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Abstract. Weighted generalizations of Hoffman’s ratio bound on the independence number of a

regular graph are surveyed. Several known bounds are reviewed as special cases of modest extensions.

Comparisons are made with the Shannon capacity Θ, Lovász’ parameter ϑ, Schrijver’s parameter

ϑ′, and the ultimate independence ratio for categorical products. The survey concludes with some

observations on graphs that attain a weighted version of a bound of Cvetković.
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1. Introduction. Throughout the survey, G is assumed to be a simple graph

with vertex set V = {1, 2, . . . , n} and at least one edge. The adjacency matrix of

G will be denoted by A = A(G). Thus Ai,j = 1 if ij is an edge of G and Ai,j = 0

otherwise. A weight matrix for G is a real symmetric n × n matrix W with zero

diagonal such that Wi,j = 0 whenever ij is not an edge of G and Wi,j 6= 0 for at least

one edge ij of G. Thus a weight matrix may have negative entries. Following Luz

[20], a real symmetric n× n matrix W with zero diagonal will be called an extended

weight matrix for G if Wi,j ≤ 0 whenever ij is not an edge of G and Wi,j 6= 0 for

at least one edge ij of G. Thus, every weight matrix is an example of an extended

weight matrix.

The letter S is reserved for a set of s = |S| pairwise nonadjacent or independent

vertices of G. The independence number, α(G), is the maximum of the cardinalities

s of the independent sets S in G. The italic numbers 0 and 1 denote all-ones column

vectors and all-zeros column vectors, respectively. The notation 1T denotes the char-

acteristic column vector of a subset T of V . Because S is independent, 1⊤

S
W1S = 0

for every weight matrix W of G and 1⊤

S
W1S ≤ 0 for every extended weight matrix

W of G.
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A matrix M is r-regular if each of its row sums equals r, equivalently, if M1 = r1 .

Thus, A(G) is r-regular if and only if G is r-regular, that is, if and only if each vertex

of G has degree r.

The greatest and least eigenvalues of a symmetric matrix will be denoted by λ1

and λn, respectively. If W is an extended weight matrix, then λ1(W ) > 0 > λn(W ).

For if λ1(W ) ≤ 0 or λn(W ) ≥ 0, then the eigenvalues of W would all be 0 since they

sum to 0 = trace(W ). But then W would be a zero matrix, a contradiction.

A ratio bound on α(G) attributed to A. Hoffman (unpublished, see [13, p. 16])

states that if G is r-regular and A is the adjacency matrix of G, then

α(G) ≤ |λn(A)|
r + |λn(A)|

n. (1.1)

Here, r = λ1(A). The bound (1.1) was proved earlier by P. Delsarte [7, p. 46, 50] for

graphs in association schemes.

It is tempting to conjecture that an extension of Hoffman’s bound (1.1) that

includes nonregular graphs might be α(G) ≤ n|λn(A)|/(δ(G) + |λn(A)|) where δ(G)

is the minimum vertex degree of G, but this fails for the complete bipartite graphs

Ks,t when s > t. However, W. H. Haemers [14, p. 15] (see also [15, p. 597]) extended

Hoffman’s bound (1.1) by showing that

α(G) ≤ |λ1(A)λn(A)|
δ(G)2 + |λ1(A)λn(A)|

n (1.2)

This bound not only agrees with (1.1) when G is regular, but also attains equality

for every semiregular bipartite graph, that is, for every bipartite graph for which the

degrees of the vertices in each part are constant (see Lemma 2.10).

Ratio bounds such as (1.1) and (1.2) can often be modified to allow weight ma-

trices or extended weight matrices. Such generalizations will be called weighted ratio

bounds. For example, Haemers observed that (1.1) generalizes to graphs with r-regular

weight matrices (Remark 2.5). In fact, Godsil and Newman show that (1.1) holds for

graphs with r-regular extended weight matrices (Corollary 3.3).

Special types of weight matrices or extended weight matrices are needed for some

of the bounds that are presented. The graphs that have such matrices are character-

ized in Lemma 2.6 (regular weight matrices), Remark 2.12 (nonnegative semiregular

weight matrices), Lemma 3.4 (regular extended weight matrices) and Remark 5.5

(nonnegative regular weight matrices).

In Sections 2 and 3, three main examples of weighted ratio bounds are presented:

Lemmas 2.1, 3.1 and 3.6. Other bounds follow from these three as special cases.

Relations to Schrijver’s parameter ϑ′ appear in Section 4 and relations to Shannon’s
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capacity Θ, Lovász’ parameter ϑ, and the ultimate independence ratio for categorical

products appear in Section 5. The presentation touches on work of Haemers [15], and

recent work of Godsil and Newman [10], Newman [23], Luz et al [20, 21, 22] and Alon

et al [1].

In Section 6, the paper concludes with some comments on a weighted version

of the Cvetković bound (also known as the inertia bound) that appear in the Ph.D.

thesis [8] of the first author.

2. Weighted ratio bounds from eigenvalue interlacing. For an n×nmatrix

M and subset T of {1, 2, . . . , n}, let r̄T (M) denote the average of the row sums of M

that are indexed by T . Thus,

r̄T (M) =
1⊤

T
M1

|T | .

For 0 < a ≤ b ≤ n, let

δa(M) = min{|r̄T (M)| : |T | = a} and δa,b(M) = min{|r̄T (M)| : a ≤ |T | ≤ b}.

Lemma 2.1 below provides a weighted generalization of (1.2) that exploits known

estimates on the independence number. In the lemma, if W is the adjacency matrix

A of G and a = 1, then δa,b(A) = δ(G), and the bound (2.1) becomes (1.2).

Lemma 2.1. For each weight matrix W of G, and each pair a, b of positive

integers such that a ≤ α(G) ≤ b < n,

α(G) ≤ |λ1(W )λn(W )|
δa,b(W )2 + |λ1(W )λn(W )| n. (2.1)

If equality holds, then the rows and columns of W may be reindexed to give a sym-

metric block matrix of the form
[

O B

B⊤ C

]

where O is a zero matrix of order α(G), B has constant row sums all equal to δa,b(W )

or all equal to −δa,b(W ), and B⊤ and C also have constant row sums.

