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REFINED INERTIALLY AND SPECTRALLY ARBITRARY

ZERO-NONZERO PATTERNS∗

L. DEAETT†, D.D. OLESKY‡ , AND P. VAN DEN DRIESSCHE†

Abstract. The refined inertia of a matrix is a quadruple specifying its inertia and additionally

the number of its eigenvalues equal to zero. Spectral properties, especially the refined inertias, of

real matrices with a given zero-nonzero pattern are investigated. It is shown that every zero-nonzero

refined inertially arbitrary pattern of order 4 or less is also spectrally arbitrary. Irreducible and

reducible examples are presented to show that for higher orders this is not the case. A further

example shows that two zero-nonzero patterns that are not refined inertially arbitrary can have

a direct sum that is refined inertially arbitrary, paralleling a known result for inertially arbitrary

patterns. Analogously, it is shown that the direct sum of two zero-nonzero patterns may be spectrally

arbitrary even if neither summand is spectrally arbitrary.
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1. Introduction. The placement of the zero and nonzero entries in a matrix de-

scribes its combinatorial structure. Properties of this structure often have important

implications, for example when the matrix in question is derived from a linearized

dynamical system (see, e.g., [11], where the signs of the nonzero entries are also speci-

fied). The main purpose of this paper is to consider how this combinatorial description

relates to spectral properties of real matrices with that structure, especially in terms

of refined inertia (as defined below). To specifically describe these structural and

spectral properties, we state some definitions.

A zero-nonzero pattern is a matrix with entries from the set {0, ∗}. When un-

ambiguous, we use the term pattern alone to refer to a zero-nonzero pattern. Given

a real matrix A, if A is obtained by replacing every nonzero entry of A with a ∗,

then A has pattern A. A pattern A′ is a superpattern of A if A can be obtained

by replacing some (possibly empty) subset of the nonzero entries of A′ with zeros.

Two square patterns A and B are equivalent if one can be obtained from the other

by any combination of transposition and permutation similarity. A square pattern is
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reducible if it is permutation similar to a pattern of the form
[

X Y
O Z

]

, where X and Z

are square and non-vacuous. A pattern that is not reducible is irreducible.

The inertia of a matrix A of order n is the ordered triple (n+, n−, n0) of nonnega-

tive integers that sum to n, where n+ is the number of eigenvalues of A with positive

real part, n− is the number with negative real part, and n0 is the number with zero

real part. A pattern A allows a given inertia if there is some matrix A having both

this inertia and the pattern A. If a pattern A allows every possible inertia, then A

is an inertially arbitrary pattern (IAP). Recent results concerning inertially arbitrary

patterns appear, for example, in [3, 4, 8, 10].

A pattern A allows characteristic polynomial p(x) if there is some matrix A

that has both characteristic polynomial p(x) and the pattern A. If a pattern A of

order n allows every monic polynomial of degree n with real coefficients, then A is

a spectrally arbitrary pattern (SAP). The concept of a spectrally arbitrary pattern

was introduced in [7] for sign patterns, where a sign pattern is a matrix with entries

from the set {+,−, 0}. The notions of superpattern, reducible, irreducible, allow, and

inertially and spectrally arbitrary are defined analogously for sign patterns as they

are for zero-nonzero patterns.

In this paper, we concentrate on zero-nonzero patterns, but our motivation is

derived from questions that have been posed for sign patterns. In particular, we use

the notion of refined inertia that was introduced in [9] for sign patterns.

Let A be a real matrix of order n. The refined inertia ofA is the ordered quadruple

(n+, n−, nz, 2np) of nonnegative integers that sum to n, where (n+, n−, nz + 2np) is

the inertia of A while nz is the algebraic multiplicity of zero as an eigenvalue of A,

and 2np is the number of nonzero pure imaginary eigenvalues. Thus, in the refined

inertia, the number of eigenvalues with zero real part (n0 in the inertia) has been split

into nz and 2np, a split that may have important consequences when the pattern in

question is derived from a linearized dynamical system. A pattern A allows refined

inertia (n+, n−, nz, 2np) if there is some matrix having both this refined inertia and

the pattern A. If a pattern A allows every possible refined inertia, then A is a refined

inertially arbitrary pattern (rIAP), and this notion is defined analogously for sign

patterns.

