EXTREMAL PROBLEMS FOR THE ECCENTRICITY MATRICES OF COMPLEMENTS OF TREES*

ISWAR MAHATO ${ }^{\dagger}$ AND M. RAJESH KANNAN \ddagger

Abstract

The eccentricity matrix of a connected graph G, denoted by $\mathcal{E}(G)$, is obtained from the distance matrix of G by keeping the largest nonzero entries in each row and each column and leaving zeros in the remaining ones. The \mathcal{E}-eigenvalues of G are the eigenvalues of $\mathcal{E}(G)$. The largest modulus of an eigenvalue is the \mathcal{E}-spectral radius of G. The \mathcal{E}-energy of G is the sum of the absolute values of all \mathcal{E}-eigenvalues of G. In this article, we study some of the extremal problems for eccentricity matrices of complements of trees and characterize the extremal graphs. First, we determine the unique tree whose complement has minimum (respectively, maximum) \mathcal{E}-spectral radius among the complements of trees. Then, we prove that the \mathcal{E}-eigenvalues of the complement of a tree are symmetric about the origin. As a consequence of these results, we characterize the trees whose complement has minimum (respectively, maximum) least \mathcal{E}-eigenvalues among the complements of trees. Finally, we discuss the extremal problems for the second largest \mathcal{E}-eigenvalue and the \mathcal{E}-energy of complements of trees and characterize the extremal graphs. As an application, we obtain a Nordhaus-Gaddum-type lower bounds for the second largest \mathcal{E}-eigenvalue and \mathcal{E}-energy of a tree and its complement.

Key words. Complements of trees, Eccentricity matrix, \mathcal{E}-spectral radius, Second largest \mathcal{E}-eigenvalue, Least \mathcal{E}-eigenvalue, \mathcal{E}-energy.

AMS subject classifications. 05C50; 05C35.

1. Introduction. Throughout the paper, we consider finite, simple and connected graphs. Let $G=$ $(V(G), E(G))$ be a graph with the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $E(G)=\left\{e_{1}, e_{2}, \ldots\right.$, $\left.e_{m}\right\}$. The number of vertices in G is the order of G. If two vertices u and v in G are adjacent, then we write $u \sim v$, otherwise $u \nsim v$. The adjacency matrix $A(G)$ of G is the $n \times n$ matrix with its rows and columns indexed by the vertices of G, and the entries are defined as

$$
A(G)_{u v}= \begin{cases}1 & \text { if } u \sim v \\ 0 & \text { otherwise }\end{cases}
$$

Let $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \ldots \geq \lambda_{n}(G)$ be the eigenvalues of the adjacency matrix $A(G)$ of G. The largest eigenvalue of $A(G)$ is the spectral radius of G. The energy (or the A-energy) of G is defined as $E_{A}(G)=$ $\sum_{i=1}^{n}\left|\lambda_{i}(G)\right|$. The distance between the vertices u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest path between them in G, and define $d_{G}(u, u)=0$ for all $u \in V(G)$. The distance matrix $D(G)$ of G is the $n \times n$ matrix whose rows and columns are indexed by the vertices of G and the (u, v)-th entry is equal to $d_{G}(u, v)$. Let $N_{G}(v)$ denote the collection of vertices that are adjacent to the vertex v in G, and $N_{G}(v)$ is called the neighbor of v in G. The eccentricity $e_{G}(v)$ of a vertex $v \in V(G)$ is the maximum distance from v to all other vertices of G. The maximum eccentricity of all vertices of G is the diameter of G, which is denoted by $\operatorname{diam}(G)$. The diametrical path is a path whose length is equal to the diameter of G.

[^0]The eccentricity matrix of a graph G on n vertices, denoted by $\mathcal{E}(G)$, is the $n \times n$ matrix whose rows and columns are indexed by the vertices of G, and the entries are defined as

$$
\mathcal{E}(G)_{u v}= \begin{cases}d_{G}(u, v) & \text { if } d_{G}(u, v)=\min \left\{e_{G}(u), e_{G}(v)\right\}, \\ 0 & \text { otherwise } .\end{cases}
$$

The eccentricity matrix $\mathcal{E}(G)$ of a graph G is a real symmetric matrix, and hence all of its eigenvalues are real. The eigenvalues of $\mathcal{E}(G)$ are the \mathcal{E}-eigenvalues of G. The largest modulus of an eigenvalue is the \mathcal{E}-spectral radius of G. The set of all \mathcal{E}-eigenvalues of G is the \mathcal{E}-spectrum of G. If $\xi_{1}>\xi_{2}>\ldots>\xi_{k}$ are the distinct \mathcal{E}-eigenvalues of G, then we write the \mathcal{E}-spectrum of G as

$$
\operatorname{Spec}_{\mathcal{E}}(G)=\left\{\begin{array}{cccc}
\xi_{1} & \xi_{2} & \ldots & \xi_{k} \\
m_{1} & m_{2} & \ldots & m_{k}
\end{array}\right\}
$$

where m_{i} is the multiplicity of ξ_{i} for $i=1,2, \ldots, k$.
Spectral extremal problems are one of the interesting problems in spectral graph theory. Recently, the extremal problems for eccentricity matrices of graphs have gained significant importance and attracted the attention of researchers. In [23], Wei et al. considered the extremal problem for the \mathcal{E}-spectral radius of trees and determined the trees with minimum \mathcal{E}-spectral radius among all trees on n vertices. Also, they characterized the trees with minimum \mathcal{E}-spectral radius among the trees with a given diameter. In [14], the authors studied the minimal problem for \mathcal{E}-spectral radius of graphs with a given diameter and characterized the extremal graphs. Moreover, they identified the unique bipartite graph with minimum \mathcal{E}-spectral radius. Wang et al. [19] characterized the graphs with minimum and second minimum \mathcal{E}-spectral radius as well as the graphs with maximum least and second least \mathcal{E}-eigenvalues. Recently, He and Lu [4] considered the maximal problem for the \mathcal{E}-spectral radius of trees with the fixed odd diameter and determined the extremal trees. Wei et al. [25] characterized the trees with second minimum \mathcal{E}-spectral radius and identified the trees with small matching number having the minimum \mathcal{E}-spectral radius. Very recently, Wei and Li [24] studied the relationship between the majorization and the \mathcal{E}-spectral radius of complete multipartite graphs and determined the extremal complete multipartite graphs with minimum and maximum \mathcal{E}-spectral radius. Mahato and Kannan [16] considered the extremal problem for the second largest \mathcal{E}-eigenvalue of trees and determined the unique tree with minimum second largest \mathcal{E}-eigenvalue among all trees on n vertices other than the star. For more advances on the eccentricity matrices of graphs, we refer to $[7,8,13,15,17,18,21,22]$.