Proof. The proof follows that of [15, p. 597], but with W in place of A. Let S be

a maximum independent set of s = α(G) vertices in G and let S̄ = V \S be the set of

vertices of G not in S. Let Q be the 2× 2 quotient matrix of average row sums of the

four submatrices O = WS,S, B = WS,S̄, B⊤ = WS̄,S, C = WS̄,S̄ of W determined

by the vertex partition V = S ∪ S̄. Because G is always assumed to have at least one

edge, s < n. Also, r̄S = r̄S(W ) equals the average of the row sums of B. Thus,

Q =

[

0 r̄S

sr̄S
n−s

∗

]

.
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Here λ1(Q)λ2(Q) = detQ = −sr̄2
S
/(n− s) ≤ 0 so λ1(Q) ≥ 0 ≥ λ2(Q). By eigenvalue

interlacing [15, p. 596], λ1(W ) ≥ λ1(Q) ≥ 0 ≥ λ2(Q) ≥ λn(W ). Therefore,

sr̄2
S

n− s
= |λ1(Q)λ2(Q)| ≤ |λ1(W )λn(W )|. (2.2)

Also, as mentioned earlier, |λ1(W )λn(W )| > 0. Inequality (2.1) now follows from

(2.2) by noting that r̄S(W )
2 ≥ δa,b(W )2.

Suppose W gives equality in (2.1). Then equality holds in the inequalities above.

Thus, λ1(W ) = λ1(Q) and λn(W ) = λ2(Q). That is, the interlacing is tight [15,

p. 594], so each of the submatrices B,B⊤, C has constant row sums [15, p. 596]. Also,

r̄S(W )2 = δa,b(W )2, so the row sums of B are all equal to δa,b(W ) or to −δa,b(W ).

Remark 2.2. In the expression δa,b(W ) = min{|r̄T (W )| : a ≤ |T | ≤ b}, if one
omits sets T that, for one reason or another, are clearly not independent, then a

possibly larger value δ′ is obtained that satisfies r̄S(W )2 ≥ δ′2 in (2.2), and δ′ may be

used in place of δa,b(W ) in (2.1).

Remark 2.3. In selecting b in Lemma 2.1, note that each application of (2.1)

yields an upper bound on α and so, if W is not regular, may provide an improved

value of b with which to apply (2.1) again. In selecting a, it may be helpful to keep

in mind the following simple lower bound on α(G) due to Caro [3] and Wei [29]. (Of

course, small independent sets can also be found by direct inspection.) Construct

an independent set S in G by the greedy procedure of successively selecting vertices

of minimum degree and deleting their neighbors. It follows by induction and the

convexity of the function f(t) = 1/(1 + t) that

α(G) ≥ |S| ≥
n
∑

i=1

1

1 + di
≥ n

1 + d̄
,

where d̄ =
∑

i di/n, the average of the degrees d1, . . . , dn of the vertices in G. For

lower bounds on the independence number of triangle-free graphs, see Shearer [26].

Example 2.4. The bound in Lemma 2.1 need not hold for extended weight

matrices. For if G is the star K1,n−1, then α = n− 1 and an example of an extended

weight matrix W is I − J where I is an identity matrix and J is an all-ones matrix.

But λ1(W ) = 1, λn(W ) = 1− n and δa,b(W ) = n− 1 whenever a ≤ α(G) ≤ b, so the

upper bound in inequality (2.1) is 1.

The bound involving regular weight matrices that appears in the following remark

is mentioned in the proof of Theorem 3.4 in [15]. A recent result of Godsil and

Newman [10, Lem. 2.6] states that the bound in the remark also holds for extended

weight matrices (see Corollary 3.3). Bounds that require r-regular matrices are useful

only if r > 0, so it is assumed throughout that an r-regular weight matrix or extended

weight matrix has r > 0.
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Remark 2.5. If W is an r-regular weight matrix for a graph G, then

α(G) ≤ |λn(W )|
r + |λn(W )| n (2.3)

For, in the proof of Lemma 2.1, r̄S = r and the unspecified entry ∗ in Q equals

(n− 2s)r/(n− s). Thus Q is r-regular and λ1(Q) = r. As before, |λ2(Q)| ≤ |λn(W )|
so sr2/(n− s) = | detQ| = |λ1(Q)λ2(Q)| ≤ r|λn(W )| and inequality (2.3) follows.

The next lemma determines the graphs for which the preceding remark is ap-

plicable. Because a graph has an r-regular weight matrix if and only if each of its

connected components does, it is sufficient to consider connected graphs.

Lemma 2.6. A connected graph G has an r-regular weight matrix with r > 0 if

and only if it is not bipartite or if it is bipartite with equal part sizes.

Proof. Let N = N(G) denote the n×m vertex-edge incidence matrix of a graph

G with n vertices and m edges. That is, Ni,e = 1 if vertex i is incident to edge e

and Ni,e = 0 otherwise. Weight matrices W of G with prescribed row sum vectors

b = W1 correspond to solutions w of Nw = b where w is a column m-vector whose

entries are the weights Wi,j on the edges ij of G. For connected graphs on n vertices,

rank(N) = n−1 if the graph is bipartite and rank(N) = n otherwise [25, 11]. It follows

that if G is connected and not bipartite then the equation Nw = b has a solution

w for each column n-vector b, while if G = G(X,Y ) is connected and bipartite then

Nw = b has a solution w if and only if
∑

i∈X bi =
∑

j∈Y bj . Taking b = r1 gives the

result stated.

If W is a weight matrix with nonnegative row sums, then r̄T (W ) ≥ 0 for all

subsets T ⊂ V . Thus, if 1 ≤ a ≤ b < n, and rmin(W ) denotes the minimum row sum

of W , it follows that

δa,b(W ) = δa(W ) ≥ δ1(W ) = rmin(W ), if W has nonnegative row sums.

This implies the following convenient corollary to Lemma 2.1.

Corollary 2.7. For each weight matrix W of G with nonnegative row sums

and each positive integer a ≤ α(G),

α(G) ≤ |λ1(W )λn(W )|
δa(W )2 + |λ1(W )λn(W )| n ≤ |λ1(W )λn(W )|

rmin(W )2 + |λ1(W )λn(W )| n. (2.4)

Remark 2.8. As in Remark 2.2, omitting from δa(W ) = min{r̄T (W ) : |T | = a}
any sets T that, for one reason or another, are clearly not independent, yields a

possibly larger value δ′ that may be used in place of δa(W ) in (2.4).
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For matrices M and N of the same size, write M ≥ N (respectively, M > N) if

Mi,j ≥ Ni,j (respectively, Mi,j > Ni,j) for all row and column indices i, j. A matrix

M is nonnegative if M ≥ O, where O denotes a zero matrix.

The next lemma implies that the final bound in (2.4) will not be helpful if non-

negative weight matrices are used for graphs that have small maximum independent

sets and vertices with neighbor sets that are small and independent. In particular, if

G has a vertex of degree 1, then the final bound in (2.4) is at least n/2 if nonnegative

weight matrices are used. (Of course, vertices of degree 1 may be assumed to be in a

maximum independent set and so may be deleted).

