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THE ALLOW SEQUENCE OF DISTINCT EIGENVALUES FOR A SIGN PATTERN∗

JANE BREEN† , CARRAUGH C. BROUWER‡ , MINERVA CATRAL§ , MICHAEL CAVERS¶,
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Abstract. A sign pattern A is a matrix with entries in {+,−, 0}. This article introduces the allow sequence of distinct

eigenvalues for an n×n sign pattern A, defined as qseq(A) = 〈q1, . . . , qn〉, with qk = 1 if there exists a real matrix with exactly

k distinct eigenvalues having pattern A, and qk = 0 otherwise. For example, qseq(A) = 〈0, . . . , 0, 1〉 is equivalent to A requiring

all distinct eigenvalues, while qseq(A) = 〈1, 0, . . . , 0〉 is equivalent to the digraph of A being acyclic. Relationships between the

allow sequence for A and composite cycles of the digraph of A are explored to identify zeros in the sequence, while methods

based on Jacobian matrices are developed to identify ones in the sequence. When A is an n × n irreducible sign pattern, the

possible sequences for qseq(A) are completely determined when n ≤ 4 and when the sequence has at least n − 4 trailing zeros

for n ≥ 5.
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1. Introduction and definitions. A sign pattern A is a symbolic matrix with entries in {+,−, 0}.
The qualitative class of an n×n sign pattern A = [αij ], denoted by Q(A), is the set of all n×n real matrices

A = [aij ] such that sgn(aij) = αij for 1 ≤ i, j ≤ n (here, for c ∈ R, sgn(c) is the sign of c, i.e., +, −, or

0). A matrix A ∈ Q(A) is a realization of A. For a matrix A ∈ Rn×n, let q(A) be the number of distinct

eigenvalues of A, and for a sign pattern A, let q(A) = min {q(A) |A ∈ Q(A)} . The problem of determining

q(A) for a sign pattern A was initiated in [3]. Here we pose the problem of determining all possible values for

q(A) rather than focus on the minimum value for q(A) for A ∈ Q(A). To do this, we use a binary sequence

to describe the number of distinct eigenvalues that a sign pattern allows. To be specific, for an n × n sign

pattern A and 1 ≤ k ≤ n, define

qk(A) =

{
1, if q(A) = k for some A ∈ Q(A),

0, otherwise.

For n ≥ 2, the allow sequence of distinct eigenvalues for A (abbreviated allow sequence for A) is

qseq(A) = 〈q1(A), q2(A), . . . , qn(A)〉.

A binary sequence s is realizable (as an allow sequence) if there is a sign pattern A with qseq(A) = s.

Some allow sequences for sign patterns have previously been studied in the literature. For example,

determining the n × n sign patterns A requiring n distinct eigenvalues is equivalent to characterizing the
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sign patterns A for which qseq(A) = 〈0, . . . , 0, 1〉. This problem was studied by Li and Harris [14] where their

results give characterizations of all 2 × 2 (resp. 3 × 3) irreducible sign patterns with allow sequence 〈0, 1〉
(resp. 〈0, 0, 1〉). Determining 4× 4 sign patterns with allow sequence 〈0, 0, 0, 1〉 is addressed in [13] and [12].

For sign patterns A with qseq(A) = 〈1, 1, . . . , 1〉, consider the class of spectrally arbitrary patterns: a

sign pattern A is spectrally arbitrary if for every multiset Λ of n complex numbers closed under complex

conjugation there exists A ∈ Q(A) such that the spectrum of A is Λ (see, for example, [4, 5, 7]). Although

every spectrally arbitrary sign pattern A has qseq(A) = 〈1, 1, . . . , 1〉, there are also classes of non-spectrally

arbitrary sign patterns B with qseq(B) = 〈1, 1, . . . , 1〉 (several examples are provided within this paper). A

sign pattern A is potentially nilpotent if there exists A ∈ Q(A) such that A is nilpotent. Note that if A
is potentially nilpotent, then q1(A) = q(A) = 1; however, there also exist non-potentially nilpotent sign

patterns B satisfying q1(B) = q(B) = 1. We say that Â is a superpattern of A if Â can be obtained from A
by replacing some, or none, of the zero entries with either + or −.

An n× n sign pattern A can be represented with a signed directed graph D(A) = (V (D(A)), E(D(A)))

that has vertices v1, . . . , vn, and an arc (vi, vj) if the (i, j) entry of the sign pattern is not zero. An arc of the

form (vi, vi) is referred to as a loop. In the case thatD(A) has no loops, we call the sign patternA loopless. For

v ∈ V (D(A)), the indegree of v and outdegree of v are defined as indeg(v) = |{(vi, v) ∈ E(D(A)) : 1 ≤ i ≤ n}|
and outdeg(v) = |{(v, vi) ∈ E(D(A)) : 1 ≤ i ≤ n}|, respectively. The arcs and loops of D(A) are signed

either positive or negative according to signs of the entries of A; that is, the sign of (vi, vj) is the sign of the

(i, j) entry of A. The sign of a directed cycle is the product of the signs of the arcs in the cycle. A k-cycle is

a directed cycle of order k (on k vertices). For convenience, we sometimes refer to cycles of D(A) as cycles

of A.

For a directed graph D, a composite cycle of order k is a collection of vertex-disjoint directed cycles in

D such that they cover precisely k vertices of D. The sign of a composite cycle is the product of the signs

of the arcs in the composite cycle. If U = {σ1, . . . , σr} is a composite cycle with cycles σi, 1 ≤ i ≤ r, then

we define

V (U) = V (σ1) ∪ · · · ∪ V (σr), E(U) = E(σ1) ∪ · · · ∪ E(σr),

and |U | = r, i.e., |U | is the number of directed cycles in U (including loops). Let Uk denote the set of

all composite cycles of D that cover precisely k vertices. If the characteristic polynomial of a real matrix

A = [aij ] ∈ Q(A) is pA(z) = zn + c1z
n−1 + c2z

n−2 + · · ·+ cn, then

(1.1) ck = (−1)kEk =
∑
U∈Uk

(−1)|U |
∏

(vi,vj)∈E(U)

aij ,

where Ek is the sum of all k × k principal minors of A (see e.g., [10]).

For an n × n sign pattern A, we define `(A) to be the minimum length of a cycle in D(A) and c(A)

to be the maximum order of a composite cycle in D(A). For convenience, we say `(A) = c(A) = 0 if

D(A) has no cycles. We remark that `(A) is also commonly known as the girth (or digirth) of D(A). If

A = [aij ] ∈ Rn×n, we let sgn(A) denote the sign pattern whose (i, j) entry is sgn(aij) and we extend the

notation `(A) and c(A) to real matrices in the obvious manner, i.e., `(A) = `(sgn(A)) and c(A) = c(sgn(A)).

Since for sign patterns the allow sequence is preserved under negation, transposition, permutation similarity,

and signature similarity, we say A is equivalent to B if A can be obtained from B by some combination of

these four operations. In this case, we also say that D(A) is equivalent to D(B).
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The focus of this paper is on determining the sequences (or properties of sequences) that are the allow

sequence for some n × n irreducible sign pattern. In Section 2, we develop techniques to identify zeros in

qseq(A) for a sign pattern A. We first prove that if A ∈ Q(A) is not nilpotent, then q(A) ≥ `(A), and hence,

qk(A) = 0 for 2 ≤ k ≤ `(A) − 1 when `(A) ≥ 3. We then give some conditions on A for improving these

bounds. In Section 3, we develop techniques based on Jacobian matrices to both identify ones in qseq(A)

and also to preserve some entries in the allow sequence for superpatterns of A. Furthermore, for a matrix

A with a repeated eigenvalue λ ∈ R, we apply a Jacobian method to determine a condition that guarantees

that superpatterns of sgn(A) have realizations with repeated eigenvalues. In Section 4, we analyze some

particular sequences, including 〈1, 1, . . . , 1〉, 〈0, . . . , 0, 1〉, cyclic sequences, and sequences that terminate in a

string of zeros. For t ≥ 1 and t ≥ n− 4, we determine each sequence of length n with exactly t trailing zeros

that is the allow sequence for some n× n irreducible sign pattern. In the case that t ≥ 1 and t ≥ n− 3, we

give an allow sequence characterization of the n × n irreducible sign patterns A whose allow sequence has

exactly t trailing zeros. In Section 5, we determine all sequences that can occur as the allow sequence for

an n× n irreducible sign pattern when n ≤ 4 and characterize the 2× 2 and 3× 3 irreducible sign patterns

according to their allow sequence. Section 6 gives some concluding remarks.

2. Relationships between composite cycles and distinct eigenvalues. Eschenbach and Johnson

[9, Lemma (p. 172)] show that for an n × n sign pattern A, the minimum algebraic multiplicity of the

eigenvalue 0 occurring among matrices A ∈ Q(A) is equal to n − c(A), and furthermore, there is a matrix

A ∈ Q(A) with c(A) distinct nonzero eigenvalues. In the case that c(A) = n, this implies qn(A) = 1,

otherwise c(A) ≤ n−1, and (including the zero eigenvalue) we get a matrix A ∈ Q(A) with c(A)+1 distinct

eigenvalues, and there is no realization with more distinct eigenvalues. We reformulate [9, Lemma (p. 172)]

in terms of the allow sequence for A (see also [12]):

Lemma 2.1. Let A be an n×n sign pattern and c = c(A). If c ≤ n−2, then qc+1(A) = 1 and qk(A) = 0

for c+ 2 ≤ k ≤ n. Further, qn(A) = 1 if and only if c ≥ n− 1.

When c(A) ≤ n − 2, Lemma 2.1 shows that the allow sequence for A ends in a string of zeros. In a

similar fashion, when `(A) ≥ 3, we show in this section that the existence of zeros near the beginning of

the allow sequence for A (except possibly q1(A)) can be proved by analyzing the form of the characteristic

polynomial of A ∈ Q(A). In particular, we explore the effects of a matrix having a lacunary characteristic

polynomial. Generally speaking, a polynomial is lacunary if there is a subsequence of zeros (a gap) in its

sequence of coefficients. In Subsection 2.1 we focus on lacunary polynomials with an initial gap, that is,

polynomials of the form p(z) = zn +
∑n
i=` piz

n−i with p` 6= 0, for some ` ≥ 2. In Subsection 2.2, we explore

lacunary polynomials with regular gaps, that is, polynomials which have the form p(zm) for some m ≥ 2.

Then in Subsection 2.3, we explore some digraph structure that is necessary for q2(A) = 1

2.1. Sign patterns that allow lacunary characteristic polynomials with an initial gap. It is

known that if p(z) is the lacunary polynomial zn +
∑n
i=` piz

n−i with p` 6= 0, for some ` > 1, then p(z)

requires at least ` distinct nonzero roots, and no root of p(z) can have multiplicity exceeding n− `+ 1 (e.g.,

see [18] and [17, Theorem 3], respectively). For completeness, we provide a proof of the first statement based

on the proof in [18].

Lemma 2.2. Let `, n be integers with 1 ≤ ` ≤ n and p(z) = zn +
∑n
i=` piz

n−i for some p`, . . . , pn ∈ R
with p` 6= 0. Then, p(z) has at least ` distinct nonzero roots (in C).
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Proof. First assume p(0) 6= 0. Let d(z) = gcd(p(z), p′(z)) so that p(z) = d(z)P (z) for some polynomial

P (z). The roots of P (z) are simple and are exactly the distinct roots of p(z) since if r is a root of p(z) with

multiplicity m + 1, then r is a root of p′(z) (and hence also of d(z)) of multiplicity m. Thus, deg(P (z)) is

equal to the number of distinct roots of p(z). It suffices to show deg(P (z)) ≥ ` since p(z) (and hence P (z))

has no zero root. Setting f(z) = p(z)− zn, we observe that d(z) divides

f ′(z)p(z)− f(z)p′(z) = f ′(z)(zn + f(z))− f(z)(nzn−1 + f ′(z)) = zn−1(zf ′(z)− nf(z)).

Since p(0) 6= 0, z does not divide p(z), and hence, z does not divide d(z). Thus, d(z) divides zf ′(z)−nf(z).

Since the leading term of zf ′(z)− nf(z) is −`p`zn−`, it follows that

deg(d(z)) ≤ deg(zf ′(z)− nf(z)) = n− `.

Therefore, deg(P (z)) = n− deg(d(z)) ≥ ` as required to show.

Now assume p(0) = 0. If 0 is a root of p(z) with multiplicity equal to n−N , then letting

h(z) = zN +

N∑
i=`

piz
N−i,

we observe that p(z) = zn−Nh(z) and h(0) 6= 0. Thus, the previous argument applies to h(z). This implies

that h(z) (and hence also p(z)) has at least ` distinct nonzero roots.

For an n× n matrix A, applying Lemma 2.2 to the characteristic polynomial of A gives a lower bound

on q(A) in terms of `(A), i.e., the minimum length of a cycle in D(A).

Theorem 2.3. Let A be an n × n matrix that is not nilpotent. Then, q(A) ≥ `(A). Furthermore, if

c(A) ≤ n− 1, then `(A) + 1 ≤ q(A) ≤ c(A) + 1.

Proof. Since A is not nilpotent, pA(z) = zn+
∑n
i=ˆ̀piz

n−i with pˆ̀ 6= 0 for some ˆ̀≥ `(A). By Lemma 2.2,

pA(z) requires at least ˆ̀ distinct nonzero roots. Hence q(A) ≥ ˆ̀≥ `(A). If c(A) ≤ n− 1, then (including the

zero eigenvalue) we get q(A) ≥ ˆ̀+ 1 ≥ `(A) + 1. Lemma 2.1 gives the upper bound.

Example 2.4. Let A be a 7 × 7 sign pattern with the digraph given in Fig. 1. If A ∈ Q(A) is not

nilpotent, then 4 ≤ q(A) ≤ 5 by Theorem 2.3 since `(A) = 3 and c(A) = 4. Further, by Lemma 2.1,

q5(A) = 1. This implies qseq(A) = 〈a, 0, 0, b, 1, 0, 0〉 for some a, b ∈ {0, 1} depending on the signs of the

cycles in D(A). For example, if the two 3-cycles are oppositely signed and the two 4-cycles are oppositely

signed then a = 1, otherwise, a = 0.

Figure 1. A digraph with cycles of length 3 and 4.

In Theorem 2.3, if A = sgn(A) is not potentially nilpotent then every B ∈ Q(A) satisfies q(B) ≥ `(A).

This implies the bound also holds for q(A).
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Corollary 2.5. Let A be an n × n sign pattern that is not potentially nilpotent. Then, q(A) ≥ `(A).

Furthermore, if c(A) ≤ n− 1, then `(A) + 1 ≤ q(A) ≤ c(A) + 1.

We next consider the allow sequence when an n × n sign pattern A satisfies `(A) = c(A). When

`(A) = c(A) = n, the digraph of A consists of a single n-cycle and it follows that q(A) = n (i.e., qseq(A) =

〈0, . . . , 0, 1〉) by Corollary 2.5. When `(A) = c(A) ≤ n− 1, we have the following result.