The eccentricity energy (or the \mathcal{E}-energy) of a graph G is defined [20] as

$$
E_{\mathcal{E}}(G)=\sum_{i=1}^{n}\left|\xi_{i}(G)\right|,
$$

where $\xi_{1}(G), \xi_{2}(G), \ldots, \xi_{n}(G)$ are the \mathcal{E}-eigenvalues of G. Recently, many researchers focused on the eccentricity energy of graphs. In [20], Wang et al. studied the \mathcal{E}-energy of graphs and obtained some bounds for the \mathcal{E}-energy of graphs and determined the corresponding extremal graphs. Lei et al. [8] obtained an upper bound for the \mathcal{E}-energy of graphs and characterized the extremal graphs. Very recently, Mahato and Kannan [16] studied the minimization problem for the \mathcal{E}-energy of trees and characterized the trees with minimum \mathcal{E}-energy among all trees on n vertices. For more details about the \mathcal{E}-energy of graphs, we refer to $[14,15,18]$.

Motivated by the above-mentioned works, in this article, we study the extremal problems for eccentricity matrices of complements of trees and characterize the extremal graphs for the \mathcal{E}-spectral radius, second
largest \mathcal{E}-eigenvalue, least \mathcal{E}-eigenvalue and \mathcal{E}-energy among the complements of trees. The extremal problems for the complements of trees with respect to the other graph matrices have been studied in $[2,9,10,11]$. For a tree T, let T^{c} be the complement of T. Throughout the paper, we always assume that T^{c} is connected; hence, T is not isomorphic to the star graph. Let \mathcal{T}_{n}^{c} denote the complements of all trees on n vertices. Note that if T is a tree with $\operatorname{diam}(T)>3$, then $\mathcal{E}\left(T^{c}\right)=2 A(T)$. If $\operatorname{diam}(T)=3$, then $\mathcal{E}\left(T^{c}\right) \geq 2 A(T)$ entrywise. Since $A(T)$ is irreducible, therefore $\mathcal{E}\left(T^{c}\right)$ is also irreducible.

The article is organized as follows: In Section 2, we collect needed notations and some preliminary results. In Section 3, we characterize the extremal graphs with the minimum and maximum \mathcal{E}-spectral radius among the complements of trees. As a consequence, we determine the unique graphs with the minimum and maximum least \mathcal{E}-eigenvalues among the complements of trees. We discuss the extremal problems for the second largest \mathcal{E}-eigenvalue and the \mathcal{E}-energy of complements of trees in Sections 4 and 5 , respectively.
2. Preliminaries. In this section, we introduce some notations and collect some preliminary results, which will be used in the subsequent sections. First, we define the quotient matrix and equitable partition.

Definition 2.1 (Equitable partition [1]). Let A be a real symmetric matrix whose rows and columns are indexed by $X=\{1,2, \ldots, n\}$. Let $\Pi=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ be a partition of X. The characteristic matrix C is the $n \times m$ matrix whose j th column is the characteristic vector of $X_{j}(j=1,2, \ldots, m)$. Let A be partitioned according to Π as

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 m} \\
A_{21} & A_{22} & \ldots & A_{2 m} \\
\vdots & \ldots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \ldots & A_{m m}
\end{array}\right)
$$

where $A_{i j}$ denotes the submatrix (block) of A formed by rows in X_{i} and the columns in X_{j}. If $q_{i j}$ denotes the average row sum of $A_{i j}$, then the matrix $Q=\left(q_{i j}\right)$ is called the quotient matrix of A. If the row sum of each block $A_{i j}$ is a constant, then the partition Π is called equitable partition.

In the following theorem, we state a well-known result about the spectrum of a quotient matrix corresponding to an equitable partition.

THEOREM 2.2 ([1]). Let Q be a quotient matrix of any square matrix A corresponding to an equitable partition. Then the spectrum of A contains the spectrum of Q.

Let K_{n}, P_{n}, and $K_{1, n-1}$ denote the complete graph, the path, and the star on n vertices, respectively. For $d=3$, let $T_{n, 3}^{a, b}$ be the tree obtained from $P_{4}=v_{0} v_{1} v_{2} v_{3}$ by attaching a pendant vertices to v_{1} and b pendant vertices to v_{2}, where $a+b=n-4$ and $b \geq a \geq 0$. For $d \geq 4$, let $D_{n, d}^{a, b}$ be the tree obtained from $P_{d+1}=v_{0} v_{1} v_{2} \ldots v_{d}$ by attaching a pendant vertices to v_{1} and b pendant vertices to v_{d-1}, where $a+b=n-d-1$ and $b \geq a \geq 0$. The trees $T_{n, 3}^{a, b}$ and $D_{n, d}^{a, b}$ are depicted in Figures 1 and 2, respectively. For

Figure 1. The tree $T_{n, 3}^{a, b}$, where $a+b=n-4$.

Figure 2. The tree $D_{n, d}^{a, b}$, where $a+b=n-d-1$ and $d \geq 4$.
a real number x, let $\lfloor x\rfloor$ denote the greatest integer less than or equal to x, and $\lceil x\rceil$ denote the least integer greater than or equal to x. In the following lemma, we compute the \mathcal{E}-spectrum of the complement of the tree $T_{n, 3}^{a, b}$, where $a+b=n-4$ and $b \geq a \geq 0$.

Lemma 2.3. For $b \geq a \geq 0$ with $a+b=n-4$, the \mathcal{E}-spectrum of $\left(T_{n, 3}^{a, b}\right)^{c}$ is given by

$$
\operatorname{Spec}_{\mathcal{E}}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=\left\{\begin{array}{ccc}
-\sqrt{\frac{4 n+1 \pm \sqrt{(4 n+1)^{2}-64(a+1)(b+1)}}{1^{2}}} & 0 & \sqrt{\frac{4 n+1 \pm \sqrt{(4 n+1)^{2}-64(a+1)(b+1)}}{1^{2}}}
\end{array}\right\}
$$

Proof. Let $T_{n, 3}^{a, b}$ be the tree obtained from $P_{4}=v_{0} v_{1} v_{2} v_{3}$ by attaching a pendant vertices u_{1}, \ldots, u_{a} to v_{1} and b pendant vertices w_{1}, \ldots, w_{b} to v_{2}, where $a+b=n-4$ and $b \geq a \geq 0$. Then the eccentricity matrix of $\left(T_{n, 3}^{a, b}\right)^{c}$ is given by

$$
\left.\mathcal{E}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=\begin{array}{cccccccccc}
u_{1} & \ldots & u_{a} & v_{0} & v_{1} & v_{2} & v_{3} & w_{1} & \ldots & w_{b} \\
u_{1} \\
\vdots \\
u_{a} & \ldots & 0 & 0 & 2 & 0 & 0 & 0 & \ldots & 0 \\
v_{0} \\
v_{1} & \ldots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
v_{2} \\
v_{3} & \ldots & \ldots & 0 & 0 & 2 & 0 & 0 & 0 & \ldots \\
w_{1} \\
w_{1} & \ldots & 0 & 0 & 2 & 0 & 0 & 0 & \ldots & 0 \\
\vdots \\
0 & \ldots & 2 & 2 & 0 & 3 & 0 & 0 & \ldots & 0 \\
w_{b} & \ldots & 0 & 0 & 3 & 0 & 2 & 2 & \ldots & 2 \\
0 & \ldots & 0 & 0 & 0 & 2 & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & 0 & 2 & 0 & 0 & \ldots & 0
\end{array}\right) .
$$

It is easy to see that the rank of $\mathcal{E}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)$ is 4 . Therefore, 0 is an eigenvalue of $\mathcal{E}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)$ with multiplicity $n-4$.