Lemma 2.9. Let G be a graph on n vertices with a vertex u whose neighbor set

is independent. Then the final upper bound in (2.4) is at least 4n
d2+2d+5 where d is the

number of neighbors of u.

Proof. Let W be a nonnegative weight matrix for G. If rmin(W ) = 0, then the

final upper bound in (2.4) is n. Since n > 4n/(d2 + 2d+ 5), it may be assumed that

rmin(W ) > 0.

If t is the sum of the weights on the edges incident to u, then t is a line sum of

W so t ≥ rmin(W ) > 0. Let B be the (d + 1) × (d + 1) principal submatrix of W

indexed by u and its neighbors. By the interlacing eigenvalues theorem for bordered

matrices [17, p. 554], λn(W ) ≤ λd+1(B) ≤ λ1(B) ≤ λ1(W ) where λ1(B) = −λd+1(B)

since trace(B) = 0 and rankB = 2. Also, using a Rayleigh-Ritz ratio [17, p. 176],

λ1(B) ≥ 1⊤B1/1⊤1 = 2t/(d+ 1). Thus, |λ1(W )λn(W )| ≥ λ1(B)2 ≥ 4t2/(d+ 1)2 ≥
4rmin(W )2/(d+ 1)2 and the stated inequality follows.

A weight matrix W for a bipartite graph G(X,Y ) with vertex parts X , Y is

(rX , rY )-semiregular if the row sums of W corresponding to vertices in X all equal rX

and the row sums corresponding to vertices in Y all equal rY .

The next lemma provides graphs where equality is attained in Corollary 2.7. As

mentioned earlier after (1.2), the lemma implies that every semiregular bipartite graph

attains equality in (1.2).

Lemma 2.10. Let G(X,Y ) be a bipartite graph. If G(X,Y ) has a nonnegative

semiregular weight matrix W , then W attains equality throughout (2.4).

Proof. For suppose that G has a nonnegative (rX , rY )-semiregular weight matrix

W. Then rX |X | = rY |Y | and |X | + |Y | = n. If λ is an eigenvalue of W , then λ2 is

an eigenvalue of W 2. Since W 2 is nonnegative, λ2 is bounded by the maximum row

sum of W 2 [17, p. 346]. But W 2 is rXrY -regular, so |λ1(W )λn(W )| ≤ rXrY . We may

assume that |X | ≥ |Y |. Then α(G) ≥ |X | and rY ≥ rX = rmin(W ). Substitution in
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(2.4) gives

|X | ≤ α(G) ≤ |λ1λn|
r2min + |λ1λn|

n ≤ rY

rX + rY

n =
rY |X |

rY |Y |+ rY |X |n = |X |.

Thus, α(G) = |X | and equality is attained in (2.4).

Example 2.11. Every path Pn has a nonnegative semiregular weight matrix W

and so, by Lemma 2.10, attains the bound (2.4). For, if n is even, let W be the

adjacency matrix of a perfect matching in Pn. But if n is odd, weight the edges of Pn

according to the pattern in Figure 2.1. Then let Wi,j be the weight on edge ij and

Wi,j = 0 otherwise. (Additional examples of trees with semiregular weight matrices

that give positive weights on the edges may be found in [9]).

4

1

3

2

2

3

1

4

3

1

2

2

1

3

2

1

1

2

Fig. 2.1. Semiregular edge-weightings of Pn for n = 5, 7, 9.

Remark 2.12. It follows from Lemma 2.5 in [9] (with pi = |Y |, qj = |X | for all
i, j) that a connected bipartite graph G(X,Y ) has a nonnegative semiregular weight

matrix if and only if

|X ||N(S)| ≥ |Y ||S| for all subsets S ⊆ X, (2.5)

where N(S) denotes the set of all neighbors in Y of vertices in S. (As in (3.1) of [9], if

the inequality in (2.12) is strict when ∅  S  X , then there is a semiregular weight

matrix that gives positive weights on the edges of the graph). Thus every bipartite

graph that satisfies condition (2.5) has a weight matrix that attains equality in (2.4).

Also, if G has a spanning subgraph H with the same independence number as G, and

H attains the bound in Lemma 2.1 with a weight matrix W , then G must also attain

the bound with W . In particular, every graph G with α(G) = ⌈n/2⌉ that contains a

Hamilton path or a perfect matching attains the bound in Corollary 2.7.

For an n×n matrix M , let r̄(M) denote the average of the row sums of M . Thus,

r̄(M) = r̄V (M) =
1⊤M1

n
.

For 0 < a ≤ n, let

γa(M) = min{r̄T (M) : |T | = a}.

Recall that δa(M) = min{|r̄T (M)| : |T | = a}. Thus, γa(M) ≤ δa(M) with equality

when M ≥ O. Also γ1(M) = rmin(M), the minimum row sum of M .
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Let Gc denote the complement of a graph G. Recall that G and Gc have the same

automorphisms and that the automorphisms may be identified with the permutation

matrices P such that P⊤AP = A where A is the adjacency matrix of G.

Let Γ = Γ(G) denote both the set of all automorphisms of G and the set of

corresponding permutation matrices. In the following lemma, edges and nonedges ij

of G are regarded as having weights determined by the corresponding entries Mi,j of

M .

Lemma 2.13. Given an n×n symmetric matrix M and a graph G with n vertices

and automorphism group Γ = Γ(G), let

M =
1

|Γ|
∑

P∈Γ

P⊤MP. (2.6)

Then, with respect to Γ, the off-diagonal entries of M are constant on edge orbits in

G and on edge orbits in Gc. Also

λ1(M) ≤ λ1(M), λn(M) ≥ λn(M), r̄(M) = r̄(M), and γa(M) ≥ γa(M)

for each positive integer a ≤ n. In particular, rmin(M) ≥ rmin(M).

Proof. For P ∈ Γ, PΓ = Γ, so M = P⊤MP . Thus, for all standard basis

vectors ei, ej and all P ∈ Γ, e⊤

i Mej = (Pei)
⊤M(Pej). But, for i 6= j, a pair (ei, ej)

corresponds to an edge of G if and only if (Pei, P ej) does. Thus the entries of M

corresponding to an edge orbit of G are equal as are entries corresponding to an edge

orbit of Gc.