The reversal of a refined inertia is obtained by exchanging the first two entries

in the quadruple; i.e. the reversal of (n+, n−, nz, 2np) is (n′
+, n

′
−, nz, 2np), where

n′
+ = n− and n′

− = n+. Note that, as A and −A have the same zero-nonzero pattern,

a pattern A allows a given refined inertia if and only if it allows the reversal of that

refined inertia. Hence, in order to verify that a given pattern is an rIAP, we need to

verify only that it allows one of each possible refined inertia and its reversal.
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For n ≥ 2, the maximum number of distinct inertias allowed by any zero-nonzero

or sign pattern of order n is easily seen to be (n + 1)(n + 2)/2 =
(

n+2
2

)

. Here we

derive a formula for the maximum number of distinct refined inertias allowed by any

zero-nonzero or sign pattern of order n ≥ 2. (A zero-nonzero pattern of order 1 allows

either 1 or 2 refined inertias.)

Theorem 1.1. The maximum number of distinct refined inertias allowed by any

zero-nonzero or sign pattern of order n ≥ 2 is

(n2 + 1)(n2 + 2)(2n+ 3)

6
for n even, and

⌈n
2 ⌉(⌈

n
2 ⌉+ 1)(4⌈n

2 ⌉+ 5)

6
for n odd.

The maximum number of distinct refined inertias, excluding reversals, allowed by any

zero-nonzero pattern of order n ≥ 2 is

(n+ 2)(n+ 3)(n+ 4)

24
for n even, and

(n+ 1)(n+ 3)(n+ 5)

24
for n odd.

Proof. For n ≥ 2, let R(n) denote the maximum number of distinct refined

inertias allowed by any pattern of order n. It is trivial to check that R(2) = 7 and

R(3) = 13, in agreement with the formulas given above.

Suppose n ≥ 4. If n is even, say n = 2k, then there are
(

2k+2
2

)

possible refined

inertias with np = 0 and R(2k − 2) possible refined inertias with np > 0. Hence, by

induction,

R(n) =
(

2k+2
2

)

+R(2k − 2)

=
(2k + 2)(2k + 1)

2
+

k(k + 1)(4k − 1)

6

=
(k + 1)(k + 2)(4k + 3)

6

and the proof is complete as k = n
2 . If n is odd, say n = 2k + 1, then similarly,

R(n) =
(

2k+1+2
2

)

+R(2k − 1)

=
(2k + 3)(2k + 2)

2
+

k(k + 1)(4k + 5)

6

=
(k + 1)(k + 2)(4(k + 1) + 5)

6
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and the proof is complete as k + 1 = ⌈n
2 ⌉.

By definition, these maximum values are achieved by any rIAP of order n. In

particular, any full pattern (i.e., a pattern with all entries ∗) of order n ≥ 2 is a SAP

(see e.g., [2]) and hence is an rIAP.

Now let R̃(n) denote the maximum number of distinct refined inertias, excluding

reversals, allowed by any pattern of order n ≥ 2. It is trivial to check that R̃(2) = 5

and R̃(3) = 8, in agreement with the formulas given above.

Suppose n ≥ 4. If n is even, say n = 2k, the number of possible refined inertias

in which the first two coordinates are both equal to i is k− i+1, for 0 ≤ i ≤ k. Hence

there are
∑k

i=0(k − i + 1) = (k+1)(k+2)
2 refined inertias that are equal to their own

reversals. Thus

R̃(n) =
1

2

(

R(n)−
(k + 1)(k + 2)

2

)

+
(k + 1)(k + 2)

2
=

(2k + 2)(2k + 3)(2k + 4)

24

and the proof is complete as 2k = n. The proof for n odd is similar.

For a pattern X of order n, letD(X ) be the directed graph on vertices {v1, . . . , vn}

in which an arc is present from vi to vj if and only if the (i, j) entry of X is nonzero.

In analyzing the refined inertias or characteristic polynomials allowed by a particular

pattern, the following result of [8] (the sign pattern version of which appeared earlier

in [1]) is used to normalize matrices throughout the remainder of this paper.

Lemma 1.2 ([8, Proposition 2]). Let A be a matrix of order n with irreducible

zero-nonzero pattern A. If T is a directed subgraph of D(A) and the underlying

(undirected) graph of T is a tree, then A is diagonally similar to a matrix with the

same zero-nonzero pattern in which all entries corresponding to arcs of T are 1.

In [9] the question was raised as to whether or not a sign pattern that is an rIAP

must be a SAP. In Section 2 we address this question for irreducible zero-nonzero

patterns and exhibit such a pattern of smallest order that is an rIAP but not a SAP.