If $U=\left\{u_{1}, \ldots, u_{a}, v_{0}\right\}$ and $W=\left\{v_{3}, w_{1}, \ldots, w_{b}\right\}$, then $\Pi_{1}=U \cup\left\{v_{1}\right\} \cup\left\{v_{2}\right\} \cup W$ is an equitable partition of $\mathcal{E}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)$ with the quotient matrix

$$
Q_{1}=\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \\
2(a+1) & 0 & 3 & 0 \\
0 & 3 & 0 & 2(b+1) \\
0 & 0 & 2 & 0
\end{array}\right)
$$

By a direct calculation, the eigenvalues of Q_{1} are

$$
\begin{aligned}
& \pm \sqrt{\frac{4 a+4 b+17+\sqrt{(4 a+4 b+17)^{2}-64(a+1)(b+1)}}{2}}, \quad \text { and } \\
& \pm \sqrt{\frac{4 a+4 b+17-\sqrt{(4 a+4 b+17)^{2}-64(a+1)(b+1)}}{2}}
\end{aligned}
$$

Now, the proof follows from Theorem 2.2 by substituting $a+b=n-4$.
In the following theorem, we find the adjacency energy of the path graph on n vertices. We include proof of this result for the sake of completeness.

Theorem 2.4. The energy of a path P_{n} on n vertices is given by

$$
E_{A}\left(P_{n}\right)= \begin{cases}2\left(\cot \left(\frac{\pi}{2(n+1)}\right)-1\right) & \text { if } n \text { is odd } \\ 2\left(\csc \left(\frac{\pi}{2(n+1)}\right)-1\right) & \text { if } n \text { is even. }\end{cases}
$$

Proof. We know that the eigenvalues of P_{n} are $2 \cos \frac{\pi k}{n+1}, k=1,2, \ldots, n$. By using the formula $\cos x+$ $\cos 2 x+\ldots+\cos n x=\sin \left(\frac{n x}{2}\right) \csc \left(\frac{x}{2}\right) \cos \left(\frac{(n+1) x}{2}\right)$ (for a proof of this identity, we refer to [6]), we have

$$
\begin{aligned}
E_{A}\left(P_{n}\right) & = \begin{cases}4\left(\cos \left(\frac{\pi}{n+1}\right)+\cos \left(\frac{2 \pi}{n+1}\right)+\ldots+\cos \left(\frac{(n-1) \pi}{2(n+1)}\right)\right) & \text { if } n \text { is odd }, \\
4\left(\cos \left(\frac{\pi}{n+1}\right)+\cos \left(\frac{2 \pi}{n+1}\right)+\ldots+\cos \left(\frac{n \pi}{2(n+1)}\right)\right) & \text { if } n \text { is even; }\end{cases} \\
& = \begin{cases}4 \sin \left(\frac{(n-1) \pi}{4(n+1)}\right) \csc \left(\frac{\pi}{2(n+1)}\right) \cos \left(\frac{\pi}{4}\right) & \text { if } n \text { is odd }, \\
4 \sin \left(\frac{n \pi}{4(n+1)}\right) \csc \left(\frac{(n+2) \pi}{4(n+1)}\right) \cos \left(\frac{\pi}{4}\right) & \text { if } n \text { is even; }\end{cases} \\
& = \begin{cases}2\left(\cos \left(\frac{\pi}{2(n+1)}\right)-\sin \left(\frac{\pi}{2(n+1)}\right)\right) \csc \left(\frac{\pi}{2(n+1)}\right) & \text { if } n \text { is odd }, \\
2\left(\sin \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2(n+1)}\right)\right) \csc \left(\frac{\pi}{2(n+1)}\right) & \text { if } n \text { is even; }\end{cases} \\
& = \begin{cases}2\left(\cot \left(\frac{\pi}{2(n+1)}\right)-1\right) & \text { if } n \text { is odd, } \\
2\left(\csc \left(\frac{\pi}{2(n+1)}\right)-1\right) & \text { if } n \text { is even. } .\end{cases}
\end{aligned}
$$

Now, we collect some results related to the spectral radius, second-largest eigenvalue and energy of the adjacency matrices of trees.

THEOREM 2.5 ([12]). Let T be a tree on n vertices. Then $\lambda_{1}(T) \geq 2 \cos \frac{\pi}{n+1}$ with equality if and only if $T \cong P_{n}$.

Theorem 2.6 ([5, Theorem 2]). Let T be a tree on $n \geq 4$ vertices and $T \not \approx K_{1, n-1}$. Then $\lambda_{1}(T) \leq$ $\sqrt{\frac{n-1+\sqrt{n^{2}-6 n+13}}{2}}$ with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.

THEOREM 2.7 ([26, Theorem 2]). Let T be a tree of order $n \geq 4$ and $T \not \approx K_{1, n-1}, T_{n, 3}^{0, n-4}$. Then $\lambda_{2}(T) \geq 1$.

Theorem 2.8 ([5, Theorem 10]). Let T be a tree with $n \geq 4$ vertices.

1. If $T \not \approx D_{n, 5}^{s-1, s-1}$, then $\lambda_{2}(T) \leq \sqrt{\frac{n-3}{2}}$. The equality holds if and only if $n=2 s+3$ and $T \cong$ $D_{n, 4}^{s-1, s-1}, D_{n, 5}^{s-2, s-1}, D_{n, 6}^{s-2, s-2}$.
2. If $T \cong D_{n, 5}^{s-1, s-1}$, then $\lambda_{2}(T)=x>\sqrt{\frac{n-3}{2}}$, where x is the positive root of the equation $x^{3}+x^{2}-$ $(s+1)-s=0$.
Lemma 2.9 ([3, Proposition 4]). Let T be a tree of order n and $T \nexists K_{1, n-1}, T_{n, 3}^{0, n-4}, T_{n, 3}^{1, n-3}, D_{n, 4}^{0, n-5}$. Then

$$
E_{A}(T)>E_{A}\left(D_{n, 4}^{0, n-5}\right)>E_{A}\left(T_{n, 3}^{1, n-3}\right)>E_{A}\left(T_{n, 3}^{0, n-4}\right)>E_{A}\left(K_{1, n-1}\right)
$$

Lemma 2.10 ([3, Proposition 3]). Let T be a tree on $n \geq 2$ vertices such that $T \not \nexists K_{1, n-1}, P_{n}$. Then

$$
E_{A}\left(K_{1, n-1}\right)<E_{A}(T)<E_{A}\left(P_{n}\right)
$$

Next, we state a result about the minimum second largest \mathcal{E}-eigenvalue of trees.
Theorem 2.11 ([16]). Let T be a tree on $n \geq 4$ vertices other than the star. Then

$$
\xi_{2}(T) \geq \sqrt{\frac{13 n-35-\sqrt{169 n^{2}-974 n+1417}}{2}}
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
The following theorem is about the characterization of trees with minimum \mathcal{E}-energy.
Theorem 2.12 ([16]). Let T be a tree on $n \geq 5$ vertices. Then

$$
E_{\mathcal{E}}(T) \geq 2 \sqrt{13 n-35+8 \sqrt{n-3}}
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
3. Extremal problems for \mathcal{E}-spectral radius and least \mathcal{E}-eigenvalue. In this section, we characterize the graphs with the minimum and maximum \mathcal{E}-spectral radius among the complements of all trees on n vertices. As a consequence, we determine the graphs for which the least \mathcal{E}-eigenvalues attain the minimum and maximum value among \mathcal{T}_{n}^{c}, where \mathcal{T}_{n}^{c} denote the complements of all trees on n vertices. First, we give an ordering of the complements of trees with diameter 3 according to their \mathcal{E}-spectral radius.

