu approximate better to m and c, respectively. However,

when n increases from 30 to 90 and κ increases from 102 to 106, the approximate upper bounds based on

mixed and componentwise condition numbers are as sharp as the actual forward errors, while the normwise

condition number-based upper bounds tend to be much farther away from the actual forward errors. That

is partly because the problem becomes ill-conditioned by the estimate in Theorem 3.2, where according to

(2.9), ‖Υ−1
A ‖2 = ‖ΥA−1‖2 = ‖A−1‖2 becomes large when κ increases. Another reason might be that when n

is large, the algorithm produces a large backward rounding error (measured in norm) in the partial pivoting

quaternion LU (see [24]). Combined the backward error with the condition number, the case with n = 90

and κ = 106 gives the worst estimate of the forward error of the solution.

For the forward error of quaternion matrix inverse, by setting Xc = Āc and restricting the perturbations

only on A (i.e., setting Br and its perturbation ∆Br to be zero matrices in (5.39)–(5.40), and for the ease

of distinguishment, we use the superscript A on a series of notation associated with γ and ε), we get the

actual relative forward errors and their bounds in Table 2, where the random 15× 15 matrix A is generated
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as (5.37)–(5.38). The results show that the estimated bounds based on three condition numbers are usually

one or two orders higher than the actual relative errors. This means that for equilibratory input data, the

condition numbers-based bounds are reliable in estimating the relative forward error of quaternion matrix

inverse.

Table 1

Comparison of approximate upper bounds with the corresponding relative forward errors for quaternion linear system

n n = 30, t = 3 n = 60, t = 3 n = 90, t = 3

κ 102 104 106 102 104 106 102 104 106

γκ 6.9e-11 5.0e-09 3.4e-07 5.3e-11 1.0e-09 1.6e-07 5.3e-11 2.1e-10 6.9e-08

ε1κ 6.1e-08 6.7e-06 6.5e-04 8.4e-08 9.3e-06 9.1e-04 9.8e-08 1.1e-05 1.1e-03

ε1κ
u 1.2e-07 1.2e-05 1.2e-03 1.7e-07 1.7e-05 1.8e-03 2.0e-07 2.0e-05 2.2e-03

γm 7.9e-11 6.3e-09 3.1e-07 4.2e-11 9.6e-10 1.5e-07 5.9e-11 2.0e-10 6.3e-08

ε2m 2.9e-09 1.3e-07 1.9e-05 1.7e-09 4.8e-08 3.4e-06 1.8e-09 2.3e-08 2.5e-06

ε2m
u 4.9e-09 2.1e-07 3.4e-05 2.9e-09 7.6e-08 5.8e-06 3.0e-09 3.6e-08 4.1e-06

γc 7.9e-11 6.3e-09 3.1e-07 4.2e-11 9.6e-10 1.5e-07 5.9e-11 2.0e-10 6.3e-08

ε2c 2.9e-09 1.3e-07 1.9e-05 1.7e-09 4.8e-08 3.4e-06 1.8e-09 2.3e-08 2.5e-06

ε2c
u 4.9e-09 2.1e-07 3.4e-05 2.9e-09 7.6e-08 5.8e-06 3.0e-09 3.6e-08 4.1e-06

Table 2

Comparison of approximate upper bounds with the corresponding relative forward errors for quaternion matrix inverse

δ γAκ εA1 κ
A εA1 κ

Au

γAm εA1 m
A εA1 m

Au

γAc εA1 c
A εA1 c

Au

10−2 1.54e-10 8.96e-09 1.63e-08 1.03e-10 2.34e-09 2.75e-09 2.28e-07 1.25e-05 1.89e-05

10−4 1.15e-08 8.96e-07 1.71e-06 1.01e-08 2.57e-07 3.03e-07 1.18e-04 7.02e-03 9.75e-03

10−6 1.14e-06 8.96e-05 1.71e-04 1.01e-06 2.57e-05 3.03e-05 1.18e+00 7.03e+01 9.76e+01

Example 5.2. In this example, we test the condition numbers of the linear problem with badly scaled

coefficient matrix. For the choice of L, we set L0 = I4n and use the matrices Lmax, Lmin to pick the rows

with maximal and minimal infinite norms in Xc, respectively. Let n = 4, t = 1, X1 = [10−4, 10−4, 1, 1]T ,

Xi = X1, Ai = A1 for i ≥ 2, where

A1 =


δ 0 0 0

0 δ 0 0

0 0 0 1

0 0 1 0

 , Bc = ΥAXc = ΥA


X1

X2

X3

X4

 ,
and δ > 0 is a tiny parameter.

