THE MATRIX INVERSE YOUNG INEQUALITY*

STEPHEN DRURY ${ }^{\dagger}$

Abstract

An inverse Young inequality is established for positive definite matrices.

Key words. Singular value, Eigenvalue, Young's inequality.

AMS subject classifications. 15A42.

1. Introduction. For an $n \times n$ matrix M and k in $\{1, \ldots, n\}$, let $\sigma_{k}(M)$ denotes its $k^{\text {th }}$ singular value, and if M is Hermitian, let $\lambda_{k}(M)$ denote the $k^{\text {th }}$ eigenvalue. We enumerate both singular values and eigenvalues in decreasing order.

Young's inequality states that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

for $a, b>0$ and p, q conjugate exponents, that is real numbers $p, q>1$ such that $p^{-1}+q^{-1}=1$.
The matrix version of Young's inequality was proved by Ando [1]. His result asserts that

$$
\sigma_{k}(A B) \leq \lambda_{k}\left(\frac{A^{p}}{p}+\frac{B^{q}}{q}\right)
$$

for A, B positive definite matrices and p, q conjugate exponents.
There is also an inverse version of Young's inequality namely

$$
a b \geq \nu b^{\frac{1}{\nu}}+(1-\nu) a^{\frac{1}{1-\nu}}
$$

for $a, b>0$ and $\nu>1$.
A matrix version of this inverse inequality was attempted by Manjegani and Norouzi [6], but their paper is flawed. Their main result ([6, Theorem 2.4]) is that (2.1) below holds for A and B positive definite $n \times n$ matrices and all $\nu>1$. In fact, this is false for $\nu=2$ (see the addendum), and the 'proof' given in [6] is invalid in the entire range $1<\nu<\infty$. Already, equation (10) in Manjegani and Norouzi [6] is incorrect. In fact, it contains a typological error. It should read

$$
A^{2} \leq \lambda^{2} B^{-1} P B^{-1} \quad \text { on } N
$$

and is deduced from $\lambda^{2} P \geq B A^{2} B$ on M. But N is the range of $B^{-1} P$, not $B P$.

[^0]
2. The result.

Theorem 1. Let A and B be positive definite $n \times n$ matrices. Let $1<\nu \leq \frac{3}{2}$ and k in $\{1, \ldots, n\}$. Then,

$$
\begin{equation*}
\sigma_{k}(A B) \geq \lambda_{k}\left(\nu B^{\frac{1}{\nu}}+(1-\nu) A^{\frac{1}{1-\nu}}\right) \tag{2.1}
\end{equation*}
$$

We are aware of counterexamples to (2.1) for ν only slightly larger than $\frac{3}{2}$. In case $k=1$, (2.1) holds for all $\nu>1$. We have $B^{2} \leq \sigma_{1}(A B)^{2} A^{-2}$. It follows that $B^{\frac{1}{\nu}} \leq \sigma_{1}(A B)^{\frac{1}{\nu}} A^{-\frac{1}{\nu}}$ and the result follows easily.
3. Basic lemmas. For Hermitian matrices X and Y of the same size, we interpret $X \leq Y$ or $Y \geq X$ by the Loewner ordering, that is, $Y-X$ is positive semidefinite,

Lemma 1. Let X and Y be positive definite matrices, A a positive semidefinite matrix and Q be an orthogonal projection all of the same size. Then,
(a) $[4,5]$ If $X \leq Y$ and $0 \leq r \leq 1$, then $X^{r} \leq Y^{r}$.
(b) [3] If $1 \leq r \leq 2$, then $Q A^{r} Q \geq(Q A Q)^{r}$.

The proofs can be found in [2, Theorems V.2.3 \& V.2.5]. See also [7].
Lemma 2. Let A be a positive semidefinite matrix and Q an orthogonal projection of the same size. If $r \geq 1$, then $Q A Q \leq\left(Q A^{r} Q\right)^{\frac{1}{r}}$.