Corollary 2.6. Let A be an n × n sign pattern and suppose ` = `(A) = c(A) ≤ n − 1. Then,

q`+1(A) = 1 and qk(A) = 0 for k 6= ` + 1 and k 6= 1. Further, q1(A) = 1 if and only if A is potentially

nilpotent (i.e., D(A) has at least two oppositely signed `-cycles).

Example 2.7. Let n ≥ 3 and suppose A and B are the n× n loopless sign patterns

A =


0 + · · · +

+ 0 · · · 0
...

...
...

+ 0 · · · 0

+ 0 · · · 0

 and B =


0 + · · · +

+ 0 · · · 0
...

...
...

+ 0 · · · 0

− 0 · · · 0

 .

Since `(A) = `(B) = c(A) = c(B) = 2 and B is potentially nilpotent but A is not, it follows by Corollary 2.6

that qseq(A) = 〈0, 0, 1, 0, 0, . . . , 0〉 and qseq(B) = 〈1, 0, 1, 0, 0, . . . , 0〉.

For a sign pattern A, Theorem 2.3 can give zeros in qseq(A), e.g., if `(A) = 3 then q2(A) = 0. More

generally, we have the following result.

Corollary 2.8. Let A be an n× n sign pattern with `(A) ≥ 3. Then, qk(A) = 0 for 2 ≤ k ≤ `(A)− 1,

and further, q1(A) = 1 if and only if A is potentially nilpotent.

Corollary 2.8 can be improved in the case that c(A) ≤ n− 1.

Corollary 2.9. Let A be an n× n sign pattern with `(A) ≥ 2 and c(A) ≤ n− 1. Then, qk(A) = 0 for

2 ≤ k ≤ `(A), and further, q1(A) = 1 if and only if A is potentially nilpotent.

Example 2.10. Let n ≥ 4 and consider the n× n sign pattern

A =



0 + 0 · · · 0 0

0 0 +
. . .

...
...

...
. . .

. . . 0 0

0
... 0 + +

+ 0 0 0 +

− 0 · · · 0 0 0


,

whose digraph consists of two oppositely signed cycles of order n−1 and one cycle of order n. Then, `(A) =

n− 1 and c(A) = n. Since A is not potentially nilpotent, Corollary 2.8 implies q1(A) = · · · = qn−2(A) = 0

and Lemma 2.1 implies qn(A) = 1. We can deduce that qn−1(A) = 1 by considering A = [aij ] ∈ Q(A)

with every nonzero entry having magnitude equal to 1 except an,1 = 1 − n < 0 and an−1,1 = 2n − 1 > 0.

Therefore, qseq(A) = 〈0, . . . , 0, 1, 1〉.
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2.2. Sign patterns that allow lacunary characteristic polynomials with regular gaps. When

p(z) is a non-constant polynomial and m is a positive integer, the number of distinct nonzero roots of p(zm)

is divisible by m. For completeness, we provide a proof of this result.

Lemma 2.11. Let m be a positive integer and p(z) be a polynomial with t ≥ 1 distinct nonzero roots (in

C). Then, p(zm) has mt distinct nonzero roots.

Proof. We may write p(z) = a
∏n
i=1(z − zi) for some a, z1, . . . , zn ∈ C with a 6= 0. Note if r is a root

of both zm − zi and zm − zj where i 6= j, then it must be that zi = zj ; thus, there are no common roots

of zm − zi and zm − zj whenever zi 6= zj . Since zm − zi has m distinct nonzero roots whenever zi 6= 0, the

polynomial p(zm) must have mt distinct nonzero roots for some integer t.

For an n×n sign pattern A, if there is a constant m such that the order of every composite cycle in D(A)

is divisible by m, then Lemma 2.11 gives restrictions on the values for q(A). In turn, this gives qk(A) = 0 for

values of k outside of this restriction. A sign pattern A is sign nonsingular if every A ∈ Q(A) is nonsingular.

Theorem 2.12. Suppose A is an n× n sign pattern and the order of every composite cycle in D(A) is

divisible by m for some positive integer m. Then, the following statements hold:

(i) If c(A) ≤ n− 1, then qk(A) = 0 for k 6≡ 1 (mod m).

(ii) If c(A) = n, then qk(A) = 0 for k 6≡ 0, 1 (mod m).

(iii) If A is sign nonsingular, then qk(A) = 0 for k 6≡ 0 (mod m).

Proof. In case (i), any A ∈ Q(A) has zero as an eigenvalue, and the number of distinct nonzero roots

of the characteristic polynomial is a multiple of m by Lemma 2.11. In case (ii), either zero is an eigenvalue

as in the previous case, or the total number of distinct roots is a multiple of m. In case (iii), zero is not an

eigenvalue of any A ∈ Q(A).

A bipartite sign pattern A is a pattern for which the underlying graph of D(A) is bipartite. Theorem 2.12

gives an immediate result for bipartite sign patterns since bipartite graphs have no odd cycles:

Corollary 2.13. Let A be an n× n bipartite sign pattern.

(i) If c(A) ≤ n− 1, then q2k(A) = 0 for k ≤ bn/2c.
(ii) If A is sign nonsingular, then q2k−1(A) = 0 for k ≤ bn/2c.

Note that the hypothesis of Corollary 2.13(ii) implies that n is even, since in this case D(A) would have

a composite n-cycle for the bipartite pattern A.

Example 2.14. Let B be the bipartite sign pattern:

B =


0 0 + 0

0 0 0 +

+ + 0 0

− 0 0 0

 .
Then, q1(B) = q3(B) = 0 by Corollary 2.13(ii) since B is sign nonsingular, q4(B) = 1 by Lemma 2.1 and

q2(B) = 1 by considering B = [bij ] ∈ Q(B) with every nonzero entry having magnitude 1 except b31 = 2 (in

this case, pB(z) = (z − 1)2(z + 1)2). Therefore, qseq(B) = 〈0, 1, 0, 1〉.

The following example demonstrates that the assumptions in Corollary 2.13 are necessary for the con-

clusion to hold for a bipartite sign pattern.
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Example 2.15. For a, b > 0, consider the 4× 4 bipartite sign pattern A and a realization A:

A =


0 0 + +

0 0 + +

+ + 0 0

− − 0 0

 and A =


0 0 1 a

0 0 1 1

1 1 0 0

−1 −b 0 0

 .
Then, c(A) = 4 and qseq(A) = 〈1, 1, 1, 1〉 since q(A) = 1 when (a, b) = (1, 1), q(A) = 2 when (a, b) = (2, 2),

q(A) = 3 when (a, b) = (1, 2) and q(A) = 4 when (a, b) = (2, 3).

2.3. Signed directed graphs and q2(A) = 1. For an n × n sign pattern A, there are some known

structural properties that D(A) must satisfy when q(A) = 1 (see [3, Lemma 3.2, Theorems 3.3 and 3.5]).

Analogous properties hold in the case that c(A) ≤ n− 1 and q2(A) = 1. These properties are used later in

the paper to show that certain sequences cannot be an allow sequence for any n×n irreducible sign pattern

(in particular, see Theorem 4.13 and Theorem 4.14). We first give a comparable result to [3, Lemma 3.2].

A proof is provided since the proof of [3, Lemma 3.2] relies on observations concerning potentially nilpotent

sign patterns (i.e., [3, Observation 3.1]).

Theorem 2.16. For n ≥ 2, let A be an n× n sign pattern with c(A) ≤ n− 1. If there exists A ∈ Q(A)

with q(A) = 2 and the coefficient of zn−c(A) in pA(z) is nonzero, then either D(A) has a negative 2-cycle or

D(A) has exactly c(A) loops of the same sign. In the latter case, D(A) either has no 2-cycles, or has both

positive and negative 2-cycles.

Proof. Suppose A = [aij ] ∈ Q(A) with q(A) = 2 and pA(z) = zn − E1z
n−1 + E2z

n−2 + · · ·+ (−1)nEn.

By (1.1), Ei = 0 for i > c(A), and since the coefficient of zn−c(A) in pA(z) is nonzero, pA(z) = zn−N (zN −
E1z

N−1 +E2z
N−2 + · · ·+ (−1)NEN ) for N = c(A) ≤ n− 1 and EN 6= 0. Without loss of generality, we may

assume that A (or −A) has eigenvalues 0 with multiplicity n −N and 1 with multiplicity N . We consider

the case that A has these eigenvalues and note that D(A) and D(−A) have the same number of loops and

the same number of negative 2-cycles. Then, E1 = N and E2 = N(N − 1)/2 implying that E2
1 − 2E2 = N .

By (1.1),

E2 =
∑
i<j

aiiajj −
∑
i<j

aijaji =
1

2

( n∑
i=1

aii

)2

−
n∑
i=1

a2ii

−∑
i<j

aijaji,

and hence,

2
∑
i<j

aijaji = E2
1 − 2E2 −

n∑
i=1

a2ii = N −
n∑
i=1

a2ii.

Suppose D(A) has t loops. Then, t ≥ 1 since
∑n
i=1 aii =

∑n
i=1 λi = N . The Cauchy-Schwarz inequality

gives
n∑
i=1

a2ii =
∑
i∈L

a2ii ≥
1

t

(∑
i∈L

aii

)2

=
N2

t
,

where L = {i : aii 6= 0, 1 ≤ i ≤ n} (note |L| = t), with equality if and only if aii = N/t for every i ∈ L.

Since t ≤ c(A) = N ,

2
∑
i<j

aijaji ≤ N(1−N/t) ≤ 0,

with equality if and only if t = N and aii = 1 for every i ∈ L. If 2
∑
i<j aijaji < 0, then D(A) has a

negative 2-cycle. Otherwise 2
∑
i<j aijaji = 0, and hence, aii = 1 for every i ∈ L. In the latter case, D(A)
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has exactly c(A) loops of the same sign, and furthermore, D(A) either has no 2-cycles or both positive and

negative 2-cycles.

Theorem 2.16 immediately gives the following analogue to [3, Theorem 3.3].

Corollary 2.17. For n ≥ 2, let A be an n×n sign pattern with c(A) ≤ n−1. If there exists A ∈ Q(A)

with q(A) = 2 and the coefficient of zn−c(A) in pA(z) is nonzero, and any one of the following conditions

hold:

(i) D(A) has a 2-cycle;

(ii) D(A) has between 1 and c(A)− 1 loops; or

(iii) D(A) has c(A) loops, and two oppositely signed loops,

then D(A) has a negative 2-cycle.

The next theorem is an analogue to [3, Theorem 3.5] with an almost identical proof, but for completeness,

we provide a proof.

Theorem 2.18. For n ≥ 4, let A be an n × n sign pattern with 3 ≤ c(A) ≤ n − 1 and suppose D(A)

has at least one negative loop and no positive loops. If there exists A ∈ Q(A) with q(A) = 2 and such that

the coefficient of zn−c(A) in pA(z) is nonzero, then either D(A) has exactly c(A) loops of the same sign or

all of the following conditions must hold:

(i) for every 2 ≤ k ≤ c(A), D(A) has a composite cycle U of order k and sign (−1)|U | that is not the

product of loops.

(ii) D(A) has a negative 3-cycle, or a loop and a negative 2-cycle that are vertex disjoint.

(iii) D(A) has a positive 3-cycle, or a loop incident to a negative 2-cycle.

Proof. Suppose A = [aij ] ∈ Q(A) satisfies q(A) = 2 and such that the coefficient of zn−c(A) in pA(z) is

nonzero. Then, zero is an eigenvalue of A with multiplicity equal to n− c(A). Thus, we may scale A so that

it has characteristic polynomial

(2.2) pA(z) = zn−N (z + 1)N = zn−N
(
zN +

(
N

1

)
zN−1 +

(
N

2

)
zN−2 + · · ·+

(
N

N

))
,

where N = c(A) ≥ 3. Let Uk denote the set of all composite cycles of D(A) that cover precisely k vertices

and Vk ⊆ Uk be those that consist entirely of loops. For every 2 ≤ k ≤ N , by Eq. (1.1) and (2.2),(
N

k

)
=
∑
U∈Vk

(−1)k
∏

(vi,vi)∈E(U)

aii +
∑

U∈Uk\Vk

(−1)|U |
∏

(vi,vj)∈E(U)

aij .

Note that aii ≤ 0 for 1 ≤ i ≤ n. Without loss of generality (otherwise consider a permutation similarity),

we may assume that the nonzero diagonal entries of A occur in positions (i, i) with 1 ≤ i ≤ t, where t is the

number of loops in D(A) (note t ≤ N). Let xi = |aii| for 1 ≤ i ≤ N and observe that
∑N
i=1 xi = N by Eq.

(2.2). By [3, Proposition 3.4(iii)],∑
U∈Vk

(−1)k
∏

(vi,vi)∈E(U)

aii =
∑

1≤i1<···<ik≤N

xi1xi2 · · ·xik ≤
(
N

k

)
,

with equality if and only if t = N and x1 = · · · = xN = 1. In the equality case, D(A) has exactly N = c(A)

loops of the same sign; otherwise, (i) follows. For (ii), since N ≥ 3, we substitute k = 3 in (i) and recall that
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D(A) only has negative loops. For (iii), Eq. (2.2) gives(
N

1

)
=

N∑
i=1

xi,(2.3) (
N

2

)
=

∑
1≤i<j≤N

xixj −
∑

1≤i<j≤n

aijaji,(2.4)

(
N

3

)
=

∑
1≤i<j<k≤N

xixjxk −
N∑
k=1

xk
∑

1≤i<j≤n
i6=k,j 6=k

aijaji −
∑

1≤i<j<k≤n

aijajkaki.(2.5)

Observe that

(2.6)

N∑
k=1

xk
∑

1≤i<j≤n
i 6=k,j 6=k

aijaji =

N∑
k=1

xk
∑

1≤i<j≤n

aijaji −
N∑
k=1

xk
∑

1≤i≤n
i 6=k

aikaki.

Define X =
∑

1≤i<j<k≤n

aijajkaki −
N∑
k=1

xk
∑

1≤i≤n
i 6=k

aikaki. From an identical argument to [3, Theorem 3.5], it

follows that X ≥ N(N−t)(N+t)
3t2 with equality if and only if t = N and x1 = · · · = xN = 1. Thus, one of three

scenarios occur: t = N and D(A) has exactly N = c(A) loops of the same sign, or D(A) has a positive

simple 3-cycle, or D(A) has a loop incident to a negative 2-cycle.

If an n × n sign pattern A has c(A) loops, then every cycle of D(A) of length r ≥ 2 must be incident

to r loops (otherwise there exists a composite cycle of order greater than c(A)). Thus, in the case that

c(A) ≤ n− 1 and D(A) has c(A) loops, we have the following remark.

Remark 2.19. Let A be an n× n sign pattern. If c(A) ≤ n− 1 and D(A) has exactly c(A) loops, then

A is reducible.

3. Techniques utilizing Jacobian matrices and vertex duplication. In this section, we first

develop methods, based on Jacobian matrices, that preserve allow sequences for superpatterns. We also

explore the effect that vertex duplication has on the allow sequence in some special cases.