With the componentwise perturbation as in (5.38) and the notation in (5.39)–(5.40), in Table 3, it can

be seen that for each given δ, the upper bound κu approximates κ very well. However, for the estimate based

on normwise condition number, there is a big difference between the estimated value and the real value for

varying matrix L. The upper bounds of the row with maximal infinite norm in the solution are sharp, while

the estimate of the rows with minimal infinite norm in the solution is not satisfactory, even the parameter

δ is not very small.

When δ decreases to 10−4 or 10−6 and the linear system becomes sparse and badly scaled, the normwise

condition number-based upper bounds tend to be much farther away from the actual forward errors. On
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the other hand, the approximate upper bounds via mixed and componentwise condition numbers are as

sharp as the actual forward errors. The sharp estimate is because the high-magnitude entries in Υ−1
A (say,

for δ = 10−6, the maximal absolute value in Υ−1
A is 2.5e+6) is restrained by small or zeros values in |Ar|

and |Bc| through the entrywise multiplication. However, the normwise condition number is controlled by

the high-magnitude entries in Υ−1
A , even there are small entries in |Ar| and |Bc|, they do not play much role

in inhibiting the magnitude of ‖Υ−1
A ‖2. It is precisely because of this that the normwise condition number

in Example 5.1 gives worse estimates of the forward errors of the solution when n = 90, t = 3 and κ = 106.

Table 3

Comparison of approximate upper bounds with the corresponding relative forward errors

δ 10−2 10−4 10−6

L L0 Lmax Lmin L0 Lmax Lmin L0 Lmax Lmin

γκ 3.1e-11 1.9e-11 2.6e-11 3.8e-11 2.0e-11 2.6e-11 5.8e-11 3.6e-11 4.3e-11

ε1κ 1.8e-08 4.5e-10 4.6e-04 2.3e-06 6.3e-10 6.8e-02 2.3e-04 4.5e-10 4.6e+00

ε1κ
u 3.4e-08 8.6e-10 8.9e-04 4.4e-06 1.2e-09 1.3e-01 4.3e-04 8.5e-10 8.8e+00

γm 4.6e-11 1.9e-11 2.6e-11 7.4e-11 2.0e-11 2.6e-11 1.0e-10 3.6e-11 4.3e-11

ε2m 2.8e-10 2.8e-10 2.8e-10 3.0e-10 2.8e-10 3.0e-10 3.0e-10 2.8e-10 2.9e-10

ε2m
u 5.5e-10 5.5e-10 5.6e-10 5.9e-10 5.6e-10 6.0e-10 6.0e-10 5.7e-10 5.8e-10

γc 4.6e-11 1.9e-11 2.6e-11 7.4e-11 2.0e-11 2.6e-11 1.0e-10 3.6e-11 4.3e-11

ε2c 2.8e-10 2.8e-10 2.8e-10 3.0e-10 2.8e-10 3.0e-10 3.0e-10 2.8e-10 2.9e-10

ε2c
u 5.5e-10 5.5e-10 5.6e-10 5.9e-10 5.6e-10 6.0e-10 6.0e-10 5.7e-10 5.8e-10

Example 5.3. Consider the quaternion linear system (1.1) in which the coefficient matrix is a quaternion

circulant matrix taking the form (4.30). Set the quaternion matrix C = C1 + C1i + C1j + C1k and take

A = C−1, where C1 = circ(c) is a real circulant matrix [28] generated from the n× 1 vector

c = [1 1 . . . 1 cn]T , with cn = −(n− 1) + δ(0 < δ < 1).

It is easy to show that

A =
1

4
(C−1

1 − C−1
1 i− C−1

1 j− C−1
1 k) =

1

4
C−1

1 (1− i− j− k),

where C−1
1 = circ(c̄) with c̄i = −1/ξ for i 6= 2 and ξ = (cn − 1)(cn + n− 1), and c̄2 = (cn + n− 2)/ξ. Hence,

c̄i = O(n−1δ−1) and the magnitude of c̄ increases with the decrease of δ. Take n = 10, t = 1 and L0 = I4n.