If x is a λ1-eigenvector of M and x⊤x = 1, then

λ1(M) = x⊤Mx =
1

|Γ|
∑

P∈Γ

(Px)⊤M(Px) ≤ λ1(M)

where the final inequality follows because z⊤Mz ≤ λ1(M) when z⊤z = 1 [17, p. 180].

Applying the inequality to −M gives λn(M) ≥ λn(M).

Because 1⊤M1 = 1⊤P⊤MP1 , the equality r̄(M) = r̄(M) follows from (2.6). If

1T is the characteristic function of a subset of V of size a, then P1T is as well. Thus,

r̄T (M) =
1

a
1⊤

T
M1T =

1

|Γ|
∑

P∈Γ

1

a
(P1T )

⊤M(P1T ) ≥ γa(M).

Therefore, γa(M) ≥ γa(M).

The following corollary implies that the entries of a nonnegative weight matrix

W in Corollary 2.7 may be assumed to be constant on edge orbits of the automor-

phism group Γ of the graph G. In particular, if Γ is transitive on the edges of G,
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then the corollary implies that a nonnegative weight matrix in Corollary 2.7 gives no

improvement over the adjacency matrix.

Corollary 2.14. Let W be a nonnegative weight matrix for a graph G, and let

W be the weight matrix obtained from W in (2.6). Then, whenever 0 < a ≤ α(G),

α(G) ≤ |λ1(W )λn(W )|
δa(W )2 + |λ1(W )λn(W )|

n ≤ |λ1(W )λn(W )|
δa(W )2 + |λ1(W )λn(W )| n (2.7)

In particular, the inequalities hold for δ1(W ) = rmin(W ).

Proof. The first inequality in (2.7) is proved in Corollary 2.7.

Because λ1(W ) > 0 > λn(W ) for weight matrices, the inequalities in Lemma 2.13

imply that |λ1(W )λn(W )| ≤ |λ1(W )λn(W )|. Also, W ≥ O, so δa(W )2 = γa(W )2 ≥
γa(W )2 = δa(W )2, and the second inequality in (2.7) follows.

3. Weighted ratio bounds from positive semidefinite matrices. The two

examples of weighted ratio bounds considered in this section are obtained using a

technique of C. D. Godsil and M. W. Newman [10] (see also [23]). It turns out that

extensions of the ratio bound (1.1) can be obtained using the fact that if W is a

weight matrix or extended weight matrix of a graph G and D is a diagonal matrix

such that B = W +D is positive semidefinite, then y⊤By ≥ 0 for all y, with equality

if and only if By = 0 . The calculations are particularly amenable in the following

special case.

For an n-vector x and a maximum independent set S of s = α(G) vertices in a

graph G with n vertices, let y = z − sx/x⊤x where zi = xi for i ∈ S and zi = 0

otherwise. Let W be a weight matrix or extended weight matrix for G and let λn =

λn(W ) be the least eigenvalue of W . Then B = W − λnI is positive semidefinite.

If W is a weight matrix, then z⊤Wz = 0. If W is an extended weight matrix and

z ≥ 0, then z⊤Wz ≤ 0. Thus, if W is a weight matrix and x is arbitrary or if W is

an extended weight matrix and xi ≥ 0 for i ∈ S, then

0 ≤ y⊤By = y⊤Wy − λny
⊤y

≤ −2s
x⊤Wz

x⊤x
+ s2

x⊤Wx

(x⊤x)2
− λn

(

z⊤z − 2s
x⊤z

x⊤x
+

s2

x⊤x

)

(3.1)

with equality in the second line when W is a weight matrix.

Choosing x in inequality (3.1) to be an eigenvector of W gives another general-

ization of Hoffman’s regular ratio bound (1.1). This is stated in the following lemma.

There,
∑

i∈S x2
i < x⊤x and the bound is useful only if λk(W ) > 0.

Lemma 3.1. Let W be a weight matrix of G that has an eigenvector x that has

a nonzero entry on some maximum independent set S of s vertices. If λk is the
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eigenvalue associated with x, and x is scaled so that
∑

i∈S x2
i ≥ s, then

α(G) ≤ |λn(W )|
λk(W ) + |λn(W )| x

⊤x (3.2)

The inequality also holds when W is an extended weight matrix if x satisfies the

additional condition that xi ≥ 0 for i ∈ S.

Proof. It is sufficient to prove the inequality when
∑

i∈S x2
i = s. Then x⊤z =

z⊤z = s and, in (3.1), x⊤Wx = λkx
⊤x and x⊤Wz = λkx

⊤z = sλk, so

0 ≤ −2s2λk

x⊤x
+

s2λk

x⊤x
− λns+

2s2λn

x⊤x
− s2λn

x⊤x
= −s2λk

x⊤x
− λns+

s2λn

x⊤x
,

and the stated inequality follows.

Remark 3.2. If W is a nonnegative weight matrix of G and the subgraph of

G induced by the edges ij with Wi,j > 0 is spanning and connected, then W has a

λ1-eigenvector x ≥ 1 and the bound (3.2) holds with λk = λ1.

If W is an r-regular weight matrix or extended weight matrix for G, then W1 =

r1 and the bound (3.2) holds with x = 1 and λk = r. This choice implies, in

the following corollary, that the bound in Remark 2.5 extends to r-regular extended

weight matrices. The corollary first appears in an equivalent form involving positive

semidefinite matrices as Theorem 6.1 in Godsil and Newman [10] with B = W −
λn(W )I. It was also observed by Luz [20] for extended weight matrices for which

x = 1 is a λ1-eigenvector. The corollary also follows from Corollary 4.2 in Section 4.

Corollary 3.3. If W is an r-regular extended weight matrix for G, then

α(G) ≤ |λn(W )|
r + |λn(W )| n (3.3)

Every graph has an r-regular extended weight matrix with r < 0: take Wij = −1

for all i 6= j. However, as mentioned earlier, bounds such as (3.3) are useful only if

r > 0. The next lemma determines the graphs for which (3.3) is applicable. As in

Lemma 2.6, it is sufficient to consider connected graphs.

Lemma 3.4. Let G be a connected graph and let r > 0. Then G has an r-regular

extended weight matrix if and only if G is not a star K1,n−1 with n ≥ 3.

Proof. It is straightforward to check that if n ≥ 3, the starK1,n−1 has no r-regular

extended weight matrix with r > 0, so it remains to show that all other connected

graphs do have one.

If the connected graph G is not bipartite or if it is bipartite with equal part sizes,

then G has an r-regular weight matrix by Lemma 2.6, and this is also an r-regular
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extended weight matrix. This leaves the case where G = G(X,Y ) is connected and

bipartite with |Y | > |X | ≥ 2, say.