Theorem 3.1. Let T be a tree with diameter 3 , that $i s, T \cong T_{n, 3}^{a, b}$ with $a+b=n-4, b \geq a \geq 0$. Then the complements of $T_{n, 3}^{a, b}$ can be ordered with respect to their \mathcal{E}-spectral radius as follows:

$$
\xi_{1}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)>\xi_{1}\left(\left(T_{n, 3}^{1, n-3}\right)^{c}\right)>\ldots>\xi_{1}\left(\left(T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right)
$$

Proof. By Lemma 2.3, we have

$$
\begin{aligned}
\xi_{1}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right) & =\sqrt{\frac{4 n+1+\sqrt{(4 n+1)^{2}-64(a+1)(b+1)}}{2}} \\
& =\sqrt{\frac{4 n+1+\sqrt{(4 n+1)^{2}-64(n-3+a(n-4-a))}}{2}} \quad(\text { since }, a+b=n-4)
\end{aligned}
$$

Now, consider the function $f(x)=4 n+1+\sqrt{(4 n+1)^{2}-64(n-3+x(n-4-x))}$, where $0 \leq x \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. Therefore,

$$
f^{\prime}(x)=\frac{-32(n-4-2 x)}{\sqrt{(4 n+1)^{2}-64(n-3+x(n-4-x))}} \leq 0
$$

Hence, $f(x)$ is a decreasing function of x, where $0 \leq x \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. Therefore, $\xi_{1}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=\sqrt{\frac{f(a)}{2}}$ is an decreasing function for $0 \leq a \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. This completes the proof.

As a consequence of the above result, we get the following corollaries.
Corollary 3.2. Let T be a tree on $n \geq 4$ vertices with $\operatorname{diam}(T)=3$. Then

$$
\xi_{1}\left(T^{c}\right) \leq \sqrt{\frac{4 n+1+\sqrt{(4 n+1)^{2}-64(n-3)}}{2}}
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
Proof. The proof follows from Lemma 2.3 and Theorem 3.1.
Corollary 3.3. If T is a tree on n vertices with diameter 3 , then

$$
\xi_{1}\left(T^{c}\right) \geq \begin{cases}\sqrt{\frac{4 n+1+\sqrt{72 n-63}}{2}} & \text { if } n \text { is even } \\ \sqrt{\frac{4 n+1+\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd }\end{cases}
$$

The equality holds if and only if $T \cong T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}$.
Proof. If $T \cong T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}$, by Lemma 2.3 it follows that

$$
\begin{aligned}
\xi_{1}\left(T^{c}\right) & =\sqrt{\frac{4 n+1+\sqrt{\left.(4 n+1)^{2}-64\left(\left\lceil\frac{n-2}{2}\right\rceil \frac{n-2}{2}\right\rfloor\right)}}{2}} \\
& = \begin{cases}\sqrt{\frac{4 n+1+\sqrt{72 n-63}}{2}} & \text { if } n \text { is even }, \\
\sqrt{\frac{4 n+1+\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

If $T \not \neq T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}$, then, by Theorem 3.1 it follows that $\xi_{1}\left(T^{c}\right)>\xi_{1}\left(\left(T_{\left.\left.n, 3^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right) \text {. This completes }}\right.\right.$ the proof.

In the following theorem, we characterize the trees whose complement has the minimum \mathcal{E}-spectral radius among the complements of all trees on n vertices. Note that if T is a tree with $\operatorname{diam}(T)>3$, then $\mathcal{E}\left(T^{c}\right)=2 A(T)$. If $\operatorname{diam}(T)=3$, then $\mathcal{E}\left(T^{c}\right) \geq 2 A(T)$ entrywise.

Theorem 3.4. Let T be a tree of order $n \geq 4$. Then

$$
\xi_{1}\left(T^{c}\right) \geq \xi_{1}\left(P_{n}^{c}\right)
$$

with equality if and only if $T \cong P_{n}$.
Proof. Since P_{4} is the only tree on 4 vertices with connected complement, we assume that $n \geq 5$. For $n \geq 5$, we have $\xi_{1}\left(P_{n}^{c}\right)=2 \lambda_{1}\left(P_{n}\right)=4 \cos \frac{\pi}{n+1}<4$.

If T is a tree with diameter 3, by Corollary 3.3 it follows that

$$
\xi_{1}\left(T^{c}\right) \geq \begin{cases}\sqrt{\frac{4 n+1+\sqrt{72 n-63}}{2}} & \text { if } n \text { is even } \\ \sqrt{\frac{4 n+1+\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd }\end{cases}
$$

It is easy to check that $\sqrt{\frac{4 n+1+\sqrt{72 n-47}}{2}}>\sqrt{\frac{4 n+1+\sqrt{72 n-63}}{2}}>4$. Therefore, $\xi_{1}\left(T^{c}\right) \geq \xi_{1}\left(P_{n}^{c}\right)$.
If T is a tree with $\operatorname{diam}(T) \geq 4$, then the proof follows from Theorem 3.4.
Now, we determine the unique tree whose complement has maximum \mathcal{E}-spectral radius in \mathcal{T}_{n}^{c}.
Theorem 3.5. Let T be a tree of order $n \geq 4$. Then

$$
\xi_{1}\left(T^{c}\right) \leq \xi_{1}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right),
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
Proof. If T is a tree with diameter 3, then the proof follows from Corollary 3.2. If T is a tree with $\operatorname{diam}(T) \geq 4$, then $\xi_{1}\left(T^{c}\right)=2 \lambda_{1}(T)$ and the proof follows from Theorem 2.6.

Now, we consider the extremal problem for the least \mathcal{E}-eigenvalue of complements of trees and characterize the extremal graphs. First, we show that the \mathcal{E}-eigenvalues of the complements of trees are symmetric about the origin.

Theorem 3.6. Let T be a tree of order $n \geq 4$. Then the eigenvalues of $\mathcal{E}\left(T^{c}\right)$ are symmetric about the origin, that is, if λ is an eigenvalue of $\mathcal{E}\left(T^{c}\right)$ with multiplicity k, then $-\lambda$ is also an eigenvalue of $\mathcal{E}\left(T^{c}\right)$ with multiplicity k.