For given Xc, generate a 4n× 1 vector Bc = ΥAXc. Restrict the perturbations only on A where the vector

c is perturbed to c̃ = c� (1 + 10−5 ∗ rand(1, n)).

In (4.29), it is obvious that g = 1
4 (1− i− j− k)c̄ and |gc| = 1

4e⊗ c̄ with e = [1, 1, 1, 1]T and c̄ > 0. Define

εs1 =
‖∆gc‖2
‖gc‖2

, εs2 = min{ε : |∆gc| ≤ ε|gc|}.

In Table 4, we compare the upper bounds based on unstructured and structured condition numbers with

the actual relative forward errors. It is observed that when Xc is a fixed random vector, the advantage

of structured condition numbers over the unstructured ones is weak, while for the all-one vector Xc = e,

especially when δ is close to zero, the structured condition numbers behave much better than the unstructured

ones. In this case, even the unstructured mixed/componentwise condition numbers fail to estimate the
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forward errors well. The experimental results illustrate that the corresponding problem with Xc = e is

well-conditioned. The well-condition can also be observed from structured condition number formulae in

Remarks 4.3–4.4 in that

|Ms||gc| ≤
1

4
|Υ−1
A |

4∑
j=1

(|Sj | ⊗
n∑
i=1

(c̄iTi))e = |ΥA−1 ||Υ|A|∗ |e,

where
r∑
i=1

(c̄iTi) = C̄ = C−1
1 is an nonnegative matrix, |A|∗ = 1

4C
−1
1 (1 + i + j + k) with C1e = δe and

C−1
1 e = δ−1e. It follows that

|Υ|A|∗ |e = δ−1e, |ΥA−1 |e = 4δe,

from which we derive that the mixed condition number ms
A ≤ 4, and hence, the corresponding system is

well-conditioned.

Table 4

Comparison of upper bounds based on structured and unstructured condition numbers with the corresponding relative

forward errors

Xc Xc = rand(4n, 1) Xc = [1, 1, . . . , 1]T

δ 100 10−2 10−4 100 10−2 10−4

γk 5.70e-06 3.91e-04 3.98e-02 4.82e-06 4.38e-06 4.38e-06

ε1κA 4.61e-05 5.02e-03 5.03e-01 5.44e-05 5.44e-03 5.44e+01

εs1κ
s
A 5.05e-05 5.50e-03 5.50e-01 2.42e-05 2.18e-05 2.18e-05

γm 7.53e-06 5.65e-04 5.58e-02 4.82e-06 4.38e-06 4.38e-06

ε2mA 1.63e-04 1.70e-02 1.70e+00 3.18e-04 3.36e-02 3.36e+02

εs2m
s
A 1.61e-04 1.72e-02 1.72e+00 7.48e-05 7.48e-05 7.48e-05

γc 1.50e-04 2.83e-02 2.65e+00 4.82e-06 4.38e-06 4.38e-06

ε2cA 2.07e-02 2.19e+00 2.19e+02 3.18e-04 3.36e-02 3.36e+02

εs2c
s
A 1.61e-04 1.72e-02 1.72e+00 7.48e-05 7.48e-05 7.48e-05

6. Conclusion and further work. In this paper, we investigate the structured and unstructured

condition numbers of quaternion matrix inverse and quaternion linear system with multiple right-hand

sides. By making use of the Kronecker product operations and real counterpart of quaternion matrices, the

first-order perturbation of the solution of the quaternion linear system is analyzed, from which the closed

formula for the normwise, mixed, and componentwise condition numbers of the quaternion linear system are

derived. In order to avoid the large storage and computational cost for computing these condition numbers,

upper bounds with compact forms are given. These closed formulae and compact upper bounds include the

existing results for the real linear system and real matrix inverse. Numerical results show that the compact

upper bounds are tight, compared with the actual condition numbers. It is also shown that for badly scaled

matrix, mixed and componentwise condition numbers are preferred to estimate the forward errors. We also

analyze the structured condition numbers for the structured linear system. In estimating the forward error

of the solution to some specific structured problem, structured condition numbers are shown to be much

tighter than the unstructured ones.
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When the coefficient and right-hand side matrices in the quaternion linear system are rectangular, it is

of interest to discuss the condition numbers of quaternion least squares problem. We will study this issue in

a separate paper [25] to unify those results for real least squares problems.
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