3.1. Jacobian methods. In general, taking a superpattern of a pattern A will not preserve the allow

sequence for A, nor qk(A) for 1 ≤ k ≤ n. For example, if

Z1 =

0 + 0

− 0 +

0 + 0

 and Ẑ1 =

+ + 0

− 0 +

0 + 0

 ,
then qseq(Z1) = 〈1, 0, 1〉 but qseq(Ẑ1) = 〈0, 1, 1〉 (see Theorem 5.2(iii)). However, for some sign patterns,

some entries of the allow sequence are preserved for its superpatterns when certain Jacobian constraints

hold. In this section, we develop methods to demonstrate this idea.

As defined in [3], we say that a real n× n matrix A = [aij ] allows a Jacobian with rank r if A satisfies

the following conditions:
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(i) A has at least r nonzero entries.

(ii) Among the nonzero entries of A, there are r entries, say ai1j1 , . . . , airjr , such that if X is the matrix ob-

tained from A by replacing the entries ai1j1 , . . . , airjr by real variables x1, . . . , xr and the characteristic

polynomial of X is

pX(z) = zn + p1z
n−1 + p2z

n−2 + · · ·+ pn−1z + pn,

then the n × r Jacobian matrix J with (i, j) entry equal to ∂pi
∂xj

(x1, . . . , xr) has rank r evaluated at

(x1, . . . , xr) = (ai1j1 , . . . , airjr ).

We first start with an auxiliary lemma. This lemma simply notes that for any multiset of complex num-

bers closed under complex conjugation having k distinct elements, there are multisets of complex numbers

closed under complex conjugation sufficiently close to the original set having k′ distinct elements for any

k′ ≥ k with k′ − k even (taking into account complex conjugates) while maintaining the same sum.

Lemma 3.1. Let S = {λ1, λ2, . . . , λn} be a multiset of n complex numbers, closed under complex conju-

gation, containing k distinct elements. For k′ satisfying k ≤ k′ ≤ n with k′ − k even, there exists a multiset

S′ = {µ1, µ2, . . . , µn} of n complex numbers, closed under complex conjugation, with the following properties:

(i) the number of distinct elements in S′ is k′.

(ii) µi is sufficiently close to λi for 1 ≤ i ≤ n.

(iii)

n∑
i=1

µi =

n∑
i=1

λi.

Furthermore, if S contains a real number of multiplicity at least two, then the condition that k′ − k is even

may be removed in the statement above.

Now, [6, Corollary 3.3] and Lemma 3.1 give the following theorem.

Theorem 3.2. Let A be an n× n sign pattern and Â a superpattern of A. Suppose A ∈ Q(A) allows a

Jacobian with rank n. If A has a real eigenvalue with algebraic multiplicity at least two, then qk(Â) = 1 for

q(A) ≤ k ≤ n, otherwise, qk(Â) = 1 for q(A) ≤ k ≤ n with k − q(A) even.

When q(A) = 1 or q(A) = 2 in Theorem 3.2, we get the following corollary.

Corollary 3.3. Let A be an n × n sign pattern and Â be a superpattern of A. Suppose A ∈ Q(A)

allows a Jacobian with rank n.

(i) If q(A) = 1, then qseq(Â) = 〈1, 1, . . . , 1〉.
(ii) If q(A) = 2, then qk(Â) = 1 for all even k.

In the next example, we illustrate how Corollary 3.3 may be applied to a stable matrix, that is, a matrix

whose eigenvalues all have strictly negative real parts.

Example 3.4. The stable realization C of the companion pattern C in [3, Example 2.12] with q(C) = 1

allows a Jacobian with rank n and hence by Corollary 3.3, each superpattern Ĉ of C satisfies qseq(Ĉ) =

〈1, 1, . . . , 1〉. Note that C is not potentially nilpotent, and hence not spectrally arbitrary, but C can obtain

any number of distinct eigenvalues.

Let A be an n× n sign pattern such that D(A) has no loops and suppose A ∈ Q(A) allows a Jacobian

with rank n − 1. By using Lemma 3.1 and extending the proof of [3, Theorem 2.16], we can obtain a

conclusion identical to that of Theorem 3.2 without having a Jacobian with rank n.
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Theorem 3.5. Let A be an n×n loopless sign pattern and Â be a superpattern of A. Suppose A ∈ Q(A)

allows a Jacobian with rank n − 1. If A has a real eigenvalue with algebraic multiplicity at least two, then

qk(Â) = 1 for q(A) ≤ k ≤ n, otherwise, qk(Â) = 1 for q(A) ≤ k ≤ n with k − q(A) even.

Proof. Let A be an n × n sign pattern such that D(A) has no loops. If Â is a superpattern of A and

A ∈ Q(A) allows a Jacobian with rank n − 1, then by [3, Theorem 2.16], there exists B ∈ Q(Â) such that

q(B) = q(A). In fact, it was also shown in the proof of [3, Theorem 2.16] that B allows a Jacobian with rank

n when Â is not loopless.

Suppose that the spectrum of A is {λ1, λ2, . . . , λn} and consider k satisfying q(A) ≤ k ≤ n (and with

k − q(A) an even integer in the case that A does not have a real eigenvalue with algebraic multiplicity at

least two). Note that
∑n
i=1 λi = 0 since A has a zero diagonal.

First consider a superpattern Â of A that has a zero main diagonal. By Lemma 3.1, there is a multiset

{µ1, µ2, . . . , µn} of n complex numbers with k distinct elements, closed under complex conjugation, with each

µi sufficiently close to λi satisfying
∑n
i=1 µi =

∑n
i=1 λi = 0. Note that by [3, Theorem 2.16], the pattern

B̂, derived from Â by allowing the diagonal entry (t, t) to be free, realizes every characteristic polynomial

sufficiently close to that of A. Now, since the coefficients of the characteristic polynomial of a matrix are

continuous functions of its eigenvalues, and since the coefficient of zn−1 in
∏n
i=1(z − µi) is equal to 0, the

sign pattern Â has a realization B whose spectrum is {µ1, µ2, . . . , µn}. Thus, qk(Â) = 1.

Next consider a superpattern Â of A where the zero (t, t) entry is replaced by + (resp. −) and every

other entry of Â equals that of A. By Lemma 3.1, there is a multiset {µ′1, µ′2, . . . , µ′n} of n complex numbers

with k distinct elements, closed under complex conjugation, with each µ′k sufficiently close to λk satisfying∑n
i=1 µ

′
i =

∑n
i=1 λi = 0.

Let ε > 0 (resp. ε < 0) be sufficiently close to zero and construct S = {µ1 . . . , µn} with µi = µ′i + ε/n.

Then, S satisfies (i)–(ii) of Lemma 3.1 but
∑n
i=1 µi = ε+

∑n
i=1 λi. Since the coefficient of xn−1 in

∏n
i=1(x−µi)

is equal to −ε, it has the same sign as sgn(Âtt), i.e., + (resp. −). Thus, the sign pattern Â has a realization

B having spectrum σ(B) = {µ1, µ2, . . . , µn} implying that qk(Â) = 1. Furthermore, B allows a Jacobian

with rank n since Btt 6= 0. Thus, by Theorem 3.2, the result also follows for all superpatterns of A. Since

the argument applies to every 1 ≤ t ≤ n, if Â is a superpattern of A that has at least one nonzero diagonal

entry, qk(Â) = 1.

In the next example, we illustrate how Theorem 3.5 may be applied to a matrix having two distinct

eigenvalues.

Example 3.6. The realization A of the n×n loopless companion pattern A defined in [3, Example 2.17]

with q(A) = 2 allows a Jacobian with rank n − 1 and has a real eigenvalue with algebraic multiplicity at

least two. Thus, by Theorem 3.5, each superpattern Â of A satisfies qk(Â) = 1 for k ≥ 2. In particular, we

can conclude that either qseq(Â) = 〈0, 1, 1, . . . , 1〉 or qseq(Â) = 〈1, 1, . . . , 1〉. Note that whether q1(Â) = 0 or

q1(Â) = 1 depends on the particular superpattern Â. For example, if Â = A then qseq(Â) = 〈0, 1, 1, . . . , 1〉
since it was shown that q(A) = 2 in [3, Example 2.17].

In the next theorem, the implicit function theorem is applied to a matrix with a repeated real eigenvalue.

Theorem 3.7. Let A be an n× n sign pattern and Â a superpattern of A. Suppose A ∈ Q(A) has the

following properties:

(i) λ ∈ R is an eigenvalue of A with multiplicity equal to m ≥ 1,
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(ii) A has at least m nonzero entries,

(iii) among the nonzero entries of A, there are m entries, say ai1j1 , . . . , aimjm , such that if X is the matrix

obtained from A by replacing the entries ai1j1 , . . . , aimjm by real variables x1, . . . , xm and the charac-

teristic polynomial of X is pX(z), then the m×m Jacobian matrix J with

Jij =
∂fi−1(λ)

∂xj
(x1, . . . , xm),

has rank m at (x1, . . . , xm) = (ai1j1 , . . . , aimjm), where fi(λ) is the ith derivative of pX(z) evaluated at

z = λ.

Then, there exists Â ∈ Q(Â) having λ as an eigenvalue with multiplicity equal to m and whose remaining

eigenvalues are some numbers sufficiently close to the remaining eigenvalues of A. Furthermore, if A has

n−m+ 1 distinct eigenvalues, then qk(Â) = 1 for k ≥ n−m+ 1.

Proof. Consider the n× n matrix Y with (i, j) entry equal to

Yij =


Xij if Aij 6= 0,

εij if Aij = 0 and Âij > 0,

−εij if Aij = 0 and Âij < 0.

Let x = (x1, . . . , xm) and c be any vector that contains all the εij ’s. Denote the characteristic polynomial

of Y by pY (z; x, c). Observe that when x = (ai1j1 , . . . , aimjm) and c = (0, . . . , 0), then pY (z; x, c) = pA(z).

By taking εij > 0 sufficiently close to 0 and x sufficiently close to (ai1j1 , . . . , aimjm), we can guarantee that

the roots of pY (z; x, c) are sufficiently close to the roots of pA(z). Thus, it suffices to find nonzero values of

x1, . . . , xm that satisfy sgn(xr) = sgn(airjr ), 1 ≤ r ≤ m, and

pY (λ; x, c) = 0

p′Y (λ; x, c) = 0

...

p
(m−1)
Y (λ; x, c) = 0,

or equivalently,

pY (λ; x,0) + h0(x, c) = 0, p′Y (λ; x,0) + h1(x, c) = 0, . . . , p
(m−1)
Y (λ; x,0) + hm−1(x, c) = 0,

in which h0, . . . , hm−1 are polynomial functions each of whose terms contain at least one εij as a factor.

Define the functions g0, . . . , gm−1 of x and c to be the left sides of the equations in order. Each gi has

continuous partial derivatives with respect to all variables and

gi(ai1j1 , . . . , aimjm , 0, . . . , 0) = 0.

Let J̃ be ∂(g0, . . . , gm−1)/∂(x1, . . . , xm) evaluated at (ai1j1 , . . . , aimjm , 0, . . . , 0). Calculating J̃ can be sim-

plified by setting εij = 0 before taking any partial derivatives since terms involving one or more εij do not

influence the value of the Jacobian. Then, J̃ = J, and thus, |J̃ | 6= 0 by the assumption in the statement

of the theorem. By the implicit function theorem, for c sufficiently close to 0, there are unique continuous

functions x1, . . . , xm of εij that maintain g0 = · · · = gm−1 = 0. Taking any c positive sufficiently close to 0

guarantees that sgn(xr) = sgn(airjr ), 1 ≤ r ≤ m (as x can be made arbitrarily close to (ai1j1 , . . . , aimjm)).
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This produces a realization Â ∈ Q(Â) having λ as an eigenvalue with multiplicity equal to m and whose

remaining eigenvalues are sufficiently close to those of A.

Next assume that every eigenvalue of A not equal to λ is simple and let µ1, . . . , µn−m denote the

eigenvalues of A that are not equal to λ. Note that qn−m+1(Â) = 1. Let k = n − m + 2. We prove

that there exists Â ∈ Q(Â) having k distinct eigenvalues and satisfying (i)-(iii) with m replaced by m − 1.

Let ε be a new variable and follow the previous argument except let c be a vector that contains both ε

and the εij ’s. Define the functions g0, . . . , gm−2 as before and gm−1 = p
(m−1)
Y (λ; x, c) − ε. The Jacobian

∂(g0, . . . , gm−1)/∂(x1, . . . , xm) evaluated at (ai1j1 , . . . , aimjm , 0, . . . , 0) is equal to J . By the implicit function

theorem, for c sufficiently close to 0, there are unique continuous functions x1, . . . , xm of εij and ε that

maintain g0 = · · · = gm−1 = 0. Now taking any c positive sufficiently close to 0 also guarantees that

gm−1 = ε 6= 0. This produces a realization Â ∈ Q(Â) having λ as an eigenvalue with multiplicity equal

to m − 1 and whose remaining eigenvalues are sufficiently close to {λ, µ1, . . . , µn−m}, and hence, every

eigenvalue of Â not equal to λ can be guaranteed to be simple since µi 6= λ. Let J ′ be equal to J with the

last row deleted (as this row corresponds to p
(m−1)
Y (λ; x, c)). To see that (iii) holds for Â, we observe that

at (x1, . . . , xm) = (ai1j1 , . . . , aimjm), J ′ has rank m− 1 since J has rank m. Thus, there is a subset of m− 1

columns of J ′ that are linearly independent, and we may choose the corresponding entries in Â to replace

by variables so that (iii) holds.

Repeatedly applying the above argument implies qk(Â) = 1 for k ≥ n−m+ 1.

We demonstrate the method described in Theorem 3.7 with a simple example.

Example 3.8. For n ≥ 3, let A be an n×n sign pattern whose digraph D(A) is a positive n-cycle with

two positive loops. Consider A ∈ Q(A) with nonzero diagonal entries equal to 2n−3
2n−5 and 3, and nonzero

off-diagonal entries equal to 1 with the exception of one entry equal to 4
2n−5 . Replace the entry 2n−3

2n−5 by x1
and the entry 4

2n−5 by x2 to form the matrix X. Then,

pX(z) = zn − (x1 + 3)zn−1 + 3x1z
n−2 − x2,

and hence,

pX(1) = 1− (x1 + 3) + 3x1 − x2 and p′X(1) = n− (n− 1)(x1 + 3) + 3(n− 2)x1.

Since pA(1) = p′A(1) = 0 (and a verification shows that p′′A(1) 6= 0), λ = 1 is an eigenvalue of A with

multiplicity m = 2. The Jacobian matrix defined in Theorem 3.7 is

J =

[
2 −1

(2n− 5) 0

]
,

and has rank m = 2 at (x1, x2) =
(

2n−3
2n−5 ,

4
2n−5

)
. By Theorem 3.7, if Â is any superpattern of A, then there

exists Â ∈ Q(Â) having 1 as an eigenvalue with multiplicity equal to 2.

The next lemma shows the utility of Theorem 3.7 and sparse examples such as Example 3.8; in particular,

when applied to Example 3.8 it implies that if A is a sign pattern whose digraph contains a positive r-cycle

(with r ≥ 3) incident to two positive loops, then A has a realization having λ = 1 as an eigenvalue with

multiplicity 2. First, we state some definitions. If Â is a superpattern of A then A is a subpattern of Â. For

an n× n sign pattern A and index set η = {i1, . . . , im} ⊂ [n] = {1, 2, . . . n}, we let Aη denote the principal

submatrix of A formed by the rows and columns indexed by η. Note that a principal submatrix of A is
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different from a subpattern since subpatterns of A are required to be the same order as A. Further, if B is

a principal submatrix of a subpattern of A, then we call D(B) a subdigraph of D(A). We also let Or denote

the r × r zero matrix.