Section 3 focuses on reducible zero-nonzero patterns. There we exhibit a direct sum

of smallest order that is an rIAP but not a SAP, and a smallest order direct sum of

two zero-nonzero patterns that is an rIAP with neither summand an rIAP. This latter

example is of order 8, one less than the order of a smallest direct sum of two zero-

nonzero non-IAPs that is an IAP as given in [3, Example 9]. In Section 4, we address

an open question stated in [3] by giving an example of two zero-nonzero patterns with

neither a SAP such that their direct sum is a SAP.

2. Refined inertia and irreducible nonzero patterns. We first investigate

the relationship between the refined inertias allowed by a given pattern and the char-

acteristic polynomials allowed by the pattern. We begin by showing that for matrices
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of order at most 4, a pattern that allows all refined inertias must allow all character-

istic polynomials.

Spectral properties of the following pattern are important in most of our results.

Definition 2.1. Let

M =









∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

∗ ∗ 0 0









.

In [6] a particular signing of M was analyzed in detail, and the following result

was obtained, which we state here in the weaker case of the associated zero-nonzero

pattern.

Lemma 2.2 ([6, Corollary 2.3]). Let p(x) be a monic polynomial of degree 4 with

real coefficients. Each of the following conditions is sufficient for M to allow the

characteristic polynomial p(x).

(i) The constant term of p(x) is positive.

(ii) The zeros of p(x) are all real and the constant term of p(x) is zero.

The conditions provided by Lemma 2.2 for a characteristic polynomial to be

allowed by M are sufficient to determine precisely which refined inertias are allowed

by M.

Proposition 2.3. The pattern M does not allow (0, 0, 2, 2) but does allow every

other refined inertia.

Proof. Note that M allows the refined inertia (0, 0, 2, 2) if and only if it allows

some characteristic polynomial of the form x4 + qx2 for q > 0, which we now show is

not the case.

Suppose A is a matrix with pattern M. Without loss of generality,

A =









a 1 1 0

b c d 0

0 0 0 1

e f 0 0









for some nonzero real numbers a, b, c, d, e and f . Then the characteristic polynomial

of A is

pA(x) = x4 + (−a− c)x3 + (ac− b)x2 + (−df − e)x+ (adf − bf + ce− de).
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Suppose pA(x) = x4 + qx2. Then a = −c while e = −df so that

pA(x) = x4 + (−c2 − b)x2 + (−2cdf − bf + d2f).

That q is the coefficient of x2 implies b = −q − c2 and hence

pA(x) = x4 + qx2 + ((c− d)2 + q)f.

But then, as f is nonzero, a zero constant term requires that q ≤ 0. Hence, M cannot

allow any characteristic polynomial of the form x4 + qx2 for q > 0 and therefore does

not allow the refined inertia (0, 0, 2, 2).

The fact that M allows every other refined inertia follows from Lemma 2.2, as it

is straightforward to exhibit a polynomial that has any one of the other 13 (excluding

reversals) refined inertias.

Definition 2.4. Let

T2 =

[

∗ ∗

∗ ∗

]

.

This pattern T2 is the zero-nonzero pattern associated with the sign pattern of

order 2 belonging to a family of tridiagonal sign patterns introduced in [7]. Every

pattern of that family is known to be a SAP for n ≤ 16 (see [2] for details), and in

particular the zero-nonzero pattern T2 is a SAP.

Theorem 2.5. For n ≤ 4, a zero-nonzero pattern of order n is an rIAP if and

only if it is a SAP.

Proof. For n = 1 the statement is vacuously true. For n = 2 it is shown in [4]

that T2 is the only IAP, and hence the only possible rIAP. Since T2 is a SAP, the

proof is complete in this case. For n = 3, the zero-nonzero IAPs are classified by [4,

Proposition 2.2] and are SAPs by [5, Theorem 1.1]. Hence, for n ≤ 3, a pattern is an

IAP if and only if it is an rIAP if and only if it is a SAP.

The case n = 4 requires some analysis. If a zero-nonzero rIAP of order 4 is

reducible, then by [4, Proposition 2.3] it is equivalent to a reducible superpattern of

T2 ⊕ T2 and hence is a SAP (see e.g. [6, Proposition 2.1]). If a zero-nonzero IAP of

order 4 is irreducible, then it follows from [4, Proposition 2.4 and Theorem 2.5] that

the pattern must be either a SAP or equivalent to one of

N ∗
1 =









∗ ∗ 0 0

0 0 ∗ ∗

∗ ∗ 0 0

0 0 ∗ ∗









, N ∗
2 =









∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

∗ ∗ 0 0









or N ∗
3 =









∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ 0 0 ∗

∗ 0 0 0









.
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Hence, it remains to show that none of these three patterns is an rIAP.