Let b be a column n-vector with bi = |Y | if i ∈ X and bj = |X | if j ∈ Y . Then
∑

i∈X bi = |X ||Y | = ∑

j∈Y bj. By the observations in the proof of Lemma 2.6, the

equation Nw = b has a solution and so G has a (|Y |, |X |)-semiregular weight matrix;

that is, the sum of the weights on edges incident to a vertex in X is always |Y |, while
the sum of the weights on edges incident to a vertex in Y always equals |X |. Give

each nonedge with both ends in X a negative weight of (|X | − |Y |)/(|X | − 1) and

every other nonedge in G a weight of zero. Then the sum of the weights on edges and

nonedges incident to each vertex in G is equal to |X |. Multiply all the weights by

r/|X |. Then the associated n×n matrix W is an r-regular extended weight matrix.

Remark 3.5. The inequalities in Lemma 2.13 imply that if W is an r-regular

extended weight matrix of G, then W is as well and 0 > λn(W ) ≥ λn(W ). Thus no

loss occurs in the bound (3.3) if W is replaced by W . Therefore, in Corollary 3.3, W

may be assumed to be constant on edge orbits in G and in Gc.

A second application of (3.1) yields a simple weighted variant of a ratio bound

proved by Godsil and Newman [10, Cor. 3.2] for adjacency matrices. As before, let

r̄T (W ) = 1⊤

T
W1/|T |, the average of the row sums of W indexed by T , let r̄(W ) =

1⊤W1/n, the average row sum ofW and, for 0 < a ≤ α(G), let γa(W ) = min{r̄T (W ) :

|T | = a}. Of course, the bounds in Lemma 3.6 are only of interest when 2γa(W ) >

r̄(W ).

Lemma 3.6. Let W be an extended weight matrix of G and let S be a maximum

independent set of vertices. If a is a positive integer such that a < α(G) and 2γa(W ) >

r̄(W ), then

α(G) ≤ |λn(W )|
2r̄S(W )− r̄(W ) + |λn(W )| n (3.4)

≤ |λn(W )|
2γa(W )− r̄(W ) + |λn(W )| n (3.5)

Proof. Let s = |S| = α(G) and x = 1 . Then in (3.1), z = 1S , z
⊤z = x⊤z = s,

x⊤x = n, x⊤Wx = nr̄ and z⊤Wx = sr̄S, so

0 ≤ −2
s2r̄S

n
+

s2r̄

n
− λn

(

s− 2s2

n
+

s2

n

)

and inequality (3.4) follows. Because γa(W ) ≤ r̄S(W ), inequality (3.5) also holds.

Remark 3.7. By Lemma 2.13, the ratio (2γa(W )− r̄(W ))/|λn(W )| will not

decrease when W is replaced by W . Thus, for the final upper bound on α(G) in (3.5),
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it may be assumed that the entries of W are constant on edge orbits and nonedge

orbits of the automorphism group Γ.

Remark 3.8. In Lemma 3.6, if W is an r-regular extended weight matrix, then

2γa(W ) − r̄(W ) = r and Corollary 3.3 is obtained once again. Also, as in Remark

2.2, omitting from the expression γa(W ) = min{r̄T (W ) : |T | = a} any sets T that are

clearly not independent, yields a possibly larger value γ′ ≤ r̄S(W ) that may be used

in place of γa(W ) in (3.5).

Throughout this paper, weight and extended weight matrices are always assumed

to have zero diagonal. It should be mentioned that some work has been done using

matrices with nonnegative diagonal entries. Let G be a simple graph and suppose

that an r-regular graph is formed from G by attaching l loops. If A is the adjacency

matrix of the resulting graph (so Ai,i is the number of loops at vertex i, A1 = r1

and trace(A) = l), Godsil and Newman [10] have shown that

α(G) ≤
−λn(A) +

√

λn(A)2 +
4l
n
(r − λn(A))

2
n
(r − λn(A))

. (3.6)

The bound is proved by taking B = A − λn(A)I, x = 1 and z = 1S in (3.1), noting

that z⊤Az ≤ l, and by examining a quadratic inequality.

In [6] it is shown that the bound in (3.6) is also an upper bound on ϑ(G) (defined

in Section 5). The bound has yielded good upper bounds on α(G) for some classes of

simple graphs that may be made regular by attaching a small number of loops [6, 10].

Remark 3.9. The bound (3.6) has a weighted analogue. Let W be an extended

weight matrix of a simple graph G. Choose a nonnegative diagonal matrix D so that

W + D is r-regular for some r > 0. Noting that 1⊤

S
W1S ≤ 0, it is straightforward

to check that the bound (3.6) continues to hold if A is replaced by W +D and l by

trace(D).

4. Schrijver’s parameter ϑ
′(G). In [27], A. Schrijver shows that

α(G) ≤ ϑ′(G) where ϑ′(G) = min
K,W

λ1(K −W ) = min
W

λ1(J −W ), (4.1)

and the minima are taken over all extended weight matrices W of G and, in the first

minimum, also over all matrices K ≥ J, the all-ones matrix. The last equality holds

because the greatest eigenvalue of a matrix is not increased by decreasing its diagonal

entries. By Lemma 2.13, the extended weight matrices W in the second minimum of

(4.1) may be restricted to those whose entries are constant on edge orbits and nonedge

orbits of G.
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Luz [20, p. 105] has shown that, for all extended weight matrices W of G,

ϑ′(G) ≤ ν(G,W ) where (4.2)

ν(G,W ) = max {21⊤x− x⊤(H + I)x : x ∈ Rn} (4.3)

and where H + I is the positive semidefinite matrix W
|λn(W )| + I. Note that for

all extended weight matrices W of G and all maximum independent subsets S, the

inequality ν(G,W ) ≥ α(G) −∑i,j∈S Wi,j ≥ α(G) follows by taking x = 1S in (4.3).

In Lemma 4.1 below, it is seen that for many weight matrices or extended weight

matrices W , the maximum problem (4.3) is the dual of a corresponding minimum

problem. In (4.5), this yields upper bounds on ϑ′(G) and so, by (4.1), on α(G). The

lemma is proved in [21, p. 310] for the special case where W is an adjacency matrix.

Lemma 4.1. For an extended weight matrix W of G, let λ1(W ) ≥ λ2(W ) ≥
· · · ≥ λm(W ) be the eigenvalues of W that are strictly greater than λn(W ), and let

U be the span of a set u1, u2, . . . , um of corresponding orthonormal eigenvectors. If
(

W −λn(W )I
)

y > 0 for some column n-vector y (for example, if W is a nonnegative

weight matrix) then

ν(G,W ) = min

{

m
∑

i=1

|λn(W )|
λi(W ) + |λn(W )| (x

⊤ui)
2 : x ≥ 1 , x ∈ U

}

(4.4)

Proof. Let Q = H + I = W
|λn(W )| + I and a = 1 in Lemma 7.1 in the Appendix.