Lemma 3.9. Let A be an n×n sign pattern, η ⊂ [n] and B a subpattern of Aη. If there exists B ∈ Q(B)

having λ ∈ R as an eigenvalue with multiplicity equal to m ≥ 1 and satisfying (i)-(iii) of Theorem 3.7,

then there exists A ∈ Q(A) having λ as an eigenvalue with multiplicity equal to m and whose remaining

eigenvalues are some numbers sufficiently close to the remaining eigenvalues of B ⊕On−|η|.

Proof. Suppose B ∈ Q(B) satisfies (i)-(iii) of Theorem 3.7 for entries bi1j1 , . . . , bimjm , variables x1, . . . , xm
and matrix X. Let M = B⊕On−|η| and Y = X ⊕On−|η|. Let fi(z) be the ith derivative of pX(z) and gi(z)

be the ith derivative of pY (z). Since pY (z) = zn−|η|pX(z), the m×m Jacobian matrices

JB =
∂fi−1(λ)

∂xj
(x1, . . . , xm) and JM =

∂gi−1(λ)

∂xj
(x1, . . . , xm),

have the same rank at (x1, . . . , xm) = (ai1j1 , . . . , aimjm), and hence, M also satisfies (i)-(iii) of Theorem 3.7.

Since A is equivalent to a superpattern of sgn(M), the result follows.

Additional examples where Theorem 3.7 is applicable are given in Appendix B and it is straight-forward

to verify that each of H1, . . . ,H17 (as defined in Figs. 7, 8 and 9) satisfy (i)-(iii) of Theorem 3.7 (each has 1

as an eigenvalue with multiplicity equal to 2 and replacing entries indicated by a box by variables determines

a Jacobian matrix with rank 2). Furthermore, c(Hi) = 3 for 1 ≤ i ≤ 10 and c(Hi) = 4 for 11 ≤ i ≤ 17.

Combined with Lemma 3.9, this gives the following lemma.

Lemma 3.10. Let A be an n × n sign pattern and suppose D(A) has a subdigraph equivalent to D(Hi)
(defined in Appendix B) for some 1 ≤ i ≤ 17. Then, the following statements hold.

(i) If n = 4, then q3(A) = 1.

(ii) If n ≥ 5, then qk(A) = 1 for some value of k satisfying c(Hi) ≤ k ≤ c(A). In particular, if 1 ≤ i ≤ 10

and c(A) = 3 then q3(A) = 1, and if 11 ≤ i ≤ 17 and c(A) = 4 then q4(A) = 1.

Proof. If 1 ≤ i ≤ 10 (resp. 11 ≤ i ≤ 17), by Theorem 3.7 and Lemma 3.9, there exists A ∈ Q(A) having

1 as an eigenvalue with multiplicity equal to two and whose eigenvalues are sufficiently close to those of

Hi ⊕ O where O is the (n − 3) × (n − 3) (resp. (n − 4) × (n − 4)) zero matrix; let the spectrum of Hi be

denoted as in Figs. 7, 8 and 9.

For n = 4, this implies the eigenvalues of A are sufficiently close to {1, 1, λi, 0} with λi 6∈ {0, 1} (resp.

{1, 1, λi, µi} with λi, µi 6∈ {0, 1}, λi 6= µi), thus, q3(A) = 1. Otherwise n ≥ 5 and since λi 6= 0 (resp.

λi, µi 6= 0) we may assume A has at least two (resp. three) distinct nonzero eigenvalues. But A also has 0

as an eigenvalue with multiplicity at least n− c(A). Thus, if c(A) ≤ n− 1, then A has at least 3 (resp. 4)

distinct eigenvalues and at most c(A) distinct eigenvalues (and if c(A) = n then qn(A) = 1).

Example 3.11. Let

A =


0 + + +

− 0 + 0

+ 0 0 0

0 0 − 0

 .
Observe that D(A) has a subdigraph equivalent to D(H6). Thus, q3(A) = 1 by Lemma 3.10. Furthermore,

q1(A) = 1 since the matrix A ∈ Q(A) with every nonzero entry having magnitude 1 is nilpotent and

q2(A) = 0 by Corollary 2.9 since c(A) = 3. Thus, qseq(A) = 〈1, 0, 1, 1〉.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 48-80, January 2024.

J. Breen et al. 62

We next describe a family of sparse sign patterns whose digraphs consist of cycles with alternating

signs that may be used with Lemma 3.9. Under certain assumptions, this class of sign patterns satisfies the

conditions in Theorem 3.7 but to demonstrate this fact, we employ the following combinatorial statement

(which we prove in Appendix C).

Lemma 3.12. Let n ≥ m ≥ 2 and 1 ≤ `1 < `2 < · · · < `m ≤ n be integers. Then for 0 ≤ i ≤ m− 1,

(n)i =

m∑
r=1

(n− `r)i
∏
j 6=r

`j
`j − `r

, but (n)m 6=
m∑
r=1

(n− `r)m
∏
j 6=r

`j
`j − `r

,

where (n)i = n!
(n−i)! is a falling factorial.

A digraph D is intercyclic if D does not contain two vertex-disjoint cycles.

Theorem 3.13. Let m ≥ 2 and 1 ≤ `1 < `2 < · · · < `m ≤ n. Suppose A = [αij ] is an n × n sign

pattern whose digraph is intercyclic and is composed of exactly m cycles C1, C2, . . . , Cm and such that for

1 ≤ r ≤ m, cycle Cr has sign (−1)r+1, length `r and an arc (ir, jr) that does not belong to any other cycle.

Then every superpattern of A has a realization having 1 as an eigenvalue with multiplicity equal to m.

Proof. We show there exists A ∈ Q(A) satisfying conditions (i)-(iii) in Theorem 3.7. For 1 ≤ r ≤ m, let

ar = (−1)r+1
∏
j 6=r

`j
`j − `r

,

and observe that ar > 0. Form the matrix A ∈ Q(A) so that for 1 ≤ r ≤ m, the (ir, jr) entry of A has

magnitude ar, and every other nonzero entry has magnitude 1. By (1.1),

pA(z) = zn +

m∑
r=1

(−1)rarz
n−`r .

Next construct X by replacing the m entries ai1j1 , . . . , aimjm by real variables x1, . . . , xm. Note that airjr =

sgn(αirjr )ar. Now

pX(z) = zn +

m∑
r=1

(−1)rsgn(αirjr )xrz
n−`r ,

and for 0 ≤ i ≤ m,

p
(i)
X (1) = (n)i +

m∑
r=1

(−1)rsgn(αirjr )xr(n− `r)i.

By Lemma 3.12, it follows that p
(i)
A (1) = 0 for 0 ≤ i ≤ m − 1 and p

(m)
A (1) 6= 0. Thus, 1 is an eigenvalue of

A with multiplicity equal to m. Let J be the Jacobian matrix defined in Theorem 3.7 and note that J is

independent of the xr’s. For 0 ≤ i ≤ m− 1 and 1 ≤ r ≤ m, the (i+ 1, r) entry of J is (−1)rsgn(αirjr )(n−
`r)i−1. Define the matrix K with (i + 1, r) entry equal to (Lr)i−1 where Lr = n − `r, and observe that

|det(J)| = |det(K)|. Note that the (i + 1, r) entry of K is a monic polynomial in Lr with degree i, thus,

we may apply suitable row operations in the obvious manner to transform K into a Vandermonde matrix V

whose (i+ 1, r) entry is equal to Lir (e.g., start by adding the second row to the third row). Since `i 6= `r for

i 6= r, it follows that Li 6= Lr for i 6= r and hence, |det(V )| 6= 0 implying that |det(J)| 6= 0. Thus, A ∈ Q(A)

satisfies conditions (i)-(iii) in Theorem 3.7, and hence, every superpattern Â of A has a realization having 1

as an eigenvalue with multiplicity equal to m.
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The matrix realization in the proof of Theorem 3.13 could have eigenvalues other than 1 that are non-

simple. For example, the digraph D(B) where B is defined in Example 2.14 belongs to the family of patterns

in Theorem 3.13 and any realization having 1 as an eigenvalue with multiplicity 2 will also have −1 as an

eigenvalue with multiplicity 2 since B is a bipartite sign pattern.

Theorem 3.13 and Lemma 3.9 can be used to show that if A is defined as in Example 2.4, then q4(A) =

1 when D(A) has a negative 4-cycle (if both 4-cycles are positive then an analysis of the characteristic

polynomial shows that q4(A) = 0).

3.2. The effect of vertex duplication on the allow sequence. Let A = [αij ] be an n × n sign

pattern and vk ∈ V (D(A)) for some 1 ≤ k ≤ n. Define the (n + 1) × (n + 1) sign pattern B = [βij ] whose

entries are βn+1,i = αk,i, βi,n+1 = αi,k for 1 ≤ i ≤ n, βn+1,n+1 = αk,k and βij = αij otherwise. In this case,

we say that the digraph D(B) is obtained from D(A) by duplicating vk.

Theorem 3.14. Let A be an n×n sign pattern and suppose v ∈ V (D(A)) is not incident to a loop. Let

D′ be obtained from D(A) by duplicating v and let B be the sign pattern whose digraph is D′.

(i) If c(A) ≤ n− 1, then qk(B) ≥ qk(A) for k = 1, 2, . . . , n.

(ii) If A is sign nonsingular, then qk+1(B) ≥ qk(A) for k = 1, 2, . . . , n.

Proof. Let A ∈ Q(A) with q(A) = k and suppose the last row and column of A corresponds to v. Then,

A =

[
Ã 2x

yT 0

]
for some Ã ∈ R(n−1)×(n−1) and x,y ∈ R(n−1)×1. For (i) (resp. (ii)), we show there exists

B ∈ Q(B) with q(B) = k (resp. q(B) = k+1). Consider B =

 Ã x x

yT 0 0

yT 0 0

 and observe that B ∈ Q(B) since

D(B) is obtained from D(A) by duplicating v. It is straight-forward to verify that pB(z) = zpA(z) holds by

(1.1); hence, pA and pB have the same number of distinct nonzero roots. For (i), since c(A) ≤ n− 1, zero is

a root of pA(z), thus pA and pB have the same number of distinct roots. Hence, q(B) = q(A) = k. For (ii),

since A is sign nonsingular, zero is not a root of pA(z) for every A ∈ Q(A), thus q(B) = q(A) + 1 = k + 1.

In Theorem 3.14, if v has outdeg(v) ≤ 1 or indeg(v) ≤ 1, then the allow sequence for B is completely

determined by qseq(A) in both statements (i) and (ii).

Theorem 3.15. Let A be an n × n sign pattern with qseq(A) = 〈s1, s2, . . . , sn〉. Suppose v ∈ V (D(A))

is not incident to a loop and outdeg(v) ≤ 1 or indeg(v) ≤ 1. Let D′ be obtained from D(A) by duplicating v

and B be the sign pattern whose digraph is D′.

(i) If c(A) ≤ n− 1, then qseq(B) = 〈s1, s2, . . . , sn, 0〉.
(ii) If A is sign nonsingular, then qseq(B) = 〈0, s1, s2, . . . , sn〉.

Proof. Let B ∈ Q(B) with q(B) = k and suppose the last two rows and columns of B correspond to v

and v′, respectively, where v′ is the duplication of v. For (i) (resp. (ii)), we show there exists A ∈ Q(A) with

q(A) = k (resp. q(A) = k − 1). We may assume outdeg(v) ≤ 1 (otherwise, consider the transpose of A),

and thus, the last two rows of B have at least n − 1 zeros. By applying a diagonal similarity if necessary,

we may assume the last two rows of B are equal. Thus, without loss of generality, B =

 Ã x1 x2

yT 0 0

yT 0 0

 for

some Ã ∈ R(n−1)×(n−1) and x1,x2,y ∈ R(n−1)×1. Consider A =

[
Ã x1 + x2

yT 0

]
and observe that A ∈ Q(A)
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since D(B) is obtained from D(A) by duplicating v. By (1.1), it follows that pB(z) = zpA(z) . For (i), zero

is a root of pA(z) since c(A) ≤ n− 1, and hence, pA and pB have the same number of distinct roots. Thus,

q(A) = q(B) = k. For (ii), since A is sign nonsingular, zero is not a root of pA(z) for every A ∈ Q(A),

thus q(A) = q(B) − 1 = k − 1 (note that this implies k ≥ 2, and hence, q1(B) = 0). Finally, for (i), first

observe that c(B) = c(A) due to the degree condition on vertex v. Thus, c(B) ≤ n− 1 and so qn+1(B) = 0

by Lemma 2.1, noting that B is an (n+ 1)× (n+ 1) sign pattern. The result now follows by Theorem 3.14.

4. Realizable and nonrealizable order n sequences. We turn our attention to determining which

binary sequences of length n can be the allow sequence for an n × n sign pattern. We begin with some

observations on sign patterns having allow sequence 〈1, 1, . . . , 1〉 or 〈0, . . . , 0, 1〉. We then look at two examples

demonstrating some realizable cyclic sequences, for example, 〈0, 1, 0, 1, . . . , 0, 1〉 and 〈1, 0, 1, 0, . . . , 1, 0, 1〉. We

end this section with an analysis of sequences that terminate in a string of zeros, i.e., 〈s1, . . . , sr, 0, . . . , 0〉
where s1, . . . , sr ∈ {0, 1}.

4.1. Sign patterns A with qseq(A) = 〈1, 1, . . . , 1〉. When Corollary 3.3 is applied to an n × n

nilpotent matrix that allows a Jacobian with rank n, the corresponding sign pattern A is spectrally arbitrary

(see the nilpotent-Jacobian method [7]) and every superpattern Â of A (including A itself) has allow sequence

qseq(Â) = 〈1, 1, . . . , 1〉. One can also construct non-spectrally-arbitrary sign patterns that have the allow

sequence 〈1, 1, . . . , 1〉. For example, the companion pattern C in Example 3.4 can be used to demonstrate how

Corollary 3.3 may be applied to an n× n stable matrix A that allows a Jacobian with rank n and satisfies

q(A) = 1. In particular, consider superpatterns of the companion pattern C with exactly one nonzero

diagonal entry. Such patterns require a nonzero eigenvalue and hence can not be spectrally arbitrary.

In general, q(A) = 1 does not imply that qseq(A) = 〈1, 1, . . . , 1〉, for example, see the sign pattern B
defined in Example 2.7. However, when A is a full sign pattern (that is, A has no zero entries), then q(A) = 1

is sufficient to guarantee that qseq(A) = 〈1, 1, . . . , 1〉.

Theorem 4.1. If A is a full sign pattern with q(A) = 1, then qseq(A) = 〈1, 1, . . . , 1〉.