The pattern N ∗
1 is not an rIAP as it does not allow the refined inertia (0, 0, 0, 4).

To see this, note that if A has the pattern N ∗
1 , then without loss of generality

A =









a 1 0 0

0 0 1 1

b c 0 0

0 0 d e









and the characteristic polynomial of A is

pA(x) = x4 + (−a− e)x3 + (ae − c)x2 + (ac− cd+ ce− b)x+ (d− e)(ca− b).

If A has refined inertia (0, 0, 0, 4), then

pA(x) = (x2 + α)(x2 + β) = x4 + (α + β)x2 + αβ

for some α > 0 and β > 0. Hence a = −e and b = ac − cd + ce = −cd. Also

c = ae− α− β = −e2 − α− β, so that c < 0. But now the constant term is

(d− e)(ac− b) = (d− e)((−e)c− (−cd)) = (d− e)(−ce+ cd) = c(d− e)2 ≤ 0,

while the constant term is also αβ > 0, a contradiction.

The pattern N ∗
2 is equal to M (Definition 2.1) and hence by Proposition 2.3 is

not an rIAP.

The pattern N ∗
3 is not an rIAP as it does not allow the refined inertia (0, 0, 4, 0).

To see this, note that if A has the pattern N ∗
3 , then without loss of generality

A =









a 1 b 0

c d 1 0

e 0 0 1

f 0 0 0









and the characteristic polynomial of A is

pA(x) = x4 + (−a− d)x3 + (ad− be− c)x2 + (bde− bf − e)x+ (bd− 1)f.

If A has refined inertia (0, 0, 4, 0), then every coefficient of p(x) is zero. Thus bd = 1

and hence the coefficient of x is bde−bf−e = e−bf−e = −bf . But this last quantity

cannot be zero with b and f both nonzero.

The proof of Theorem 2.5 makes use of the fact that, for patterns of orders 2 and

3, the notions of IAP, rIAP and SAP are equivalent. The proof also shows that, for a
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pattern of order 4, being an IAP no longer implies being an rIAP; however being an

rIAP is still equivalent to being a SAP, as the theorem states. We now show that for

patterns of order 5, being an rIAP no longer implies being a SAP. Consequently, no

two of the notions of IAP, rIAP and SAP are equivalent.

We now introduce the irreducible zero-nonzero pattern L of order 5 that was

discovered by considering superpatterns of the pattern K from [10]. This pattern L

plays a leading role in two of our main results.

Definition 2.6. Let

L =















∗ ∗ 0 0 ∗

0 0 ∗ 0 ∗

0 0 0 ∗ 0

0 0 ∗ 0 ∗

∗ ∗ 0 0 ∗















.

The following result precisely captures which characteristic polynomials are al-

lowed by L.

Proposition 2.7. Let p(x) = x5 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0. Then L fails

to allow characteristic polynomial p(x) if and only if p4 = p2 = 0 while p0 6= 0.

Proof. If A has pattern L, then without loss of generality

A =















a 1 0 0 b

0 0 1 0 h

0 0 0 1 0

0 0 c 0 1

d f 0 0 g















for some nonzero real numbers a, b, c, d, f , g and h and has characteristic polynomial

pA(x) = x5 − (a+ g)x4 + (ag − bd− fh− c)x3 + (c(a+ g)− h(d− fa))x2

+ (cfh− f − acg + bcd)x+ (d− fa)(ch− 1).

Thus if pA(x) = p(x) with p4 = p2 = 0, then a+ g = 0 and d− fa = 0, implying that

the constant term of p(x) must be zero as well. Hence if p4 = p2 = 0 while p0 6= 0,

then L fails to allow p(x).

For the other direction, assume that p4 6= 0 or p2 6= 0 or p0 = 0. Let a, b, c, d, f ,

g and h be chosen as follows. First let the following four polynomials be defined for
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any real number a.

q1(t) = ap4(a+ p4)t
2 + (p0 + a2p2 − p1p4 + ap2p4)t+ (a2p0 − p1p2 + p0p3 + ap0p4)

q2(t) = p4t
2 + p2t+ p0

q3(t) = (a+ p4)t
2 + (ap3 + p2)t+ (p0 + ap1)

q4(t) = t2 + p3t+ p1

Case 1. p4 6= 0 or p2 6= 0. Choose any nonzero a with a 6= −p4. It is then

possible to choose c 6= 0 such that q1(c), q2(c), q3(c) and q4(c) are all nonzero while

p2 + cp4 6= 0. Then take

b =
q1(c)

q2(c)q3(c)
, d = −q3(c), f = −q4(c), g = −a− p4 and h =

p2 + cp4
q2(c)

.