Proof. If T is a tree with diameter 3, then the proof follows from Lemma 2.3. Let T be a tree with $\operatorname{diam}(T) \geq 4$. Then, $\mathcal{E}\left(T^{c}\right)=2 A(T)$. Since every tree is a bipartite graph, the eigenvalues of $A(T)$ are symmetric about the origin, and hence the \mathcal{E}-eigenvalues of T^{c} are also symmetric about the origin.

Let $\xi_{n}\left(T^{c}\right)$ denote the least \mathcal{E}-eigenvalue of $\mathcal{E}\left(T^{c}\right)$. In the following theorems, we characterize the trees whose complements have minimum and maximum least \mathcal{E}-eigenvalue in \mathcal{T}_{n}^{c}, respectively.

Theorem 3.7. Let T be a tree of order $n \geq 4$. Then

$$
\xi_{n}\left(T^{c}\right) \geq \xi_{n}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right),
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
Proof. The proof follows from Theorem 3.5 and Theorem 3.6.
Theorem 3.8. Let T be a tree of order $n \geq 4$. Then

$$
\xi_{n}\left(T^{c}\right) \leq \xi_{n}\left(P_{n}^{c}\right),
$$

with equality if and only if $T \cong P_{n}$.
Proof. The proof follows from Theorem 3.4 and Theorem 3.6.
4. Extremal problems for the second largest \mathcal{E}-eigenvalue. In this section, we study the extremal problems for the second largest \mathcal{E}-eigenvalue of complements of trees and characterize the extremal graphs. First, we give an ordering of the complements of trees with diameter 3 according to their second-largest \mathcal{E}-eigenvalues.

Theorem 4.1. Let T be a tree with diameter 3 , that is, $T \cong T_{n, 3}^{a, b}$ with $a+b=n-4, b \geq a \geq 0$. Then the complements of the trees $T_{n, 3}^{a, b}$ can be ordered with respect to their second largest \mathcal{E}-eigenvalues as follows:

$$
\xi_{2}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)<\xi_{2}\left(\left(T_{n, 3}^{1, n-3}\right)^{c}\right)<\ldots<\xi_{2}\left(\left(T_{\left.\left.n, 3^{\left\lfloor\frac{n-2}{2}\right\rfloor,\left\lceil\frac{n-2}{2}\right\rceil}\right)^{c}\right) . . . ~ . ~}^{\text {. }}\right.\right.
$$

Proof. By Lemma 2.3, it follows that

$$
\begin{aligned}
\xi_{2}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right) & =\sqrt{\frac{4 n+1-\sqrt{(4 n+1)^{2}-64(a+1)(b+1)}}{2}} \\
& =\sqrt{\frac{4 n+1-\sqrt{(4 n+1)^{2}-64(n-3+a(n-4-a))}}{2}} \quad(\text { since }, a+b=n-4) .
\end{aligned}
$$

Now, consider the function $f(x)=4 n+1-\sqrt{(4 n+1)^{2}-64(n-3+x(n-4-x))}$, where $0 \leq x \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. Therefore,

$$
f^{\prime}(x)=\frac{32(n-4-2 x)}{\sqrt{(4 n+1)^{2}-64(n-3+x(n-4-x))}} \geq 0 .
$$

Hence, $f(x)$ is an increasing function of x for $0 \leq x \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. Therefore, $\xi_{2}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=\sqrt{\frac{f(a)}{2}}$ is an increasing function for $0 \leq a \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. This completes the proof.

As a consequence of the above result, we get the following corollaries.
Corollary 4.2. If T is a tree on n vertices with diameter 3 , then

$$
\xi_{2}\left(T^{c}\right) \geq 2 \sqrt{4 n+1-\sqrt{(4 n+1)^{2}-64(n-3)}}
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
Proof. The proof follows from Lemma 2.3 and Theorem 4.1.
Corollary 4.3. If T is a tree on n vertices with diameter 3 , then

$$
\xi_{2}\left(T^{c}\right) \leq \begin{cases}\sqrt{\frac{4 n+1-\sqrt{72 n-63}}{2}} & \text { if } n \text { is even } \\ \sqrt{\frac{4 n+1-\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd }\end{cases}
$$

Proof. If $T \cong T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}$, by Lemma 2.3 it follows that

$$
\begin{aligned}
\xi_{2}\left(T^{c}\right) & =\sqrt{\frac{4 n+1-\sqrt{\left.(4 n+1)^{2}-64\left(\left\lceil\frac{n-2}{2}\right\rceil \frac{n-2}{2}\right\rfloor\right)}}{2}} \\
& = \begin{cases}\sqrt{\frac{4 n+1-\sqrt{72 n-63}}{2}} & \text { if } n \text { is even }, \\
\sqrt{\frac{4 n+1-\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

 proof.

In the following theorem, we determine the unique tree whose complement has minimum second largest \mathcal{E}-eigenvalue in \mathcal{T}_{n}^{c}.

Theorem 4.4. Let T be a tree of order $n \geq 4$. Then

$$
\xi_{2}\left(T^{c}\right) \geq \xi_{2}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
Proof. If T is a tree on $n \geq 4$ vertices with diameter 3 , then the proof follows from Corollary 4.2.
Let T be a tree with $\operatorname{diam}(T) \geq 4$. Then, $\mathcal{E}\left(T^{c}\right)=2 A(T)$, and hence by Theorem 2.7 , we have $\xi_{2}\left(T^{c}\right) \geq 2$. Note that $\sqrt{(4 n-7)^{2}+144}>4 n-7$, and hence $\left(4 n+1-\sqrt{(4 n-7)^{2}+144}\right)<8$. Therefore, $\xi_{2}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)=\sqrt{\frac{4 n+1-\sqrt{(4 n-7)^{2}+144}}{2}}<2$. Thus, $\xi_{2}\left(T^{c}\right)>\xi_{2}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)$. This completes the proof.

Next, we characterize the maximal graphs for the second largest \mathcal{E}-eigenvalue of complements of trees.
Theorem 4.5. Let T be a tree with $n \geq 4$ vertices.

1. If $T \not \not D_{n, 5}^{s-1, s-1}$, then $\xi_{2}\left(T^{c}\right) \leq \sqrt{2(n-3)}$. The equality holds if and only if $n=2 s+3$ and $T \cong D_{n, 4}^{s-1, s-1}, D_{n, 5}^{s-2, s-1}, D_{n, 6}^{s-2, s-2}$.
2. If $T \cong D_{n, 5}^{s-1, s-1}$, then $\xi_{2}\left(T^{c}\right)=2 x>\sqrt{2(n-3)}$, where x is the positive root of the equation $x^{3}+x^{2}-(s+1)-s=0$.

Proof. If T is a tree on $n \geq 4$ vertices with diameter 3 , by Corollary 4.3 it follows that

$$
\xi_{2}\left(T^{c}\right) \leq \begin{cases}\sqrt{\frac{4 n+1-\sqrt{72 n-63}}{2}} & \text { if } n \text { is even } \\ \sqrt{\frac{4 n+1-\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd }\end{cases}
$$

It is easy to check that $\sqrt{\frac{4 n+1-\sqrt{72 n-47}}{2}}<\sqrt{\frac{4 n+1-\sqrt{72 n-63}}{2}}<\sqrt{2(n-3)}$ for $n \geq 4$. Therefore, $\xi_{2}\left(T^{c}\right)<$ $\sqrt{2(n-3)}$.