Proof. We prove the result in the range $2^{m} \leq r \leq 2^{m+1}$ by induction on $m=0,1, \ldots$. The case $m=0$ follows from Lemma 1 parts (a) and (b) since

$$
\begin{equation*}
(Q A Q)^{r} \leq Q A^{r} Q \text { and } Q A Q=\left((Q A Q)^{r}\right)^{\frac{1}{r}} \leq\left(Q A^{r} Q\right)^{\frac{1}{r}} \tag{3.2}
\end{equation*}
$$

We now assume the result for r in the interval $\left[2^{m}, 2^{m+1}\right.$] and prove it for $2^{m+1} \leq r \leq 2^{m+2}$. For B positive semidefinite, we have $Q B Q \leq\left(Q B^{\frac{r}{2}} Q\right)^{\frac{2}{r}}$ since $\frac{r}{2} \in\left[2^{m}, 2^{m+1}\right]$. Replacing B by A^{2} gives $Q A^{2} Q \leq\left(Q A^{r} Q\right)^{\frac{2}{r}}$. Then by applying Lemma 1 (a) with $r=\frac{1}{2}$, we have $\left(Q A^{2} Q\right)^{\frac{1}{2}} \leq\left(Q A^{r} Q\right)^{\frac{1}{r}}$. Now, by (3.2) in case $r=2$ we obtain $Q A Q \leq\left(Q A^{2} Q\right)^{\frac{1}{2}} \leq\left(Q A^{r} Q\right)^{\frac{1}{r}}$.

We can now present the proof of the main result.
Proof of Theorem 1. Let P be the orthogonal projection on the spectral subspace of $B A^{2} B$ corresponding to the eigenvalues $\lambda_{k}, \ldots, \lambda_{n}$ and let Q be the orthogonal projection on \mathcal{M}, the range of $B^{-1} P$. Then as shown in [1], (see also [7]) $Q B^{2} Q$ and $B^{-1} P B^{-1}$ preserve \mathcal{M} and are inverses when restricted to \mathcal{M}. In particular, $Q B P=Q B$.

We have $B^{-1} A^{-2} B^{-1} \geq \sigma_{k}(A B)^{-2} P$ since this holds on the spectral subspace of $B A^{2} B$ corresponding to $\lambda_{1}, \ldots, \lambda_{k-1}$ and also on that corresponding to $\lambda_{k}, \ldots, \lambda_{n}$. Let $T=\nu B^{\frac{1}{\nu}}-(\nu-1) A^{-\frac{1}{\nu-1}}$. Then by the minmax characterization,

$$
\lambda_{k}(H)=\inf _{S \in \mathcal{S}_{n+1-k}} \sup _{\substack{x \in S \\\|x\|=1}} x^{*} H x=\sup _{S \in \mathcal{S}_{k}} \inf _{\substack{x \in S \\\|x\|=1}} x^{*} H x
$$

of the eigenvalues of a Hermitian matrix H in terms of the manifold of complex linear subspaces \mathcal{S}_{k} of dimension k, it will suffice to show that

$$
\begin{equation*}
\sigma_{k}(A B) Q \geq Q T Q \tag{3.3}
\end{equation*}
$$

We have $A^{-2} \geq \sigma_{k}(A B)^{-2} B P B$ and hence

$$
\begin{equation*}
Q A^{-2} Q \geq \sigma_{k}(A B)^{-2} Q B P B Q=\sigma_{k}(A B)^{-2} Q B^{2} Q . \tag{3.4}
\end{equation*}
$$