Proof. The proof is analogous to that of [15, Theorem 1.2] and [5, Lemma 2.10]: For an n× n full sign

pattern A, suppose A ∈ Q(A) satisfies q(A) = 1. Let J = S−1AS be its Jordan canonical form. Since

q(A) = 1, the matrix J is triangular with equal diagonal entries. Now small perturbations of J will be able

to obtain full matrices with k distinct eigenvalues. For example, assume ε > 0 and fix k with 2 ≤ k ≤ n.

Define the n × n diagonal matrix Dk = [dij ] with entries djj = jε if 1 ≤ j ≤ k − 1 and dij = 0 otherwise.

Note that q(J + Dk) = k. For ε > 0 sufficiently small, B = S(J + Dk)S−1 ∈ Q(A) and q(B) = k, thus,

qk(A) = 1.

Corollary 2.8 shows that if A is a sign pattern with qseq(A) = 〈1, 1, . . . , 1〉, then `(A) ≤ 2. Both `(A) = 1

and `(A) = 2 are possible: any spectrally arbitrary sign pattern A has `(A) = 1 and qseq(A) = 〈1, 1, . . . , 1〉,
whereas the sign pattern A in Example 2.15 has `(A) = 2 and qseq(A) = 〈1, 1, . . . , 1〉.

In Section 5, the 2×2 (resp. 3×3) irreducible sign patterns with qseq(A) = 〈1, 1〉 (resp. qseq(A) = 〈1, 1, 1〉)
are characterized (see Theorems 5.1 and 5.2, respectively). The digraphs of each of these sign patterns have a

negative 2-cycle; however, this is not necessarily the case when n ≥ 4 as illustrated in the following example.
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Example 4.2. Consider the 4× 4 sign pattern and realization

A =


+ + 0 0

0 + + 0

− 0 + +

0 + 0 +

 , A =


1 1 0 0

0 1 1 0

−1 0 a 1

0 1 0 1

 ,
with a > 0 and observe that D(A) has no 2-cycles. We show that qseq(A) = 〈1, 1, 1, 1〉. Observe that

pA(z) = (z − 1)3(z − a). When a = 2, it is straight-forward to verify that A allows a Jacobian with

rank 4 (putting variables in the positions indicated by boxes), hence, by Theorem 3.2, qk(A) = 1 for

2 ≤ k ≤ 4. When a = 1, q(A) = 1 (however, A does not allow a Jacobian with rank 4 in this case).

Thus, qseq(A) = 〈1, 1, 1, 1〉. We remark that by Theorem 3.2, superpatterns Â of A must have either

qseq(Â) = 〈0, 1, 1, 1〉 or qseq(Â) = 〈1, 1, 1, 1〉. Whether q1(Â) = 0 or q1(Â) = 1 depends on the particular

superpattern. For example, if D(Â) has a 2-cycle but has no negative 2-cycle, then q1(Â) = 0 by [3,

Theorem 3.3], and if Â = A then q1(Â) = 1.

4.2. Sign patterns A that require all distinct eigenvalues, i.e., qseq(A) = 〈0, . . . , 0, 1〉. Li and

Harris [14] defined DE to be the set of all sign patterns that require the property of all distinct eigenvalues

and characterized the 2× 2 and 3× 3 irreducible sign patterns A ∈ DE (summarized in Theorem 5.1(ii) and

Theorem 5.2(iv) respectively). They also proved for an n × n sign pattern A, if D(A) has at least n − 1

loops and a (simple) cycle of length 2r + 1 for some r ≥ 1, then A 6∈ DE (see [14, Theorem 3.3]). The 4× 4

irreducible patterns in DE are addressed in [13, 12]. The techniques we present are useful for the problem

of characterizing the n× n sign patterns A that require all distinct eigenvalues since A ∈ DE if and only if

q(A) = n if and only if qseq(A) = 〈0, . . . , 0, 1〉. For example, a stronger version of [14, Theorem 3.3] holds.

Remark 4.3. Let A be an n×n sign pattern whose digraph has a (simple) cycle of length r ≥ 3 and at

least three loops incident to the r-cycle. Then A 6∈ DE (i.e., q(A) ≤ n− 1).

Proof. Up to equivalence, we may assume D(A) has two positive loops that are incident to an r-cycle

Cr with r ≥ 3 (otherwise consider −A). If Cr is positive, the result follows by Example 3.8 and Lemma 3.9,

otherwise the result follows by Theorem 3.13 and Lemma 3.9.

In Remark 4.3, having an r-cycle (r ≥ 3) incident to two loops is not sufficient to guarantee A 6∈ DE
since if A is a 4×4 sign pattern whose digraph is a positive 4-cycle having exactly one positive loop and one

negative loop, then it is straight-forward to verify that A ∈ DE by [14, Theorem 2.5] or [12, Theorem 4.12]

(the resultant of pA(z) and p′A(z) is negative for every A ∈ Q(A)). Results analogous to Remark 4.3 can be

derived by considering the examples in this paper where Theorem 3.7 is applied to show the existence of a

repeated eigenvalue for every superpattern.

Remark 4.4. Any pattern A with a subdigraph of D(A) that satisfies the conditions of Theorem 3.13

will have A 6∈ DE by Lemma 3.9. For example, if A is an n× n sign pattern and if D(A) (or D(−A)) has a

positive `1-cycle and a negative `2-cycle that share exactly one vertex for some `2 > `1 ≥ 1, then A 6∈ DE .

For A ∈ DE , Appendix B gives a list of some forbidden (signed) subdigraphs for D(A).

4.3. Cyclic sequences. For a positive integer m, let s = 〈0, . . . , 0, 1〉 have length m ≥ 2. In the

following examples, we show that 〈s, s, . . . , s〉, 〈0, s, s, . . . , s〉, and 〈1, s, s, . . . , s〉 are realizable.

Example 4.5. Let n ≥ m ≥ 2 be integers and suppose that n = mt for a positive integer t. Consider

the n× n proper Hessenberg sign pattern A = [αij ] with a positive superdiagonal and some negative entries
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in the last row, namely, αi,i+1 = + for 1 ≤ i ≤ n− 1, αn,n−mj+1 = − for 1 ≤ j ≤ t, and αij = 0 otherwise.

For example, if m = 3 the last row of the pattern is [−, 0, 0,−, 0, 0, . . . ,−, 0, 0]. Let A = [aij ] ∈ Q(A). By

applying a diagonal similarity, if necessary, we may assume without loss of generality that ai,i+1 = 1 for

1 ≤ i ≤ n− 1 and an,n−mj+1 = −bj , 1 ≤ j ≤ t, for some b1, b2, . . . , bt > 0. Since A is a companion matrix,

its characteristic polynomial is

pA(z) = zn +

t∑
j=1

bjz
n−mj = P (zm)

where P (z) = zt +
∑t
j=1 bjz

t−j . Since A is sign nonsingular, by Theorem 2.12(iii), it follows that qk(A) = 0

for k 6≡ 0 (mod m). Now let k = k̂m for some positive integer 1 ≤ k̂ ≤ t. Let r1, r2, . . . , rt > 0 so that there

are exactly k̂ distinct numbers among r1, r2, . . . , rt. Then, the number of distinct roots of the polynomial

p(z) = (zm+r1)(zm+r2) · · · (zm+rt) is equal to k. But p(z) = zn+
∑t
j=1 cjz

n−mj for some c1, c2, . . . , ct > 0,

thus, taking bj = cj > 0 for 1 ≤ j ≤ t gives A ∈ Q(A) with q(A) = k. Therefore, qseq(A) = 〈s, s, . . . , s〉
where s = 〈0, . . . , 0, 1〉 has length m.

Example 4.6. If A is defined as in Example 4.5 and B is the sign pattern whose digraph is D′, where

D′ is obtained from D(A) by duplicating vn, then Theorem 3.15(ii) gives qseq(A) = 〈0, s, s, . . . , s〉 where

s = 〈0, . . . , 0, 1〉 has length m.

Example 4.7. Let n ≥ m ≥ 2 be integers and suppose that n = mt+1 for a positive integer t. Consider

the n × n proper Hessenberg sign pattern A = [αij ] with αi,i+1 = + for 1 ≤ i ≤ n − 1, αn,n−mj+1 = − for

1 ≤ j ≤ t, αm,1 = + and αij = 0 otherwise. For example, if m = 2 the pattern is

A =



0 + 0 · · · · · · · · · 0

+ 0 +
.. .

...

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 0 · · · · · · 0
. . . +

0 − 0 − · · · − 0


.

Let A = [aij ] ∈ Q(A). By applying a diagonal similarity, if necessary, we may assume without loss of

generality that ai,i+1 = 1 for 1 ≤ i ≤ n − 1, an,n−mj+1 = −bj for 1 ≤ j ≤ t for some b1, b2, . . . , bt > 0 and

am,1 = d for some d > 0. Defining b0 = 1, it is straight-forward to verify that the characteristic polynomial

is

pA(z) = z

zn +

t∑
j=1

(bj − dbj−1)zn−mj

 = zP (zm),

where P (z) = zt +
∑t
j=1(bj − dbj−1)zt−j . Since c(A) ≤ n− 1, by Theorem 2.12(i), it follows that qk(A) = 0

for k 6≡ 1 (mod m). Now let 1 ≤ k̂ ≤ t be a positive integer and r1, r2, . . . , rt > 0 so that there are exactly

k̂ distinct numbers among r1, r2, . . . , rt. Then, the number of distinct roots (including the zero root) of the

polynomial p(z) = z(zm + r1)(zm + r2) · · · (zm + rt) is equal to k̂m+ 1. But p(z) = z
(
zn +

∑t
j=1 fjz

n−mj
)

for some f1, f2, . . . , ft > 0, thus, taking d = 1 and bj = 1 +
∑j
i=1 fj > 0 for 1 ≤ j ≤ t gives A ∈ Q(A) with

q(A) = k̂m + 1. Since the realization with d = b1 = · · · = bt = 1 gives a nilpotent matrix, it follows that

qk(A) = 1 for k ≡ 1 (mod m). Therefore, qseq(A) = 〈1, s, s, . . . , s〉 where s = 〈0, . . . , 0, 1〉 has length m.
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4.4. Allow sequences with trailing zeros. In this section, for each positive integer r ≤ 4, we

characterize possible allow sequences for n × n irreducible sign patterns that end in a string of n − r zeros

whenever n ≥ r + 1. Lemma 2.1 immediately gives the following remark.

Remark 4.8. Let A be an n × n sign pattern and 1 ≤ t ≤ n − 1. Then, qseq(A) has exactly t trailing

zeros if and only if c(A) = n− t− 1.

Since 〈0, 0, . . . , 0〉 is never the allow sequence for a sign pattern, we start with sequences of length n

having exactly n− 1 or n− 2 trailing zeros and do not assume the sign patterns are irreducible in the next

result (the irreducible case when n = 2 is given in Theorem 5.1 and is omitted here). Case (i) of Theorem 4.9

is also true for n = 2.

Theorem 4.9. Let n ≥ 3 and A be an n× n sign pattern. Then

(i) qseq(A) = 〈1, 0, 0, . . . , 0〉 if and only if D(A) is acyclic.

(ii) qseq(A) = 〈0, 1, 0, 0, . . . , 0〉 if and only if D(A) has precisely one cycle whose length is 1.

(iii) qseq(A) 6= 〈1, 1, 0, 0, . . . , 0〉.

Proof. (i) By Remark 4.8, qseq(A) has exactly t = n− 1 ≥ 1 trailing zeros if and only if c(A) = 0. The

result now follows since c(A) = 0 if and only if D(A) is acyclic.

(ii) and (iii) By Remark 4.8, qseq(A) has exactly t = n− 2 ≥ 1 trailing zeros if and only if c(A) = 1. It

is straight-forward to verify that c(A) = 1 if and only if D(A) has precisely one cycle whose length is 1. But

if D(A) has precisely one cycle whose length is 1, then every A ∈ Q(A) requires a nonzero eigenvalue with

multiplicity 1 and a zero eigenvalue with multiplicity n− 1, hence, qseq(A) = 〈0, 1, 0, 0, . . . , 0〉.

The sign patterns with digraphs described in Theorem 4.9(i) and (ii) are reducible; thus, the following

corollary holds for irreducible sign patterns.

Corollary 4.10. Given n ≥ 3, sequences 〈s1, s2, 0, . . . , 0〉 with s1, s2 ∈ {0, 1} are not realizable by any

n× n irreducible sign pattern.

We next consider sequences of length n with exactly n − 3 trailing zeros. There are four possible

sequences: 〈s1, s2, 1, 0, . . . , 0〉 with s1, s2 ∈ {0, 1}. It can be shown that each of these sequences is realizable

by some sign pattern. In particular, the sequence 〈1, 1, 1, 0, 0, . . . , 0〉 is realizable by B ⊕ O where B is any

2×2 spectrally arbitrary sign pattern and O is the (n−2)× (n−2) zero pattern; examples for the remaining

three sequences are given in Theorem 4.11. When A is an n × n irreducible sign pattern with n ≥ 4, the

sequence 〈1, 1, 1, 0, 0, . . . 0〉 is the only sequence of these four that is not realizable (the case when n = 3 is

given in Theorem 5.2 and is omitted here). A star digraph on n vertices is a strongly connected digraph

whose underlying graph is a star. Example 2.7 describes allow sequences for some loopless star digraphs.

The next theorem describes allow sequences for some further star digraphs.

Theorem 4.11. Let n ≥ 4 and s = 〈s1, s2, 1, 0, . . . , 0〉 have length n with s1, s2 ∈ {0, 1}. Then,

〈1, 1, 1, 0, 0, . . . , 0〉 is the only sequence s not realizable by an n× n irreducible sign pattern. Furthermore, if

A be an n× n irreducible sign pattern, then

(i) qseq(A) = 〈1, 0, 1, 0, 0, . . . , 0〉 if and only if D(A) is a star digraph with no loops and both positive and

negative 2-cycles.

(ii) qseq(A) = 〈0, 1, 1, 0, 0, . . . , 0〉 if and only if D(A) is a star digraph with at least one negative 2-cycle

and exactly one loop that is located on the central vertex.
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(iii) qseq(A) = 〈0, 0, 1, 0, 0, . . . , 0〉 if and only if D(A) is a star digraph with either

(a) no loops and all 2-cycles of the same sign, or

(b) no negative 2-cycles and exactly one loop that is located on the central vertex.

Proof. Suppose qseq(A) = 〈s1, s2, 1, 0, . . . , 0〉 for some s1, s2 ∈ {0, 1}. Then, c(A) = 2 by Remark 4.8.

Since A is irreducible, D(A) is a star digraph with either no loops or exactly one loop on the central vertex.

To complete the proof, it suffices to analyze all star digraphs of this form and in each case determine their

allow sequence.

If D(A) has no loops, then q2(A) = 0 by Corollary 2.9 and q1(A) = 1 precisely when A is potentially

nilpotent. Thus, either D(A) has no loops and both positive and negative 2-cycles in which case qseq(A) =

〈1, 0, 1, 0, ..., 0〉 or D(A) has no loops and all 2-cycles of the same sign in which case qseq(A) = 〈0, 0, 1, 0, ..., 0〉.