Let T be a tree with $\operatorname{diam}(T) \geq 4$. Then $\xi_{2}\left(T^{c}\right)=2 \lambda_{2}(A(T))$, and the proof follows from Theorem 2.8.ロ
Now, we give a Nordhaus-Gaddum-type lower bound for the second largest \mathcal{E}-eigenvalue of a tree and its complement, which directly follows from Theorem 2.11 and Theorem 4.4.

Theorem 4.6. Let T be a tree of order $n \geq 4$. Then

$$
\xi_{2}(T)+\xi_{2}\left(T^{c}\right) \geq\left(\sqrt{\frac{13 n-35-\sqrt{169 n^{2}-974 n+1417}}{2}}+\sqrt{\frac{4 n+1-\sqrt{16 n^{2}-56 n+193}}{2}}\right)
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
5. Extremal problems for \mathcal{E}-energy. In this section, we characterize the complements of trees with the minimum and maximum \mathcal{E}-energy among the complements of all trees on n vertices, respectively. To begin with, in the following lemma, we give an ordering of the complements of trees with diameter 3 according to their \mathcal{E}-energy.

Theorem 5.1. Let T be a tree with diameter 3 , that is, $T \cong T_{n, 3}^{a, b}$ with $a+b=n-4, b \geq a \geq 0$. Then the complements of $T_{n, 3}^{a, b}$ can be ordered according to their \mathcal{E}-energy as follows:

$$
E_{\mathcal{E}}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)<E_{\mathcal{E}}\left(\left(T_{n, 3}^{1, n-3}\right)^{c}\right)<\ldots<E_{\mathcal{E}}\left(\left(T_{\left.\left.\left.n, 3^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right.}\right\rceil\right)^{c}\right)}\right.\right.
$$

Proof. By Lemma 2.3, it follows that $E_{\mathcal{E}}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=2\left(\xi_{1}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)+\xi_{2}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)\right)$, where

$$
\begin{aligned}
& \xi_{1}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=\sqrt{\frac{4 n+1+\sqrt{(4 n+1)^{2}-64(a+1)(b+1)}}{2}}, \quad \text { and } \\
& \xi_{2}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=\sqrt{\frac{4 n+1-\sqrt{(4 n+1)^{2}-64(a+1)(b+1)}}{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E_{\mathcal{E}}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right) & =2 \sqrt{4 n+1+8 \sqrt{(a+1)(b+1)}} \\
& =2 \sqrt{4 n+1+8 \sqrt{n-3+a(n-4-a)}} \quad(\text { since }, a+b=n-4)
\end{aligned}
$$

Now, consider the function $f(x)=4 n+1+8 \sqrt{n-3+x(n-4-x)}$, where $0 \leq x \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. Therefore,

$$
f^{\prime}(x)=\frac{8(n-4-2 x)}{4 n+1+8 \sqrt{n-3+x(n-4-x)}} \geq 0
$$

Hence, $f(x)$ is an increasing function of x, where $0 \leq x \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. Therefore, $E_{\mathcal{E}}\left(\left(T_{n, 3}^{a, b}\right)^{c}\right)=2 \sqrt{f(a)}$ is an increasing function for $0 \leq a \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. This completes the proof.

As a consequence of the above result, we get the following corollaries.
Corollary 5.2. If T is a tree on n vertices with diameter 3 , then

$$
E_{\mathcal{E}}\left(T^{c}\right) \geq 2 \sqrt{4 n+1+8 \sqrt{n-3}}
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.
Proof. By Lemma 2.3, it follows that

$$
\begin{aligned}
& \xi_{1}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)=\sqrt{\frac{4 n+1+\sqrt{(4 n+1)^{2}-64(n-3)}}{2}}, \quad \text { and } \\
& \xi_{2}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)=\sqrt{\frac{4 n+1-\sqrt{(4 n+1)^{2}-64(n-3)}}{2}}
\end{aligned}
$$

Thus,

$$
E_{\mathcal{E}}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)=2\left(\xi_{1}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)+\xi_{2}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)\right)=2 \sqrt{4 n+1+8 \sqrt{n-3}}
$$

Now, the proof follows from Theorem 5.1.
Corollary 5.3. If T is a tree on n vertices with diameter 3 , then

$$
E_{\mathcal{E}}\left(T^{c}\right) \leq \begin{cases}2 \sqrt{8 n-7} & \text { if } n \text { is even } \\ 2 \sqrt{4 n+1+4 \sqrt{n^{2}-4 n+3}} & \text { if } n \text { is odd }\end{cases}
$$

The equality holds if and only if $T \cong T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}$.
Proof. It follows from Lemma 2.3 that

$$
\begin{aligned}
\xi_{1}\left(\left(T_{\left.n, 3^{\left\lfloor\frac{n-4}{2}\right.}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right) & =\sqrt{\frac{4 n+1+\sqrt{(4 n+1)^{2}-64\left(\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor\right)}}{2}} \\
& = \begin{cases}\frac{\sqrt{\frac{4 n+1+\sqrt{72 n-63}}{2}}}{} & \text { if } n \text { is even, } \\
\sqrt{\frac{4 n+1+\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\xi_{2}\left(\left(T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right) & =\sqrt{\frac{4 n+1-\sqrt{(4 n+1)^{2}-64\left(\left\lceil\frac{n-2}{2}\right\rceil\left\lfloor\frac{n-2}{2}\right\rfloor\right)}}{2}} \\
& = \begin{cases}\frac{\sqrt{\frac{4 n+1-\sqrt{72 n-63}}{2}}}{} & \text { if } n \text { is even, } \\
\sqrt{\frac{4 n+1-\sqrt{72 n-47}}{2}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E_{\mathcal{E}}\left(\left(T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right) & =2\left(\xi_{1}\left(\left(T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right)+\xi_{2}\left(\left(T_{n, 3}^{\left\lfloor\frac{n-4}{2}\right\rfloor,\left\lceil\frac{n-4}{2}\right\rceil}\right)^{c}\right)\right) \\
& = \begin{cases}2 \sqrt{8 n-7} & \text { if } n \text { is even } \\
2 \sqrt{4 n+1+4 \sqrt{n^{2}-4 n+3}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Now, the proof follows from Theorem 5.1.

Next, we find the \mathcal{E}-energy of $\left(D_{n, 4}^{0, n-5}\right)^{c}$ by computing the \mathcal{E}-spectrum of $\left(D_{n, 4}^{0, n-5}\right)^{c}$. This will be used in the proof of Theorem 5.5.