By Lemma 1(b), we have

$$
\begin{equation*}
Q B^{\frac{1}{\nu}} Q \leq\left(Q B^{2} Q\right)^{\frac{1}{2 \nu}}, \tag{3.5}
\end{equation*}
$$

since $0<\frac{1}{2 \nu}<1$. Next, by Lemma 1(a) and (3.4) we have

$$
\begin{equation*}
\left(Q B^{2} Q\right)^{\frac{1}{2 \nu}} \leq \sigma_{k}(A B)^{\frac{1}{\nu}}\left(Q A^{-2} Q\right)^{\frac{1}{2 \nu}}, \tag{3.6}
\end{equation*}
$$

also since $0<\frac{1}{2 \nu}<1$. Now by Lemma 2 with $r=\frac{1}{2(\nu-1)}>1$, we have

$$
\left(Q A^{-2} Q\right) \leq\left(Q A^{-\frac{1}{\nu-1}} Q\right)^{2(\nu-1)} .
$$

Then, applying by Lemma 1(a) with $r=\frac{1}{2 \nu}$ we get

$$
\begin{equation*}
\left(Q A^{-2} Q\right)^{\frac{1}{2 \nu}} \leq\left(Q A^{-\frac{1}{\nu-1}} Q\right)^{\frac{\nu-1}{\nu}} . \tag{3.7}
\end{equation*}
$$

Combining (3.5), (3.6) and (3.7) we get

$$
Q T Q \leq \nu \sigma_{k}(A B)^{\frac{1}{\nu}}\left(Q A^{-\frac{1}{\nu-1}} Q\right)^{\frac{\nu-1}{\nu}}-(\nu-1)\left(Q A^{-\frac{1}{\nu-1}} Q\right) .
$$

But the function $t \mapsto \nu \sigma_{k}(A B)^{\frac{1}{\nu}} t^{\frac{\nu-1}{\nu}}-(\nu-1) t$ is bounded above by $\sigma_{k}(A B)$ on $t \geq 0$. Hence, exploiting the commutativity of $\left(Q A^{-\frac{1}{\nu-1}} Q\right)^{\frac{\nu-1}{\nu}}$ and $\left(Q A^{-\frac{1}{\nu-1}} Q\right)$ we have $\sigma_{k}(A B) I-Q T Q \geq 0$ and the result follows.

4. Addendum.

Example 1. The inequality (2.1) fails for $\nu=2$.
Proof. Let

$$
\begin{gathered}
B^{\frac{1}{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{4}
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{16}
\end{array}\right), \quad A=\left(\begin{array}{cc}
5.6383 & 14.3907 \\
14.3907 & 47.5744
\end{array}\right), \\
B A=\left(\begin{array}{cc}
5.6383 & 14.3907 \\
0.89941875 & 2.9734
\end{array}\right), \quad 2 B^{\frac{1}{2}}-A^{-1} \approx\left(\begin{array}{cc}
1.221960285 & 0.2353479209 \\
0.2353479209 & 0.4077902963
\end{array}\right) .
\end{gathered}
$$

We have

$$
\lambda_{2}(|B A|)=\sigma_{2}(B A)=\sigma_{2}(A B) \approx 0.2424<0.3446 \approx \lambda_{2}\left(2 B^{\frac{1}{2}}-A^{-1}\right) .
$$

Acknowledgements. The author thanks Professor Minghua Lin for helpful discussions.

REFERENCES

[1] T. Ando. Matrix Young inequalities. Oper. Theory Adv. Appl., 75:33-38, 1995.
[2] R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
[3] F. Hansen. An operator inequality. Math. Ann., 246:249-250, 1980.
[4] E. Heinz. Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann., 123:415-438, 1951.
[5] T. Kato. Notes on some inequalities for linear operators. Math. Ann., 125:208-212, 1952.
[6] S.M. Manjegani and A. Norouzi. Matrix form of inverse Young inequalities. Linear Algebra Appl., 486:484-493, 2015.
[7] X. Zhan. Matrix Inequalities. Lecture Notes in Mathematics, vol. 1790. Springer, Berlin, Heidelberg, 2002.

[^0]: *Received by the editors on February 21, 2023. Accepted for publication on March 18, 2023. Handling Editor: Fuad Kittaneh. Corresponding Author: Stephen Drury.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 0B9. (stephen.drury@mcgill.ca).