Then Q is positive semidefinite and Qx = 1
|λn(W )|

(

W −λn(W )
)

x > 1 for some scalar

multiple x of y, so ν(G,W ) = min{z⊤D−1z : z ∈ Rm, Uz ≥ 1} by (4.3) and Lemma

7.1. The positive eigenvalues of Q are λi(Q) = λi(W )
|λn(W )| + 1 for i = 1, . . . ,m. The

eigenvectors u1, u2, . . . , um of W are also eigenvectors of Q.

The vectors Uz with Uz ≥ 1 for some z ∈ Rm are precisely the vectors x ∈ U

with x ≥ 1. Setting x = Uz gives U⊤x = U⊤Uz = Iz = z, so

z⊤D−1z = x⊤UD−1U⊤x = x⊤

(

m
∑

i=1

λi(Q)−1uiu
⊤

i

)

x =
m
∑

i=1

|λn(W )|
λi(W ) + |λn(W )| (x

⊤ui)
2

Equality (4.4) now follows from (4.3) and Lemma 7.1.

In the statement of Lemma 4.1, because x is in U (the span of the orthonor-

mal eigenvectors u1, . . . , um of W ), it follows that x =
∑m

i=1(x
⊤ui)ui. Let ai(x) =

(x⊤ui)
2/x⊤x, i = 1, . . . ,m. Then the ai(x) are nonnegative numbers that sum to 1.

Thus, whenever W is an extended weight matrix for G that has a vector x ≥ 1 in U
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(equivalently, if
(

W −λn(W )I
)

y > 0 for some y ∈ Rn) then, by (4.1), (4.2) and (4.4),

α(G) is bounded above by a convex combination of m = rank
(

W − λn(W )I
)

ratios:

α(G) ≤ ϑ′(G) ≤ ν(G,W ) ≤
m
∑

i=1

ai(x)
|λn(W )|

λi(W ) + |λn(W )|x
⊤x. (4.5)

If W has an eigenvector x ≥ 1, then (4.5) yields the following corollary. As a

bound on α(G), the corollary is a special case of Lemma 3.1. For the bound on ϑ′,

a self-contained proof that bypasses the previous duality argument is included. The

proof is a slight modification of that of Theorem 9 in [18].

Corollary 4.2. If W is an extended weight matrix of G that has an eigenvector

x ≥ 1 with eigenvalue λk(W ) > λn(W ), then

α(G) ≤ ϑ′(G) ≤ |λn(W )|
λk(W ) + |λn(W )| x

⊤x (4.6)

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of W . Because xx⊤ ≥ 11⊤ = J , the

choice K = xx⊤ may be made in (4.1). Then, for all t > 0,

α(G) ≤ ϑ′(G) ≤ λ1(xx
⊤ − tW ). (4.7)

Note that x is an eigenvector of K − tW with eigenvalue x⊤x− tλk. Any remaining

eigenvector z in an eigenvector basis for W may be chosen to be orthogonal to x and

so will also be an eigenvector for K − tW because Kz = 0 . Thus, the remaining

eigenvalues of K − tW are −tλi, i 6= k. For t = x⊤x/(λk − λn), the n eigenvalues of

K − tW are

−λn

λk − λn

x⊤x and
−λi

λk − λn

x⊤x for i 6= k.

The largest of these is obtained when i = n. The bound on ϑ′ in (4.6) now follows

from (4.7).

In Corollary 4.2, it is clear that if ϑ′(G) equals the upper bound in (4.6), then at

least one entry of x equals 1. The next example shows that it is not necessary that

x = 1 for equality to hold throughout (4.6).

Example 4.3. If a bipartite graph G has a nonnegative semiregular weight matrix

W (in particular, if G is edge-transitive), then W has a λ1(W )-eigenvector x for which

α(G) = ϑ′(G) = |λn(W )|
λ1(W )+|λn(W )| x

⊤x.

For suppose that W is a nonnegative (rX , rY )-semiregular weight matrix for G =

G(X,Y ) and that |X | ≥ |Y |, say. Then α(G) ≥ |X | and rX |X | = rY |Y |, so rX ≤ rY .
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As observed earlier in Lemma 2.10, |λ| ≤ √
rXrY for each eigenvalue λ of W . Let x be

the vector with xi = 1 for i ∈ X and xj =
√

rY /rX for j ∈ Y . Then x ≥ 1 and it is

straightforward to check that x is an eigenvector of W with eigenvalue λ1 =
√
rXrY .

By (4.6),

α(G) ≤ |λn|
λ1 + |λn|

x⊤x ≤
√
rXrY

2
√
rXrY

(

|X |+ rY

rX

|Y |
)

=
1

2
(|X |+ |X |) = |X |.

Thus, α(G) = |X | and equality holds in (4.6).

In Section 5, Lovász’ parameter ϑ(G) is defined and observed to be greater than

or equal to ϑ′(G). It will be seen there (in Remark 5.2), that the equality in the

following lemma refines a corresponding well-known equality of Lovász for ϑ(G).

Lemma 4.4. Let G be an edge-transitive graph with adjacency matrix A. If G is

also r-regular for some r (for example, if G also contains an odd cycle), then

ϑ′(G) =
|λn(A)|

r + |λn(A)|
n.

Proof. By Lemma 2.13, λ1(J −W ) ≤ λ1(J−W ) for all extended weight matrices

W of G. Also, the entries of J −W = J−W are constant on edge orbits and nonedge

orbits of G. Because G is edge-transitive, this implies that J −W = J −
(

aA− b(J −
I −A)

)

= (b+1)J − (a+ b)A− bI for some constants a, b with b ≥ 0. Thus, by (4.1),

ϑ′(G) = min{λ1

(

(b + 1)J − (a+ b)A− bI
)

: a, b ∈ R, b ≥ 0}.

Because G is edge-transitive it has at most two vertex degrees, and both occur on

each edge of G. Thus, if G contains an odd cycle, G must be r-regular for some r.

Then µ = (b + 1)n− (a+ b)r − b is an eigenvalue of J −W with eigenvector 1 . The

remaining vectors in an eigenvector basis may be chosen to be orthogonal to 1 and

so have corresponding eigenvalues −(a+ b)λi(A)− b, i = 2, . . . n.