Figure 3. The tree $D_{n, 4}^{0, n-5}$.
Lemma 5.4. For $n \geq 5$, the \mathcal{E}-energy of $\left(D_{n, 4}^{0, n-5}\right)^{c}$ is given by

$$
E_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)=2 \sqrt{4(n-1)+8 \sqrt{2 n-7}}
$$

Proof. The eccentricity matrix of $\left(D_{n, 4}^{0, n-5}\right)^{c}$ is given by

$$
\mathcal{E}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)=\begin{array}{cccccccc}
& v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & w_{1} & \ldots \\
v_{0} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
w_{1} \\
\vdots \\
w_{n-5}
\end{array}\left(\begin{array}{ccccccc}
0 & 2 & 0 & 0 & 0 & 0 & \ldots \\
2 & 0 & 2 & 0 & 0 & 0 & \ldots \\
0 & 2 & 0 & 2 & 0 & 0 & \ldots \\
0 & 0 & 2 & 0 & 2 & 2 & \ldots \\
0 & 2 \\
0 & 0 & 0 & 2 & 0 & 0 & \ldots \\
0 & 0 & 2 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & \ldots \\
\hline
\end{array}\right) .
$$

It is easy to check that the rank of $\mathcal{E}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)$ is 4 , and hence 0 is an eigenvalue of $\mathcal{E}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)$ with multiplicity $n-4$.

If $W=\left\{v_{4}, w_{1}, \ldots, w_{n-5}\right\}$, then $\Pi_{2}=\left\{v_{0}\right\} \cup\left\{v_{1}\right\} \cup\left\{v_{2}\right\} \cup\left\{v_{3}\right\} \cup U$ is an equitable partition of $\mathcal{E}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)$ with the quotient matrix

$$
Q_{2}=\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 \\
0 & 0 & 2 & 0 & 2(n-4) \\
0 & 0 & 0 & 2 & 0
\end{array}\right)
$$

Now, the eigenvalues of Q_{2} are

$$
-\sqrt{2 n-2 \pm 2 \sqrt{n^{2}-10 n+29}}, \quad 0, \quad \text { and } \quad \sqrt{2 n-2 \pm 2 \sqrt{n^{2}-10 n+29}}
$$

Therefore, by Theorem 2.2, we have

$$
\operatorname{Spec}_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)=\left\{\begin{array}{ccc}
-\sqrt{2 n-2 \pm 2 \sqrt{n^{2}-10 n+29}} & 0 & \sqrt{2 n-2 \pm 2 \sqrt{n^{2}-10 n+29}} \\
1 & n-4 & 1
\end{array}\right\}
$$

Hence, $E_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)=2\left(\sqrt{2 n-2+2 \sqrt{n^{2}-10 n+29}}+\sqrt{2 n-2-2 \sqrt{n^{2}-10 n+29}}\right)$.
If $\alpha=\sqrt{2 n-2+2 \sqrt{n^{2}-10 n+29}}$ and $\beta=\sqrt{2 n-2-2 \sqrt{n^{2}-10 n+29}}$, then $\alpha^{2}+\beta^{2}=4 n-4$ and $2 \alpha \beta=8 \sqrt{2 n-7}$. Therefore,

$$
\begin{aligned}
E_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right) & =2(\alpha+\beta) \\
& =2\left(\sqrt{\alpha^{2}+\beta^{2}+2 \alpha \beta}\right) \\
& =2(\sqrt{4 n-4+8 \sqrt{2 n-7}})
\end{aligned}
$$

Theorem 5.5. Let T be a tree of order $n \geq 4$. Then

$$
E_{\mathcal{E}}\left(T^{c}\right) \geq E_{\mathcal{E}}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.

Proof. For $n=4, T_{n, 3}^{0,0}$ is the only tree with a connected complement. For $n=5$ and 6 , one can verify that $E_{\mathcal{E}}\left(T^{c}\right)>E_{\mathcal{E}}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)$ (see Table 1). Let T be a tree on $n \geq 7$ vertices.

If T is a tree with $\operatorname{diam}(T)=3$, then the proof follows from Corollary 5.2. If T is a tree with $\operatorname{diam}(T) \geq 4$, then, by Lemma 2.9 it follows that

$$
E_{\mathcal{E}}\left(T^{c}\right)=2 E_{A}(T) \geq 2 E_{A}\left(D_{n, 4}^{0, n-5}\right)=E_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)
$$

Again, by Lemma 5.4, we have $E_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)=2 \sqrt{4(n-1)+8 \sqrt{2 n-7}}$. Note that $4(n-1)+8 \sqrt{2 n-7}>$ $4 n+1+8 \sqrt{n-3}$ for $n \geq 7$, and hence $E_{\mathcal{E}}\left(\left(D_{n, 4}^{0, n-5}\right)^{c}\right)>E_{\mathcal{E}}\left(\left(T_{n, 3}^{0, n-4}\right)^{c}\right)$ for $n \geq 7$. This completes the proof.

In the following theorem, we characterize the complements of trees with maximum \mathcal{E}-energy.
Theorem 5.6. Let T be a tree of order $n \geq 4$. Then

$$
E_{\mathcal{E}}\left(T^{c}\right) \leq E_{\mathcal{E}}\left(P_{n}^{c}\right)
$$

with equality if and only if $T \cong P_{n}$.
Proof. For $n=4, P_{4}$ is the only tree with a connected complement. For $n=5$ and 6 , it is easy to see that $E_{\mathcal{E}}\left(T^{c}\right) \leq E_{\mathcal{E}}\left(P_{n}^{c}\right)$ with equality if and only if $T \cong P_{n}$ (see Appendix). So, let us assume that T is a tree on $n \geq 7$ vertices. For $n \geq 7$, it follows from Theorem 2.4 that

$$
\begin{aligned}
E_{\mathcal{E}}\left(P_{n}^{c}\right)=2 E_{A}\left(P_{n}\right) & = \begin{cases}4\left(\cot \left(\frac{\pi}{2(n+1)}\right)-1\right) & \text { if } n \text { is odd } \\
4\left(\csc \left(\frac{\pi}{2(n+1)}\right)-1\right) & \text { if } n \text { is even }\end{cases} \\
& \geq\left(\cot \left(\frac{\pi}{2(n+1)}\right)-1\right)
\end{aligned}
$$

We know that $\cot x>\left(\frac{1}{x}+\frac{1}{x-\pi}\right)$ for $0<x<\frac{\pi}{2}$. Since $0<\frac{\pi}{2(n+1)}<\frac{\pi}{2}$, therefore

$$
\begin{equation*}
E_{\mathcal{E}}\left(P_{n}^{c}\right) \geq 4\left(\cot \left(\frac{\pi}{2(n+1)}\right)-1\right)>4\left(\frac{4 n(n+1)}{(2 n+1) \pi}-1\right) \tag{5.1}
\end{equation*}
$$

Let T be a tree with $\operatorname{diam}(T)=3$. Therefore, by Corollary 5.3 it follows that

$$
\begin{aligned}
E_{\mathcal{E}}\left(T^{c}\right) & \leq \begin{cases}2 \sqrt{8 n-7} & \text { if } n \text { is even } \\
2 \sqrt{4 n+1+4 \sqrt{n^{2}-4 n+3}} & \text { if } n \text { is odd }\end{cases} \\
& \leq 2 \sqrt{8 n-7}
\end{aligned}
$$

By using (5.1) one can check that

$$
E_{\mathcal{E}}\left(P_{n}^{c}\right)>4\left(\frac{4 n(n+1)}{(2 n+1) \pi}-1\right)>2 \sqrt{8 n-7} \geq E_{\mathcal{E}}\left(T^{c}\right) \quad \text { for } n \geq 7
$$

Thus, for any tree T with diameter $3, E_{\mathcal{E}}\left(P_{n}^{c}\right)>E_{\mathcal{E}}\left(T^{c}\right)$.
Let T be a tree with $\operatorname{diam}(T) \geq 4$. Therefore, $\mathcal{E}\left(T^{c}\right)=2 A(T)$ and hence $E_{\mathcal{E}}\left(T^{c}\right)=2 E_{A}(T)$. Now, by Lemma 2.10 it follows that

$$
E_{\mathcal{E}}\left(T^{c}\right)=2 E_{A}(T) \leq 2 E_{A}\left(P_{n}\right)=E_{\mathcal{E}}\left(P_{n}^{c}\right)
$$

and the equality holds if and only if $T \cong P_{n}$. This completes the proof.