If D(A) has exactly one loop on the central vertex, then q1(A) = 0 since every A ∈ Q(A) has det(A) = 0

and tr(A) 6= 0. We show that q2(A) = 1 precisely when D(A) has a negative 2-cycle. Let A ∈ Q(A).

Then, pA(z) = zn−2(z2 + a1z + a2) for some a1 6= 0 and a2 ∈ R. Observe that pA(z) has two distinct roots

when a2 = a21/4 and three distinct roots otherwise. If D(A) has only positive 2-cycles, then we require

a2 < 0, and thus, qseq(A) = 〈0, 0, 1, 0, ..., 0〉 in this case. Otherwise, D(A) has a negative 2-cycle, and it is

straight-forward to construct a realization A so that a2 = a21/4 holds, and hence, q2(A) = 1. In this case,

qseq(A) = 〈0, 1, 1, 0, ..., 0〉.

It now also follows that qseq(A) = 〈1, 1, 1, 0, ..., 0〉 is not possible for irreducible patterns.

A star sign pattern A is a sign pattern such that D(A) is a star digraph. Remark 4.8 and Theorem 4.11

give a characterization of the realizable sequences for n × n star sign patterns A with n ≥ 4 satisfying

c(A) = 2. Before we consider sequences of length n with exactly n − 4 trailing zeros, we first give a

characterization of the realizable sequences for star sign patterns A satisfying c(A) = 3. Given n ≥ m, we

say that an n×n pattern A is a (k, `)-duplication of an m×m pattern S if D(A) is obtained from D(S) by

n−m vertex duplications, with each vertex duplication being a duplication of either vertex vk or v`.

Theorem 4.12. Let n ≥ 4 and A be an n × n star sign pattern with c(A) = 3. Then, qseq(A) ∈
{〈1, 1, 1, 1, 0, . . . , 0〉, 〈0, 1, 1, 1, 0, . . . , 0〉, 〈0, 0, 1, 1, 0, . . . , 0〉, 〈0, 0, 0, 1, 0, . . . , 0〉}. Furthermore, taking

S =


α0 + + +

α1 − 0 0

α2 0 0 0

α3 0 0 0

 ,
and α = (α0, α1, α2, α3), then

(i) qseq(A) = 〈0, 0, 0, 1, 0, . . . , 0〉 if and only if A is equivalent to a (3,4)-duplication of S with α ∈
{(0,+,+,+), (+,+,+,+), (−,+,+,+)}.

(ii) qseq(A) = 〈0, 0, 1, 1, 0, . . . , 0〉 if and only if A is equivalent to a (3,4)-duplication of S with α ∈
{(0,+,−,+), (+,+,−,+), (0,+,−,−), (+,+,−,−), (0,−,+,+), (−,−,+,+)}.

(iii) qseq(A) = 〈0, 1, 1, 1, 0, . . . , 0〉 if and only if A is equivalent to a (3,4)-duplication of S with α ∈
{(−,+,−,+), (−,+,−,−), (+,−,+,+), (0,−,−,−), (+,−,−,−), (−,−,−,−), (0,−,+,−), (−,−,+,−)}.

(iv) qseq(A) = 〈1, 1, 1, 1, 0, . . . , 0〉 if and only if A is equivalent to a (3,4)-duplication of S with α =

(+,−,+,−).

Proof. In this proof, we reference some of the digraphs D(Hi) listed in Fig. 11 of Appendix B.
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Suppose n = 4. Since c(A) = 3, D(A) has exactly one non-central loop (and possibly a loop on the center

vertex). Thus, up to equivalence, we may assume A12 = A13 = A14 = +, A22 = − and A33 = A44 = 0.

Hence A is equivalent to S for some αi ∈ {+,−}, i = 1, 2, 3 and α0 ∈ {0,+,−}. There are 18 non-

equivalent sign patterns to consider since sign patterns with (α2, α3) = (+,−) are equivalent to those with

(α2, α3) = (−,+), and it can be verified that all 18 are listed in (i) to (iv) in the statement of the theorem.

Thus, it suffices to determine the allow sequence of S for each α listed in the statement of the theorem.

Since c(S) = 3, one eigenvalue of each realization of S is zero and q4(S) = 1 by Lemma 2.1.

For any αi ∈ {+,−} for i = 1, 2, 3 and α0 ∈ {0,+,−}, without loss of generality, S ∈ Q(S) can be scaled

to have the form

(4.7) S =


a 1 1 1

b1 −1 0 0

b2 0 0 0

b3 0 0 0

 ,

where sgn(a) = α0 and sgn(bi) = αi, i = 1, 2, 3. Note pS(z) = z4 +(1−a)z3− (a+b1 +b2 +b3)z2− (b2 +b3)z.

Thus, q1(S) = 1 if and only if there is an S ∈ Q(S) that is nilpotent if and only if α = (+,−,+,−) or

α = (+,−,−,+). Note that these two α sequences give equivalent patterns.

(i) Suppose α ∈ {(0,+,+,+), (+,+,+,+), (−,+,+,+)}. Then, S requires four distinct eigenvalues by

[12, Lemma 2.5]. Thus qseq(S) = 〈0, 0, 0, 1〉.

(ii) Suppose α ∈ {(0,+,−,+), (+,+,−,+), (0,+,−,−), (+,+,−,−), (0,−,+,+), (−,−,+,+)}. By the

nilpotent analysis above, q1(S) = 0. Further, D(S) has a subdigraph equivalent to either D(H3) when

α1 = −, or D(H4) when α1 = +. Thus, q3(S) = 1 by Lemma 3.10.

In the case that α ∈ {(0,−,+,+), (−,−,+,+)}, the coefficient of z in pS(z) is nonzero for every S ∈
Q(S), and furthermore, D(S) does not have a loop and a negative 2-cycle that are vertex disjoint. Hence,

q2(S) = 0 by Theorem 2.18, and thus, qseq(S) = 〈0, 0, 1, 1〉.

Otherwise, α ∈ {(0,+,−,−), (0,+,−,+), (+,+,−,+), (+,+,−,−)}. We show that q2(S) = 0. Assume

there is an S ∈ Q(S) of the form in (4.7) with q(S) = 2. Note a ≥ 0 and b1 > 0. If b2 + b3 = 0, then 0 is an

eigenvalue of S with multiplicity two, and since the coefficient of z2 is negative, S also requires a positive and

a negative eigenvalue contradicting that q(S) = 2. Thus, λ = (a−1)/3 is an eigenvalue of S with multiplicity

three and pS(z) = z(z − λ)3 = z4 + (1− a)z3 + 1
3 (1− a)2z2 + 1

27 (1− a)3z. Then, b2 + b3 = − 1
27 (1− a)3 and

analyzing the coefficient of z2 in pS(z) gives b1 = − 1
27a

3 − 2
9a

2 − 4
9a−

8
27 < 0, contradicting that b1 > 0. It

follows that q(S) 6= 2 for every S ∈ Q(S), and thus, qseq(S) = 〈0, 0, 1, 1〉.

(iii) Suppose α ∈ {(−,+,−,+), (−,+,−,−), (+,−,+,+), (0,−,−,−), (+,−,−,−), (−,−,−,−),

(0,−,+,−), (−,−,+,−)}. By the nilpotent analysis above, q1(S) = 0. If α1 = α2 = α3 = −, then D(S)

has a subdigraph equivalent to D(H8), otherwise, D(S) has a subdigraph equivalent to either D(H3) when

α1 = −, or D(H4) when α1 = +. Thus, q3(S) = 1 by Lemma 3.10.

When (a, b1, b2, b3) is one of (−1, 1,−1, 1), (−5, 1,−4,−4), (4,−8, 12 ,
1
2 ), (0,− 8

27 ,−
1
54 ,−

1
54 ),

( 2
3 ,−

512
729 ,−

1
1458 ,−

1
1458 ), (−1,− 1

27 ,−
1
6 ,−

7
54 ), (0,− 1

4 ,
1
4 ,−

1
4 ) or (−3,−1, 1,−1), then q(S) = 2. Thus,

qseq(S) = 〈0, 1, 1, 1〉.
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(iv) Suppose α ∈ {(+,−,+,−)}. By the nilpotent analysis above, q1(S) = 1. Further, D(S) has a

subdigraph equivalent to D(H3); thus, q3(S) = 1 by Lemma 3.10. When (a, b1, b2, b3) = (2,−2, 1,−1), then

q(S) = 2. Thus, qseq(S) = 〈1, 1, 1, 1〉.

Observe that for n ≥ 5, any n×n star sign pattern A with c(A) = 3 is equivalent to a (3, 4)-duplication

of S for some αi ∈ {+,−} for i = 1, 2, 3 and α0 ∈ {0,+,−}. The result now follows since if qseq(S) =

〈s1, s2, s3, 1〉, then any (3, 4)-duplication of S has allow sequence 〈s1, s2, s3, 1, 0, 0, . . . , 0〉 by Theorem 3.15(i).

We next give sufficient conditions that imply an irreducible sign pattern allows three distinct eigenvalues.

Theorem 4.13. Let n ≥ 4 and A be an n× n irreducible sign pattern. If c(A) = 3 and q2(A) = 1, then

q3(A) = 1.

Proof. Let A be an irreducible n × n sign pattern with c(A) = 3 and q2(A) = 1. By Corollary 2.9, it

follows that `(A) = 1; thus, D(A) has a loop. If D(A) has no 3-cycle, then D(A) is a star digraph and

q3(A) = 1 by Theorem 4.12. Thus, assume D(A) has a 3-cycle. We show that there exists 1 ≤ i ≤ 10

such that D(A) has a subdigraph equivalent to D(Hi) (as defined in Appendix B), and from this, it then

follows that q3(A) = 1 by Lemma 3.10. Since c(A) = 3, every 3-cycle is incident to every loop (and also

incident to every 2-cycle, if any exist). If D(A) has a 3-cycle and a loop that are oppositely signed, then

D(A) has a subdigraph equivalent to D(H5). Now assume that every loop and every 3-cycle have the same

sign, say negative. If D(A) has a positive 2-cycle, then D(A) has a subdigraph equivalent to D(H6) or

D(H9). Thus, assume all 2-cycles (if any) are negative. By (1.1), the coefficient of zn−3 in pA(z) is nonzero

for every A ∈ Q(A) since every 3 × 3 principal minor is positive. But q2(A) = 1, thus, there is A ∈ Q(A)

with q(A) = 2 and such that the coefficient of zn−3 in pA(z) is nonzero. Since A is irreducible, Remark 2.19

implies that D(A) has at most two negative loops. Thus, by Theorem 2.18(iii), D(A) has a loop incident to

a negative 2-cycle. Hence, D(A) has a subdigraph equivalent to D(H7) or D(H10).

We now give the characterization of possible allow sequences of length n with exactly n−4 trailing zeros

for n× n irreducible sign patterns with n ≥ 5 (the case when n = 4 is given in Theorem 5.4 and is omitted

here).

Theorem 4.14. Let n ≥ 5 and s = 〈s1, s2, s3, 1, 0, 0, . . . , 0〉 have length n with s1, s2, s3 ∈ {0, 1}. Then,

there exists an n× n irreducible sign pattern A with qseq(A) = s if and only if s 6= 〈s1, 1, 0, 1, 0, . . . , 0〉.

Proof. By Remark 4.8 and Theorem 4.13, the sequences 〈s1, 1, 0, 1, 0, 0, . . . , 0〉 with s1 ∈ {0, 1} are

unattainable by an n× n irreducible sign pattern for n ≥ 5.

If A is a 4×4 sign pattern whose digraph is two oppositely signed 3-cycles that have one arc in common,

then qseq(A) = 〈1, 0, 0, 1〉 by Corollary 2.6. The sign pattern A listed in Example 3.11 has qseq(A) =

〈1, 0, 1, 1〉. Finally, by Theorem 4.12, there is a 4 × 4 sign pattern A with allow sequence 〈1, 1, 1, 1〉 (resp.

〈0, 1, 1, 1〉, 〈0, 0, 1, 1〉 and 〈0, 0, 0, 1〉). For each of these six 4×4 sign patterns, c(A) = 3. By Theorem 3.15(i),

vertex duplications can be applied to these six 4× 4 patterns to generate sign patterns of every order n ≥ 5

with the appropriate sequence.

The conclusion of Theorem 4.14 does not hold when n = 4 since 〈0, 1, 0, 1〉 is realizable by the irreducible

sign pattern B given in Example 2.14. Note that Theorem 3.15(i) cannot be applied to B to generate sign

patterns that realize 〈0, 1, 0, 1, 0, 0, . . . , 0〉 since c(B) = 4. Instead, since B is sign nonsingular, we can apply

Theorem 3.15(ii) to B (where v corresponds to the last row and column of B) to give a sign pattern B1
with qseq(B1) = 〈0, 0, 1, 0, 1〉. Since B1 is a 5 × 5 sign pattern with c(B1) = 4, for n ≥ 5, we can apply
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Theorem 3.15(i) to B1 repeatedly by duplicating v a total of n − 5 times to produce an n × n sign pattern

with allow sequence 〈0, 0, 1, 0, 1, 0, 0, . . . , 0〉.

5. Allow sequences of n× n irreducible sign patterns with n ≤ 4. This section characterizes

the sequences that are realizable as an allow sequence for 2 × 2, 3 × 3 and 4 × 4 irreducible sign patterns.

For 2× 2 and 3× 3 sign patterns, this is accomplished by using the characterizations according to the value

of q(A) in [3]. For 4× 4 irreducible sign patterns, techniques and examples introduced earlier in this paper

are applied to give the result. We state our characterizations using relaxations of patterns (as introduced in

[5]).

The definition of a sign pattern was relaxed in [5] and later used in [3] to help state the characterizations

of 3 × 3 irreducible sign patterns A according to the value of q(A). Let S = {+,−, 0, ∗,©+ ,©- ,©∗ }, where

+ (resp. −, ©+ and ©- ) denotes a positive (resp. negative, nonnegative and nonpositive) real number, and ∗
(resp. ©∗ ) denotes a nonzero (resp. arbitrary) real number. An S-pattern is a matrix with entries in S. The

definition of Q(A) for sign patterns A extends to S-patterns in the obvious manner. An S-pattern B is a

relaxation of an S-pattern A if Q(A) ⊆ Q(B). If B is an S-pattern, then A is a fixed signing of B if A is a

sign pattern and B is a relaxation of A.

Theorem 5.1. Let A be a 2× 2 irreducible sign pattern. Then, qseq(A) ∈ {〈0, 1〉, 〈1, 1〉} and

(i) qseq(A) = 〈1, 1〉 if and only if A is equivalent to a superpattern of

[
+ +

− 0

]
.

(ii) qseq(A) = 〈0, 1〉 if and only if A is equivalent to

[
0 +

− 0

]
or a superpattern of

[
0 +

+ 0

]
.

Proof. Since A is irreducible, D(A) has a 2-cycle, and hence q2(A) = 1 by Lemma 2.1. Thus qseq(A) ∈

{〈0, 1〉, 〈1, 1〉}. By [3, Theorem 4.1], q1(A) = 1 if and only if A is equivalent to a superpattern of

[
+ +

− 0

]
.

Therefore, (i) holds and (ii) is the complementary event.