If µ = (b + 1)n − (a + b)r − b is the greatest eigenvalue of J − W , then µ ≥
−(a+b)λn(A)−b, so a+b ≤ b+1

r+|λn(A)|n. In that case, λ1(J−W ) = µ ≥ (b+1)|λn(A)|
r+|λn(A)| n ≥

|λn(A)|
r+|λn(A)|n and equality may be attained by taking b = 0 and a = n/(r + |λn(A)|).

If some eigenvalue −(a + b)λi(A) − b, i = 2, . . . n is greatest, then µ ≤ −(a +

b)λi(A)− b, so (b+ 1)n ≤ (a+ b)(r− λi(A)) where a+ b > 0 and r− λi(A) > 0 since

(b+1)n > 0. Thus, the greatest eigenvalue is (a+b)|λn(A)|−b where a+b ≥ (b+1)n
r+|λn(A)| .

In this case, λ1(J−W ) = (a+b)|λn(A)|−b ≥ (b+1)|λn(A)|
r+|λn(A)| n ≥ λn(A)|

r+|λn(A)|n and equality

may be attained by taking b = 0 and a = n/(r + |λn(A)|).
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5. Iterated graph products. The strong product G ⊠ H of graphs G and H

is the graph with vertex set V (G) × V (H) where distinct vertices (i, j), (i′, j′) are

adjacent if and only if i is adjacent or equal to i′ in G and j is adjacent or equal to

j′ in H .

If S is independent in G and T is independent in H , then S × T is independent

in G⊠H . Thus, α(G⊠H) ≥ α(G)α(H).

Let G⊠k denote the k-fold strong product of G. From the above, it follows that
k

√

α(G⊠k) is monotone increasing. Shannon [28] introduced the parameter

Θ(G) = sup
k

k

√

α(G⊠k)

and showed that Θ(G) ≤ α∗(G), the fractional independence number [18] of G. To

better estimate Θ(G), Lovász introduced the finer upper bound

ϑ(G) = min
W

λ1(J −W ),

where J is the all-ones matrix and the minimum is taken over all weight matrices W

of G. Lovász [18] showed that

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ α∗(G)

Clearly, ϑ′(G) ≤ ϑ(G). There may be no consistent inequality between ϑ′(G) and

Θ(G), but we have no examples to confirm this.

Luz and Schrijver [22] have shown that

ϑ(G) = min
W

ν(G,W )

where ν(G,W ) is defined in (4.3) and the minimum is taken over all weight matrices

W of G. Thus, the upper bound in (4.5) is also an upper bound for ϑ(G) if W

is restricted to be a weight matrix such that
(

W − λn(W )I
)

y > 0 for some y (for

example, if W is a nonnegative weight matrix). This implies the following lemma. (If

the weight matrix W is regular, the lemma can be proved directly using the technique

of Corollary 4.2 with x = 1 and xx⊤ = 11⊤ = J .)

Lemma 5.1. If W is a weight matrix of G that has an eigenvector x ≥ 1 with

eigenvalue λk > λn, then

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ |λn(W )|
λk(W ) + |λn(W )| x

⊤x (5.1)

Thus, if α(G) attains the final upper bound in (5.1) for some weight matrix W and

eigenvector x ≥ 1 , then Θ(G) = α(G).
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Remark 5.2. If G is an edge-transitive graph with adjacency matrix A and G

is r-regular, then

ϑ(G) =
|λn(A)|

r + |λn(A)|
n.

This equality was observed in [18, p. 5]. Because ϑ′(G) ≤ ϑ(G), it follows from

Lemma 5.1 and the stronger result in Lemma 4.4.

Remark 5.3. If G has an r-regular weight matrix W , then the inequality

Θ(G) ≤ |λn(W )|
r(W ) + |λn(W )| n

can be shown to follow directly from Corollary 3.3 without using Lovász’ bound

Θ(G) ≤ ϑ(G). Following [15, Thm. 3.4], first note that Wk = ⊗k(tW + I) − ⊗kI

is a weight matrix for G⊠k with constant row sums (tr + 1)k − 1. Choose t =

1/|λn(W )|. Then λn(Wk) = −1 and applying Corollary 3.3 to G⊠k gives the upper

bound k

√

α(G⊠k) ≤ n|λn(W )|/(r+ |λn(W )|) for all k. Thus, Θ(G) also has this upper

bound.

A parameter analogous to Θ(G) is obtained by taking categorical products. The

categorical (or weak ) product G × H of graphs G and H is the graph with vertex

set V (G) × V (H) where distinct vertices (i, j), (i′, j′) are adjacent if and only if i is

adjacent to i′ in G and j is adjacent to j′ in H .

If S is independent in G and T is independent in H , then S×V (H) and V (G)×T

are independent in G×H . Thus, α(G×H) ≥ max{α(G)|V (H)|, |V (G)|α(H)}.

Let G×k denote the k-fold categorical product of G. From the above, it follows

that the independence ratio, i(G×k) = α(G×k)/nk, is monotone increasing. The limit,

I×(G) = supk i(G
×k), is called the ultimate categorical independence ratio. This was

introduced by Brown, Nowakowski and Rall in [2], and is denoted there by A(G).

The following bound was observed in [1, p. 915] in the special case where W = A,

the adjacency matrix of a regular graph.

Lemma 5.4. If a graph G has a nonnegative regular weight matrix W , then

α(G)

n
≤ I×(G) ≤ |λn(W )|

r(W ) + |λn(W )| (5.2)

Thus, equality holds if α(G) = |λn(W )|
r(W )+|λn(W )|n.

Proof. If W is nonnegative and r-regular, then so is each irreducible direct sum-

mand of W . It follows that r = λ1(W ), the largest eigenvalue of W ([17, p. 503-508]).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 468-489, August 2010



ELA

Weighted Matrix Eigenvalue Bounds on the Independence Number 485

The k-fold tensor product, ⊗kW , is an rk-regular weight matrix for G×k with greatest

eigenvalue rk and least eigenvalue λn(W )rk−1. Thus, by Corollary 3.3 or Remark 2.5,

α(G)

n
≤ α(G×k)

nk
≤ |λn(W )rk−1|

rk + |λn(W )rk−1| =
|λn(W )|

r + |λn(W )| .

The result follows by taking the supremum over all k.

Remark 5.5. Results in Lovász and Plummer [19, p. 218] imply that a graph

has a nonnegative regular weight matrix if and only if it contains a perfect 2-factor,

that is, a spanning subgraph each of whose components is either a cycle or an edge.