Finally, we obtain a Nordhaus-Gaddum-type lower bound for the \mathcal{E}-energy of a tree and its complement, which directly follows from Theorem 2.12 and Theorem 5.5.

Theorem 5.7. Let T be a tree of order $n \geq 4$. Then

$$
E_{\mathcal{E}}(T)+E_{\mathcal{E}}\left(T^{c}\right) \geq 2(\sqrt{13 n-35+8 \sqrt{n-3}}+\sqrt{4 n+1+8 \sqrt{n-3}})
$$

with equality if and only if $T \cong T_{n, 3}^{0, n-4}$.

REFERENCES

[1] A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Universitext. Springer, New York, 2012.
[2] Y.-Z. Fan, F.-F. Zhang, and Y. Wang. The least eigenvalue of the complements of trees. Linear Algebra Appl., 435(9):21502155, 2011.
[3] I. Gutman. Acyclic systems with extremal hückel π-electron energy. Theoretica Chimica Acta, 45(2):79-87, 1977.
[4] X. He and L. Lu. On the largest and least eigenvalues of eccentricity matrix of trees. Discrete Math., 345(1):Paper No. 112662, 11, 2022.
[5] M. Hofmeister. On the two largest eigenvalues of trees. Linear Algebra Appl., 260:43-59, 1997.
[6] M. P. Knapp. Sines and cosines of angles in arithmetic progression. Math. Mag., 82(5):371, 2009.
[7] X. Lei and J. Wang. Spectral determination of graphs with one positive anti-adjacency eigenvalue. Appl. Math. Comput., 422:Paper No. 126995, 13, 2022.
[8] X. Lei, J. Wang, and G. Li. On the eigenvalues of eccentricity matrix of graphs. Discrete Appl. Math., 295:134-147, 2021.
[9] S. Li and S. Wang. The least eigenvalue of the signless Laplacian of the complements of trees. Linear Algebra Appl., 436(7):2398-2405, 2012.
[10] Y. Li, R. Qin, and D. Li. On distance signless Laplacian spectrum of the complements of unicyclic graphs and trees. Linear Algebra Appl., 631:235-253, 2021.
[11] H. Lin and S. Drury. The distance spectrum of complements of trees. Linear Algebra Appl., 530:185-201, 2017.
[12] L. Lovász and J. Pelikán. On the eigenvalues of trees. Period. Math. Hungar., 3:175-182, 1973.
[13] I. Mahato, R. Gurusamy, M.R. Kannan, and S. Arockiaraj. Spectra of eccentricity matrices of graphs. Discrete Appl. Math., 285:252-260, 2020.
[14] I. Mahato, R. Gurusamy, M. Rajesh Kannan, and S. Arockiaraj. On the spectral radius and the energy of eccentricity matrices of graphs. Linear and Multilinear Algebra, 71(1), 5-15, 2023.
[15] I. Mahato and M. R. Kannan. Eccentricity energy change of complete multipartite graphs due to edge deletion. Spec. Matrices, 10:193-202, 2022.
[16] I. Mahato and M. R. Kannan. Minimizers for the energy of eccentricity matrices of trees. arXiv preprint arXiv:2208.13462, 2022.
[17] I. Mahato and M. Rajesh Kannan. On the eccentricity matrices of trees: Inertia and spectral symmetry. Discrete Math., 345(11):Paper No. 113067, 2022.
[18] A. K. Patel, L. Selvaganesh, and S. K. Pandey. Energy and inertia of the eccentricity matrix of coalescence of graphs. Discrete Math., 344(12):Paper No. 112591, 11, 2021.
[19] J. Wang, X. Lei, S. Li, W. Wei, and X. Luo. On the eccentricity matrix of graphs and its applications to the boiling point of hydrocarbons. Chemometr. Intell. Lab. Syst., 104173, 2020.
[20] J. Wang, L. Lu, M. Randić, and G. Li. Graph energy based on the eccentricity matrix. Discrete Math., 342(9):2636-2646, 2019.
[21] J. Wang, M. Lu, M. Brunetti, L. Lu, and X. Huang. Spectral determinations and eccentricity matrix of graphs. Adv. in Appl. Math., 139:Paper No. 102358, 25, 2022.
[22] J. Wang, M. Lu, L. Lu, and F. Belardo. Spectral properties of the eccentricity matrix of graphs. Discrete Appl. Math., 279:168-177, 2020.
[23] W. Wei, X. He, and S. Li. Solutions for two conjectures on the eigenvalues of the eccentricity matrix, and beyond. Discrete Math., 343(8):111925, 21, 2020.
[24] W. Wei and S. Li. On the eccentricity spectra of complete multipartite graphs. Appl. Math. Comput., 424:Paper No. 127036, 12, 2022.
[25] W. Wei, S. Li, and L. Zhang. Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond. Discrete Math., 345(2):Paper No. 112686, 29, 2022.
[26] H. Yuan. Sharp lower bounds on the eigenvalues of trees. Linear Algebra Appl., 113:101-105, 1989.

Appendix.

Table 1
\mathcal{E}-energy of complements of the trees $T_{1}-T_{7}$.

$\operatorname{Trees}(T)$	$E_{\mathcal{E}}\left(T^{c}\right)$	$\operatorname{Trees}(T)$	$E_{\mathcal{E}}\left(T^{c}\right)$
T_{1}	≈ 10.4528	T_{5}	≈ 13.798
T_{2}	≈ 10.9284	T_{6}	≈ 12.3108
T_{3}	≈ 11.6372	T_{7}	≈ 13.9756
T_{4}	$=12$		

Figure 4. List of trees on 5 and 6 vertices with connected complements.

[^0]: *Received by the editors on February 23, 2023. Accepted for publication on May 29, 2023. Handling Editor: Froilán Dopico. Corresponding Author: M. Rajesh Kannan.
 ${ }^{\dagger}$ Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India (iswarmahato02@ gmail.com, iswarmahato02@iitkgp.ac.in).
 ${ }^{\ddagger}$ Department of Mathematics, Indian Institute of Technology Hyderabad, Hyderabad 502285, India (rajeshkannan1.m@ gmail.com, rajeshkannan@math.iith.ac.in).