For the sake of convenience in stating the next result, we reproduce the catalogue of patterns in [3] but

list them in Appendix A according to their allow sequence. Note that the characterization of 3×3 irreducible

sign patterns with qseq(A) = 〈0, 0, 1〉 was proved in [14, Theorem 4.12].

Theorem 5.2. Let A be a 3×3 irreducible sign pattern. Then qseq(A) ∈ {〈1, 1, 1〉, 〈1, 0, 1〉, 〈0, 1, 1〉, 〈0, 0, 1〉}
and

(i) qseq(A) = 〈1, 1, 1〉 if and only if A is equivalent to Z2 or a superpattern of Yi for some 1 ≤ i ≤ 6.

(ii) qseq(A) = 〈1, 0, 1〉 if and only if A is equivalent to Z1.

(iii) qseq(A) = 〈0, 1, 1〉 if and only if A is equivalent to a fixed signing of V1, V2, W or Si,j for some

(i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2)}.
(iv) qseq(A) = 〈0, 0, 1〉 if and only if A is equivalent to a fixed signing of F1, F2, F3 or F4.

Proof. By [3, Theorem 6.1], it suffices to determine the allow sequence for each pattern in Appendix A.

If A is one of these patterns, then c(A) ≥ 2 since A is irreducible, thus, q3(A) = 1 by Lemma 2.1. If A
is equivalent to a superpattern of Yi in Fig. 4 for some 1 ≤ i ≤ 6, then the realizations Yi in the proof of

[3, Lemma 5.4] have q(Yi) = 1 and allow a Jacobian of rank 3; thus by Corollary 3.3, qseq(A) = 〈1, 1, 1〉.
The star sign pattern Z1 in Fig. 3 is equivalent to the sign pattern B (with n = 3) in Example 2.7; thus,

qseq(Z1) = 〈1, 0, 1〉. The digraph D(Z2) has a subdigraph of a positive 2-cycle and a negative 3-cycle that
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share a vertex, and hence, by Theorem 3.13, Z2 in Fig. 3 has a realization A having 1 as an eigenvalue

of multiplicity 2 and hence q(A) = 2. It follows by [3, Theorem 6.1] that qseq(Z2) = 〈1, 1, 1〉. If A is

equivalent to a fixed signing of V1, V2, W or Si,j in Fig. 5, then q(A) = 2 by [3, Theorem 6.1], and hence,

qseq(A) = 〈0, 1, 1〉. If A is equivalent to a fixed signing of F1, F2, F3 or F4 in Fig. 6, then q(A) = 3 by [14,

Theorem 4.12], and hence, qseq(A) = 〈0, 0, 1〉.

For 4×4 irreducible sign patterns, we determine which sequences are realizable by some 4×4 irreducible

sign pattern. We begin with a preliminary result on 4× 4 bipartite sign patterns, which is used in the proof

of Theorem 5.4.

Lemma 5.3. Suppose A is a 4 × 4 bipartite sign pattern such that c(A) = 2 or c(A) = 4 and A allows

singularity. Then, q3(A) = 1.

Proof. If c(A) = 2, then q3(A) = 1 by Lemma 2.1. Otherwise c(A) = 4, and since A allows singularity,

D(A) requires a 2-cycle. Thus, without loss of generality, A is a fixed signing of
0 0 ∗ ©∗
0 0 ©∗ ©∗
∗ ©∗ 0 0

©∗ ©∗ 0 0

 .
Let A = [aij ] ∈ Q(A). Then

pA(z) = z4 − (a13a31 + a14a41 + a23a32 + a24a42)z2 + (a31a42 − a32a41)(a13a24 − a14a23)

for appropriately signed aij (possibly zero) with a13, a31 6= 0. Furthermore, since c(A) = 4 and A allows

singularity, either

(i) a42 6= 0 and both a31a42 and a32a41 have the same nonzero sign, or

(ii) a24 6= 0 and both a13a24 and a14a23 have the same nonzero sign.

In case (i), consider A ∈ Q(A) where each of a31, a32, a41, and a42 have magnitude 1 and each of a14, a23,
and a24 are sufficiently small (possibly zero). When a13 is sufficiently large, pA(z) = z4 − αz2 for some

α 6= 0, and thus, q(A) = 3 implying q3(A) = 1. In case (ii), consider AT and apply the argument in (i).

Example 2.14 demonstrates that the singularity hypothesis of Lemma 5.3 is needed.

Theorem 5.4. Let s = 〈s1, s2, s3, s4〉 with si ∈ {0, 1}. There exists a 4 × 4 irreducible sign pattern A
with qseq(A) = s if and only if s 6∈ {〈0, 0, 0, 0〉, 〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈1, 1, 0, 0〉, 〈1, 1, 1, 0〉, 〈1, 1, 0, 1〉}.

Proof. Corollary 4.10 gives the result for sequences 〈s1, s2, 0, 0〉 with s1, s2 ∈ {0, 1}. Theorem 4.11 gives

the result for sequences 〈s1, s2, 1, 0〉 with s1, s2 ∈ {0, 1}. With the exception of 〈1, 1, 0, 1〉, the sequences

〈s1, s2, s3, 1〉 where s1, s2, s3 ∈ {0, 1} are realizable by Example 2.14 (〈0, 1, 0, 1〉), Corollary 2.6 (〈1, 0, 0, 1〉),
Example 3.11 (〈1, 0, 1, 1〉), and Theorem 4.12 (〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 0, 1, 1〉, 〈0, 0, 0, 1〉).

It remains to prove there is no 4 × 4 irreducible sign pattern A with qseq(A) = 〈1, 1, 0, 1〉. Let A be a

4× 4 irreducible sign pattern with q1(A) = q2(A) = q4(A) = 1. It suffices to show that q3(A) = 1. Since the

result follows by Lemma 2.1 and Theorem 4.13 if c(A) ≤ 3, we assume c(A) = 4. In the rest of this proof,

we reference some of the digraphs D(Hi) listed in Fig. 11 of Appendix B.

We first consider the case that D(A) has no 2-cycles. Then, D(A) has at least one loop by Corollary 2.8

since q2(A) = 1. Since q1(A) = 1, by [3, Lemma 3.2] it follows that D(A) has four loops of the same sign,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 48-80, January 2024.

73 The allow sequence of distinct eigenvalues for a sign pattern

and furthermore, the subpattern B obtained from A by replacing every diagonal entry by 0 is potentially

nilpotent. To determine the structure of D(B), we note there are four strongly connected digraphs G1, G2,

G3, and G4 with no 2-cycles as depicted in Fig. 2. The digraphs G1, G2, and G4 each have exactly one

G1 G2 G3 G4

Figure 2. The four strongly connected digraphs of order 4 with no 2-cycles.

4-cycle and no other composite cycles of order 4, thus, cannot be the digraph of a potentially nilpotent sign

pattern. Hence, D(B) is isomorphic to G3. Since B is potentially nilpotent, D(B) (and hence D(A)) has

oppositely signed 3-cycles. But D(A) has four loops, thus, it has a subdigraph equivalent to D(H5) and it

follows that q3(A) = 1 by Lemma 3.10(i).

We now consider the case that D(A) has a 2-cycle. By [3, Theorem 3.3], D(A) has a negative 2-cycle.

Since q1(A) = 1 and A is a 4 × 4 sign pattern, if A ∈ Q(A) has q(A) = 1 then det(A) ≥ 0. Recalling that

c(A) = 4, it now follows from Equation (1.1) that D(A) has a composite cycle U of order 4 with sign (−1)|U |.

There are four cases to consider depending on the number of cycles in U . In each case, we show that there

exists 1 ≤ i ≤ 17 such that D(A) has a subdigraph equivalent to D(Hi). It then follows that q3(A) = 1 by

Lemma 3.10(i).

Case 1. |U | = 4. In this case, D(A) has four loops and a negative 2-cycle, hence D(A) has a subdigraph

equivalent to D(H1) or D(H2).

Case 2. |U | = 3. In this case, U has one 2-cycle and two loops (that are not incident to the 2-cycle).

Subcase 2.1. If the 2-cycle in U is positive, then the two loops in U are oppositely signed since U has

sign (−1)3. But D(A) has a negative 2-cycle and thus has a subdigraph equivalent to D(H3) or D(H11).

Subcase 2.2. If the 2-cycle in U is negative, then the two loops in U are the same sign since U has sign

(−1)3. Without loss of generality, we may assume both loops are negative (otherwise consider −A). If D(A)

has three or four loops, then D(A) has a subdigraph equivalent to D(H1) or D(H2). If D(A) has exactly

two loops, by [3, Theorem 3.5], D(A) has either a positive 3-cycle implying it has a subdigraph equivalent to

D(−H5), or D(A) has a negative 2-cycle that is incident to a loop implying it has a subdigraph equivalent

to D(H1).

Case 3. |U | = 2. There are two distinct structures to consider that have sign (−1)2.

Subcase 3.1. U has two disjoint 2-cycles of the same sign. If A is bipartite (and hence, A allows

singularity since q1(A) = 1), then q3(A) = 1 by Lemma 5.3. Thus, assume D(A) has either a loop or a 3-

cycle. First suppose both 2-cycles in U are negative. If D(A) has a loop, then it has a subdigraph equivalent

to D(H12), and if D(A) has a 3-cycle, then it has a subdigraph equivalent to D(H15). Now suppose both

2-cycles in U are positive and note that D(A) also has a negative 2-cycle. If D(A) has a loop, then it has a

subdigraph equivalent to D(H4) or D(H13), and if D(A) has a 3-cycle, then it has a subdigraph equivalent

to D(H9).

Subcase 3.2. U has a 3-cycle and a loop (that is not incident to the 3-cycle) of the same sign. Without

loss of generality, we may assume the 3-cycle and loop are both negative (otherwise consider −A). If D(A)
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has a positive loop, then it has a subdigraph equivalent to D(H5). If D(A) has a positive 2-cycle, then D(A)

has a subdigraph equivalent to D(H6) or D(H9).

Suppose all loops and 2-cycles of D(A) are negative. By [3, Theorem 3.5], D(A) has either: (a) 4

negative loops, (b) a negative 2-cycle incident to a negative loop, or (c) a positive 3-cycle. In (a), since D(A)

has a negative 2-cycle, it has a subdigraph equivalent to D(−H1). In (b), D(A) has a subdigraph equivalent

to D(−H1) or D(−H14).

Now suppose D(A) has a positive 3-cycle as in (c). If this positive 3-cycle is incident to the negative loop

in U , then D(A) has a subdigraph equivalent to D(−H5). This implies that A is equivalent to a superpattern

of 
0 + + 0

− 0 + 0

− − 0 0

0 0 0 −

 .
If D(A) has at least two loops (recall that all loops must be negative), then D(A) has a subdigraph equivalent

to D(−H1). Thus, suppose D(A) has exactly one loop. If D(A) has a 2-cycle incident to the loop (recall

that all 2-cycles must be negative), then D(A) has a subdigraph equivalent to D(−H14). Thus, suppose

the loop of D(A) is not incident to a 2-cycle. As A is irreducible, it follows that A is equivalent to a fixed

signing of one of

A1 =


0 + + +

− 0 + 0

− − 0 ©∗
0 + ©∗ −

 , A2 =


0 + + +

− 0 + 0

− − 0 ©∗
0 − ©∗ −

 , A3 =


0 + + +

− 0 + 0

− − 0 0

0 0 + −

 or A4 =


0 + + +

− 0 + 0

− − 0 0

0 0 − −

 .
Since A3 requires four distinct eigenvalues by [12, Theorem 4.12], A cannot be equivalent to A3. If A is

equivalent to a fixed signing of A1 or A4, then D(A) has a subdigraph equivalent to D(−H16). If A is

equivalent to a fixed signing of A2, then D(A) has a subdigraph equivalent to D(−H5).

Case 4. |U | = 1. In this case, U is a negative 4-cycle. Suppose A is bipartite. If A is sign nonsingular,

then q1(A) = 0 by Corollary 2.13(ii), whereas if A allows singularity, then q3(A) = 1 by Lemma 5.3. Thus,

suppose A is not bipartite. Then, D(A) has either a loop or a 3-cycle. If D(A) has a loop, then it has a

subdigraph equivalent to D(H16), and if D(A) has a 3-cycle, then it has a subdigraph equivalent to D(H17).

6. Concluding comments. In this paper, we introduced the allow sequence of distinct eigenvalues for

a sign pattern. We also developed combinatorial and analytical techniques for obtaining information about

an allow sequence. A summary of the results on realizable sequences from Sections 4 and 5 is given in the

following theorem that characterizes sequences of the form 〈s1, s2, s3, s4, 0, . . . , 0〉.

Theorem 6.1. Let n ≥ 2, s = 〈s1, s2, . . . , sn〉 with si ∈ {0, 1} for 1 ≤ i ≤ 4 and si = 0 for every i ≥ 5.

Then there exists an n× n irreducible sign pattern A with qseq(A) = s if and only if s is not equal to any of

(i) 〈0, 0, . . . , 0〉,
(ii) 〈1, 0, 0, . . . , 0〉,

(iii) 〈0, 1, 0, 0, . . . , 0〉 if n ≥ 3,

(iv) 〈1, 1, 0, 0, . . . , 0〉 if n ≥ 3,

(v) 〈1, 1, 1, 0, 0, . . . , 0〉 if n ≥ 4,
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(vi) 〈1, 1, 0, 1, 0, 0, . . . , 0〉 if n ≥ 4, or

(vii) 〈0, 1, 0, 1, 0, 0, . . . , 0〉 if n ≥ 5.

Proof. If s3 = s4 = 0 then Corollary 4.10 and Theorem 5.1 give (i)-(iv). If s3 = 1 and s4 = 0, then

Theorem 4.11 gives (v). If s4 = 1, then Theorems 4.14 and 5.4 give (vi) and (vii).

In the case that either n ≤ 3 or c(A) ≤ 2, we provide a complete characterization of all n×n irreducible

sign patterns A classified by their allow sequence (see Corollary 4.10 and Theorems 4.11, 5.1 and 5.2). A

natural next step is to characterize the n× n irreducible sign patterns A according to their allow sequence

when either n = 4 or c(A) = 3 holds. The case n = 4 will be aided by the very recent work [12] on 4× 4 sign

patterns A with qseq(A) = 〈0, 0, 0, 1〉. We characterized star sign patterns A with c(A) = 3 in Theorem 4.12.

It would be interesting to classify realizable sequences for star sign patterns with c(A) ≥ 4. It would also be

interesting to determine other sequences (not already listed in Theorem 6.1) that are not the allow sequence

for any n× n irreducible sign pattern.

In Section 4, we explored conditions for when q3(A) = 1. We wonder what other conditions on A or

D(A) can guarantee that q3(A) = 1. For n ≥ 3, Theorem 4.9(iii) shows that there is no n× n sign pattern

A with allow sequence 〈1, 1, 0, 0, . . . , 0〉 and Theorem 4.14 shows that for n ≥ 5 there is no n× n irreducible

sign pattern A with allow sequence 〈1, 1, 0, 1, 0, . . . , 0〉. Note that Theorem 5.4 shows that there is no 4× 4

irreducible sign pattern with allow sequence 〈1, 1, 0, 1〉. Hence, we ask the following question for n ≥ 3 and

A an n× n irreducible sign pattern: does q1(A) = q2(A) = 1 imply that q3(A) = 1?