As observed earlier, there is no loss in (5.2) if the entries of the nonnegative regular

weight matrix W are assumed to be constant on edge orbits in G. In particular, if G

is edge-transitive and has a regular weight matrix W , then G is regular and there is

no loss in taking W = A, the adjacency matrix of G.

The Cartesian product, G�H , of graphs G and H is the graph with vertex set

V (G) × V (H) where vertices (i, j), (i′, j′) are adjacent if and only if j = j′ and i is

adjacent to i′ in G, or i = i′ and j is adjacent to j′ in H . It is not helpful to apply

weighted ratio bounds to iterated Cartesian products because the independence ratio

i(G�k) = α(G�k)/nk is monotone decreasing. The limit, I�(G) = infk i(G
�k), was

introduced in [16].

This study would be incomplete without mentioning a completely different type

of weighted matrix eigenvalue bound on the independence number, the inertia bound.

Unlike the ratio bounds, the inertia bound depends only on the signs of the eigenvalues

of a weight matrix.

6. The inertia bound. For an n×n real matrix M , a subspace U of Rn is said

to be M -isotropic if x⊤My = 0 for all x, y ∈ U . The Witt index of M , denoted by

Witt(M), is the maximum of the dimensions of the M -isotropic subspaces of Rn.

Let S be a maximum independent set of vertices in G and let U be the subspace

of vectors x with xi = 0 when i /∈ S. Then U has dimension α(G) = |S| and is

W -isotropic for every weight matrix W of G. Thus

α(G) ≤ min
W

Witt(W ) (6.1)

where the minimum is taken over all weight matrices W of G.

Remark 6.1. The bound (6.1) still holds when the notions of weight matrix and

Witt index are extended to arbitrary fields. When the field is finite, if the bound

is attained by a graph G, then n − 1 − t(G)/2 ≤ α(G) ≤ n − t(G)/2 where t(G)

is the term rank of the adjacency matrix of G [8, p. 25]. Thus, the bound is rarely
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attained when the field is finite. Still, the graphs for which equality is attained can

be described when the field is finite. They include, for example, graphs G with the

König property, α(G) + ν(G) = n, where ν(G) is the number of edges in a maximum

matching [8, p. 27, 34, 37].

If W is a weight matrix of G, it follows from (6.1) and the spectral theorem for

real symmetric matrices that

α(G) ≤ Witt(W ) = n0(W ) + min{n+(W ), n−(W )} (6.2)

where n+(W ), n−(W ), n0(W ) denote the numbers of positive, negative and zero

eigenvalues of W , respectively.

For the case where W is the adjacency matrix of G, the bound (6.2) appears in

the thesis of Cvetković [4] (see also [5, p. 88]), so (6.2) is often called the Cvetković

bound. Because the triple (n+(W ), n−(W ), n0(W )) is the inertia of W , the bound

(6.2) is also called the inertia bound.

The inertia bound extends to ordered fields [8, p. 42]. However, as the following

question indicates, it is not even known if it is always attained in the real case.

Question 6.2. Does each graph G have a real weight matrix W such that

α(G) = n0(W ) + min{n+(W ), n−(W )}?

If the answer is positive, then it should be possible to show that there is always a

weight matrix for which the inertia bound is better than every weighted ratio bound.

Unfortunately, this has proved to be a very difficult task, because the weight matrices

that work best for the inertia bound can be quite different from those that work best

for weighted ratio bounds.

Still, some progress has been made. In [8], it is proved that it is sufficient to answer

Question 6.2 for connected graphs that are α-edge-critical with minimum degree at

least 3 and having no inclusion between closed neighborhoods. Using results from [19]

and a computer search, it turns out that there are only two such graphs when n ≤ 8:

the graph K2 on 2 vertices and the 4-regular graph on eight vertices with i adjacent

to i± 1 and i± 2 (mod 8). It then follows that the answer is positive for all graphs

of order n ≤ 8.

A computer search using a program of B. McKay for generating graphs shows

that the answer is also positive for all graphs of order n ≤ 10. The vertex transitive

graphs of order n ≤ 12 also attain the inertia bound. The Paley graph on n = 13

vertices is a vertex transitive graph for which the answer to Question 6.2 remains

undecided.
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7. Appendix. A quadratic programming problem. The proof of the fol-

lowing lemma is a straightforward extension of that given in [21, p. 310] for the case

where a = 1 , Q = A
|λn(A)| + I and A is an adjacency matrix.

Lemma 7.1. Let Q be an n×n positive semidefinite symmetric matrix with eigen-

values λ1 ≥ λ2 ≥ · · · ≥ λm > 0 = λm+1 = · · · = λn. Let D = diag(λ1, λ2, · · ·λm) be

the m ×m diagonal matrix of positive eigenvalues of Q and let U = [u1 u2 · · · um]

be an n×m matrix of corresponding orthonormal column eigenvectors. Let a ∈ Rn.

If Qx > a for some x ∈ Rn (equivalently, if Uz > a for some z ∈ Rm), then

max{2a⊤x− x⊤Qx : x ∈ Rn, x ≥ 0} = min{z⊤D−1z : z ∈ Rm, Uz ≥ a}. (7.1)

Proof. Since the zero eigenvalues of Q do not contribute to its spectral resolution,

Q =
∑m

i=1 λiuiu
⊤

i = UDU⊤. Also, because the columns of U are linearly independent,

rankU = m = rankQ soQ and U have the same range. Thus, Qx > a for some x ∈ Rn

if and only if Uz > a for some z ∈ Rm.

Let (P) denote the minimum problem in (7.1). Then (P) is a convex problem and

the Lagrangian [24, p. 182] of (P) is

L(z, x) = z⊤D−1z + (a− Uz)⊤x, where z ∈ Rm, x ∈ Rn, x ≥ 0 .

The Lagrangian dual [24, p. 199] of the minimum problem (P) is the maximum prob-

lem

max
x≥0

h(x) where h(x) = min
z∈Rm

L(z, x).

For each x, L(z, x) is an unconstrained continuously differentiable strictly convex

function of z that is bounded below on Rm. Thus, h(x) = L(z∗, x) where 0 =

∇zL(z, x)|z=z∗ = 2D−1z∗ − U⊤x or z∗ = 1
2DU⊤x. Substituting z∗ for z in L(z, x)
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gives

max
x≥0

h(x) = max
x≥0

{a⊤x− 1

4
x⊤Qx} = max

x≥0

{2a⊤x− x⊤Qx}.

Because there is a vector z ∈ Rm such that Uz > a, the convex problem (P) is

superconsistent [24, p. 169]. Thus, there is no duality gap [24, p. 210] and equality

(7.1) follows.
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