We note that we can compare one of our lower bounds on q(A) to an analogous bound for graphs (see, for

example, [1]). For G an undirected graph, q(G) is defined to be the minimum number of distinct eigenvalues

taken over all real symmetric matrices A respecting the graph G (and having arbitrary diagonal entries). It

is known ([1],[8]) that (i) if T is a tree then q(T ) ≥ diam(T ) + 1, and (ii) for any connected graph G, if A is

nonnegative and is compatible with G, then q(A) ≥ diam(G) + 1. To compare this to the problem for sign

patterns A, since `(A) is the girth of D(A), Corollary 2.5 shows that the girth of D(A) is a lower bound on

q(A) (i.e., q(A) ≥ `(A)) when A is not potentially nilpotent.

For the graph problem, some strong properties were introduced [2] and applied to the problem of deter-

mining q(G). In particular, the strong spectral property (SSP) and strong multiplicity property (SMP) are

important tools used in the inverse eigenvalue problem for graphs. For example, a matrix A has the SSP if

X = O is the only symmetric matrix satisfying A ◦X = O, I ◦X = O, and [A,X] = O, where A ◦X is the

entrywise product of A and X, [A,X] = AX − XA and O denotes the zero matrix. It is known that if a

symmetric n × n matrix A with graph G has the SSP, then for every q′ with q(A) ≤ q′ ≤ n there exists a

matrix A′ with graph G and q(A′) = q′ (see [11, Theorem 4.1]). Thus, if q(A) = q(G) and A has the SSP

then the allow sequence for G is 〈0, 0, . . . , 0, 1, 1, . . . , 1〉 where the first 1 appears in the q(A) position. It is

an open problem whether the SSP assumption can be dropped.

The notion of the non-symmetric strong spectral property (nSSP) was introduced in [11]. In particular,

if A is a real n × n matrix, then A has the nSSP if X = O is the only matrix satisfying A ◦ X = O and

[A,XT ] = O. If A has the nSSP, then Theorems 5.3 and 5.4 of [11] can be used to prove that the conclusion

of Theorems 3.2 and 3.7 hold for any superpattern A′ of A = sgn(A). We remark that the Jacobian method

described in Theorem 3.7 has utility in cases where the matrix does not have the nSSP. For example, H6

(defined in Appendix B) does not have the nSSP (take X to be the 3× 3 identity matrix) but does satisfy

the conditions of Theorem 3.7. Some of the matrices in this paper do have the nSSP. For example, the

realization considered in Example 3.6 has the nSSP as do H1, H2, H3, H4, H7 and H13 in Appendix B.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 48-80, January 2024.

J. Breen et al. 76

It was noted in [11] that there is a connection between Jacobian matrices and strong properties. In

Section 3, Jacobian matrices were used to develop techniques to help determine qseq(A) for an n × n sign

pattern A. In the future, it would be interesting to explore how relevant strong properties could be defined

to study allow sequences for sign patterns.

Acknowledgements. This collaboration was part of the online research community Inverse Eigenvalue

Problems for Graphs sponsored by the American Institute of Mathematics. Research supported in part by

NSERC Discovery Grants RGPIN-2021-03775 (JB), RGPIN-2016-03677 (PvdD), RGPIN-2016-03867 (KVM)

and an NSERC USRA (CB).

REFERENCES

[1] B. Ahmadi, F. Alinaghipour, M.S. Cavers, S. Fallat, K. Meagher, and S. Nasserasr. Minimum number of distinct eigenvalues

of graphs. Elect. J. Linear Alg., 26:673–691, 2013.

[2] W. Barrett, S. Fallat, H.T. Hall, L. Hogben, J.C.-H. Lin, and B.L. Shader. Generalizations of the Strong Arnold Property

and the minimum number of distinct eigenvalues of a graph. Elect. J. Combin., 24(2):P2.40, 2017.

[3] J. Breen, C. Brouwer, M. Catral, M. Cavers, P. van den Driessche, and K. Vander Meulen. Minimum number of distinct

eigenvalues allowed by a sign pattern. Linear Algebra Appl., 654:311–338, 2022.

[4] M. Catral, D.D. Olesky, and P. van den Driessche. Allow problems concerning spectral properties of sign pattern matrices:

A survey. Linear Algebra Appl., 430:3080–3094, 2009.

[5] M.S. Cavers and S.M. Fallat. Allow problems concerning spectral properties of patterns. Elect. J. Linear Alg., 23:731–754,

2012.

[6] M.S. Cavers, C. Garnett, I.-J. Kim, D.D. Olesky, P. van den Driessche, and K.N. Vander Meulen. Techniques for identifying

inertially arbitrary patterns. Elect. J. Linear Alg., 26:71–89, 2013.

[7] J.H. Drew, C.R. Johnson, D.D. Olesky, and P. van den Driessche. Spectrally arbitrary patterns. Linear Algebra Appl.,

308:121–137, 2000.

[8] A.L. Duarte and C.R. Johnson. On the minimum number of distinct eigenvalues for a symmetric matrix whose graph is a

given tree. Math. Inequal. Appl., 5:175–180, 2002.

[9] C.A. Eschenbach and C.R. Johnson. Sign patterns that require repeated eigenvalues. Linear Algebra Appl., 190:169–179,

1993.

[10] C.A. Eschenbach and Z. Li. Potentially nilpotent sign pattern matrices. Linear Algebra Appl., 299:81–99, 1999.

[11] S.M. Fallat, H.T. Hall, J.C.-H. Lin, and B.L. Shader. The bifurcation lemma for strong properties in the inverse eigenvalue

problem of a graph. Linear Algebra Appl., 648:70–87, 2022.

[12] Y. Gao, F.J. Hall, Z. Li, V. Bailey, and P. Kim. 4×4 Irreducible sign pattern matrices that require four distinct eigenvalues.

Linear Algebra Appl., 680:1–27, 2024.

[13] P.J. Kim. On the 4 by 4 irreducible sign pattern matrices that require four distinct eigenvalues. M.Sc. Thesis, Georgia

State University, 2011.

[14] Z. Li and L. Harris. Sign patterns that require all distinct eigenvalues. JP J. Algebra Number Theory Appl., 2:161–179,

2002.

[15] R. Pereira. Nilpotent matrices and spectrally arbitrary sign patterns. Elect. J. Linear Alg., 16:232–236, 2007.

[16] E.A. Rawashdeh. A simple method for finding the inverse matrix of Vandermonde matrix. Mat. Vesnik, 3(71):207–213,

2019.

[17] A. Schinzel. On the number of terms of a power of a polynomial. Acta Arithmetica, 1(49):55–70, 1987.

[18] W. Stothers, 1998. http://www.maths.gla.ac.uk/wws/cabripages/inversive/lacunary.htm.

Appendix A. 3× 3 sign patterns A and qseq(A). In this appendix, we provide a catalogue of all

the irreducible 3× 3 sign patterns A according to qseq(A).

http://www.maths.gla.ac.uk/wws/cabripages/inversive/lacunary.htm


Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 48-80, January 2024.

77 The allow sequence of distinct eigenvalues for a sign pattern

Z1 =

0 + 0

− 0 +

0 + 0

 Z2 =

0 + +

− 0 +

+ + 0


Figure 3. Two irreducible 3× 3 sign patterns with allow sequences qseq(Z1) = 〈1, 0, 1〉 and qseq(Z2) = 〈1, 1, 1〉, respectively.

Y1 =

− + 0

− 0 +

− 0 0

 Y2 =

− + 0

0 0 +

+ − 0

 Y3 =

− + 0

− 0 +

0 − 0



Y4 =

+ + 0

− − +

0 + 0

 Y5 =

− + +

− 0 0

+ 0 −

 Y6 =

− + 0

− 0 +

0 + −


Figure 4. Irreducible 3× 3 sign patterns whose superpatterns all have allow sequence 〈1, 1, 1〉.

S1,1 =

+ + 0

− ©+ −
©+ − ©-

 S1,2 =

©+ + 0

− + −
+ ©- ©-

 S1,3 =

©+ + 0

− + −
©+ − ©-

 S1,4 =

©+ + 0

− ©+ −
©+ − −



S1,5 =

©+ + 0

− ©+ −
+ − ©-

 S2,1 =

+ + −
− 0 ©-
+ ©- 0

 S2,2 =

©+ + −
− 0 −
+ − 0



V1 =

+ + 0

0 ∗ +

+ 0 ©∗

 V2 =

− + 0

0 ©∗ +

+ 0 ©∗

 W =

©∗ + ©+
+ ©∗ +

+ ©+ ©∗


Figure 5. Irreducible 3× 3 patterns all of whose fixed signings have allow sequence 〈0, 1, 1〉.

F1 =

©∗ + 0

+ ©∗ +

0 + ©∗

 F2 =

 0 + ©-
©- 0 +

+ ©- 0

 F3 =

+ + 0

0 0 +

+ ©- 0

 F4 =

0 + 0

− 0 +

0 − 0


Figure 6. Irreducible 3× 3 patterns all of whose fixed signings have allow sequence 〈0, 0, 1〉.

Appendix B. 3× 3 and 4× 4 matrices with a repeated eigenvalue.

This appendix gives examples of 3× 3 and 4× 4 matrices having 1 as an eigenvalue with multiplicity 2

and satisfying the conditions (i)-(iii) of Theorem 3.7. For 1 ≤ i ≤ 17, we define Hi = sgn(Hi). The digraphs

D(Hi) are provided in Figs. 10 and 11.
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H1 =

 2 1 0

−1 0 0

0 0 2

 H2 =

 2 1 0

−1 0 0

0 0 −1

 H3 =

 1/2 2 0

−1/2 0 2

0 3/2 0

 H4 =

 −1 4 0

2 0 3

0 −1 0



H5 =

 3/2 1/2 0

0 0 2

−1/2 0 0

 H6 =

 0 2 0

0 0 1

−1 3 0

 H7 =

 4 1 −5

0 0 2

1 0 0


Figure 7. For 1 ≤ i ≤ 7, Hi has spectrum {1, 1, λi} for some λi 6∈ {0, 1} and satisfies (i)-(iii) of Theorem 3.7 with λ = 1,

m = 2 and positions of x1, x2 indicated by boxed entries.

H8 =


0 1 1 1

−9/2 4 0 0

−2/5 0 0 0

−1/10 0 0 0

 H9 =


0 −1 0 0

0 0 2 0

1 0 0 3

0 0 1 0

 H10 =


0 2 0 0

0 0 1 0

1 0 4 −5

0 0 1 0


Figure 8. For 8 ≤ i ≤ 10, Hi has spectrum {1, 1, λi, 0} for some λi 6∈ {0, 1} and satisfies (i)-(iii) of Theorem 3.7 with

λ = 1, m = 2 and positions of x1, x2 indicated by boxed entries.

H11 =


0 1 0 0

−1 2 0 0

0 0 0 2

0 0 1 0

 H12 =


0 1 0 0

−1 2 0 0

0 0 0 −1

0 0 1 0

 H13 =


0 1 0 0

1 −1 −2 0

0 1 0 3

0 0 1 0

 H14 =


0 1 0 0

0 0 1 0

1/2 0 0 −1/2

0 0 1/4 5/4



H15 =


0 1 0 0

−3 0 4 0

4 0 0 −3

0 0 1 0

 H16 =


4/3 1 0 0

0 0 1 0

0 0 0 1

−1/3 0 0 0

 H17 =


0 3/2 0 0

0 0 2 0

0 0 0 2

−1/2 1 0 0


Figure 9. For 11 ≤ i ≤ 17, Hi has spectrum {1, 1, λi, µi} for some λi, µi 6∈ {0, 1}, λi 6= µi and satisfies (i)-(iii) of

Theorem 3.7 with λ = 1, m = 2 and positions of x1, x2 indicated by boxed entries.

D(H1) and D(H2)

±

−

D(H3)

−

D(H4)

−

−

D(H5)

−

D(H6)

−

D(H7)

−

Figure 10. The order 3 digraphs D(Hi), 1 ≤ i ≤ 7. Unlabeled arcs are assumed to be positively signed.
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D(H8)

−

−
−

D(H9)

−

D(H10)

−

D(H11) and D(H12)

−

±

D(H13)

−

−

D(H14)

−

D(H15)

−

−

D(H16)

−

D(H17)

−

Figure 11. The order 4 digraphs D(Hi), 8 ≤ i ≤ 17. Unlabeled arcs are assumed to be positively signed.

Appendix C. Proof of Lemma 3.12.

Here we provide a proof of Lemma 3.12.

Proof. Let 1 ≤ r ≤ m and br =
∏
j 6=r

`j
`j−`r . Let V be the m×m Vandermonde matrix with Vrk = `r−1k .

The inverse of V (see, for example, [16]) is given by

V −1rk =
(−1)k+1σrk(`1, . . . , `m)∏

j 6=r

(`j − `r)
,

where σrk(`1, . . . , `m) is the sum of all the products of m− k distinct elements from {`1, . . . , `m}\{`r} with

σrm(`1, . . . , `m) = 1. Note that V −1r1 = br and

(C.8) V −1rm =
(−1)m+1∏

j 6=r

(`j − `r)
=

(−1)m+1br∏
j 6=r

`j
.

Let b = (b1, b2, . . . , bm)T . Since b is the first column of the inverse of V , it follows that V b = (1, 0, . . . , 0)T .

Thus,
∑m
r=1 br = 1 and

∑m
r=1 `

t
rbr = 0 for 1 ≤ t ≤ m − 1. Now (n − `r)i = (n)i +

∑i
t=1 `

t
rft(n) for some

polynomials ft(n) of degree m− t, for 1 ≤ t ≤ i and particularly fi(n) = (−1)i. Let

Si =

m∑
r=1

(n− `r)i
∏
j 6=r

`j
`j − `r

.

Note that

Si =

m∑
r=1

(n− `r)ibr =

m∑
r=1

[
(n)i +

i∑
t=1

`trft(n)

]
br = (n)i

m∑
r=1

br +

m∑
r=1

i∑
t=1

ft(n)`trbr = (n)i +

i∑
t=1

ft(n)

m∑
r=1

`trbr.

Therefore Si = (n)i when 1 ≤ i < m since
∑m
r=1 `

t
rbr = 0 for 1 ≤ t < m and

Sm = (n)m + fm(n)

m∑
r=1

`mr br.
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Note that fm(n) = (−1)m. We claim that

(C.9)

m∑
r=1

`mr br = (−1)m+1`1 . . . `m,

and therefore Sm 6= (n)m.

To prove the claim, let D be a diagonal matrix with Dr,r = `r and let x = (x1, x2, . . . , xm)T be x = V Db.

Note that xm is the left hand side of (C.9). Let W = D−1V −1. We will use Cramer’s rule on the equation

Wx = b to show that xm = (−1)m+1`1 . . . `m. From (C.8), note that Wm(b) can be obtained from W

by multiplying the last column of W by (−1)m+1`1 . . . `m. Thus, det(Wm(b)) = (−1)m+1`1 . . . `m det(W ).

Therefore, xm = (−1)m+1`1 . . . `m by Cramer’s rule.
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