Case 2. p4 = p2 = p0 = 0. Take a = 1 and choose any c 6= 0 with q4(c) 6= 0. It

is then possible to choose h such that 1 + c+ p3 − hq4(c) 6= 0. Then take

b =
1 + c+ p3 − hq4(c)

q4(c)
, d = f = −q4(c) and g = −1.

Note that in each case the above choices give nonzero values for a, b, c, d, f , g

and h. It is straightforward to verify that these choices yield pA(x) = p(x).

While Proposition 2.7 shows immediately that L is not a SAP, the following

corollary shows that L allows most refined inertias.

Corollary 2.8. Let p(x) be a monic polynomial of degree 5 with real coefficients.

If p(x) has a zero on the imaginary axis, then L allows characteristic polynomial p(x).

Proof. Suppose p(x) = x5 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0 has a zero iω for some

real ω. Then

0 = p(iω) = iω5 + p4ω
4 − ip3ω

3 − p2ω
2 + ip1ω + p0

and so the real part of the right-hand side must be zero, i.e. p4ω
4 − p2ω

2 + p0 = 0.

Therefore if p0 6= 0, then p4 and p2 cannot both be zero, so L allows characteristic

polynomial p(x) by Proposition 2.7.

Theorem 2.9. The irreducible zero-nonzero pattern L of order 5 is an rIAP but

not a SAP.

Proof. As already noted, Proposition 2.7 shows that L is not a SAP. To show that

L is in fact an rIAP, first note that for k ∈ {0, 1, . . . , 5} the polynomial

(x − 1)k(x + 1)5−k has a nonzero coefficient of x4, and thus, by Proposition 2.7,
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is allowed as a characteristic polynomial by L. Hence, L allows any refined inertia of

the form (k, 5 − k, 0, 0). By Corollary 2.8, any refined inertia not of this form is also

allowed by L.

Note that, by Theorem 2.5, the pattern L is a smallest irreducible zero-nonzero

pattern that is an rIAP while failing to be a SAP. Moreover, for any given refined

inertia allowed by L, or more generally for any given characteristic polynomial allowed

by L, the proof of Proposition 2.7 yields a constructive procedure for determining a

matrix with pattern L having the given refined inertia or characteristic polynomial.

3. Refined inertia and reducible zero-nonzero patterns. Theorem 2.5

shows that an irreducible zero-nonzero pattern of order 4 or less that is an rIAP must

be a SAP. The following proposition provides an analogous statement for reducible

patterns.

Proposition 3.1. For n ≤ 5, a reducible zero-nonzero pattern of order n is an

IAP if and only if it is an rIAP if and only if it is a SAP.

Proof. If a pattern is a SAP, then it is obviously an rIAP (and therefore an IAP).

For the converse, let A be a reducible zero-nonzero pattern of order n ≤ 5. Then there

exist zero-nonzero patterns of strictly smaller order, say A1 and A2, such that the

characteristic polynomials (and hence the refined inertias) allowed by A are precisely

those allowed by A1 ⊕A2. Thus, it suffices to show that if A1 ⊕A2 is an rIAP, then

it is a SAP.

Let A′ = A1 ⊕ A2. It is clear that if A′ has a summand of order 1, then it is

not an IAP. Hence, without loss of generality A1 has order 2 and A2 has order 3.

Note that for A′ to allow the inertias (5, 0, 0) and (0, 0, 5), A1 must allow the inertias

(2, 0, 0) and (0, 0, 2), and A2 must allow the inertias (3, 0, 0) and (0, 0, 3). Thus A1

is a SAP by [10, Corollary 2] and A2 is a SAP by [10, Theorem 3]. Hence, A′ is the

direct sum of two SAPs, only one of which has odd order. Such a pattern must be a

SAP (see e.g., [6, Proposition 2.1]).

Definition 3.2. Let

P =









∗ ∗ 0 0

∗ ∗ ∗ 0

0 0 0 ∗

∗ 0 ∗ 0









.

This irreducible zero-nonzero pattern was introduced in [4] where it was shown

that P fails to allow the inertia (1, 0, 3). In particular, P is not an rIAP. The following

proposition completely characterizes the refined inertias allowed by P .
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Proposition 3.3. The irreducible zero-nonzero pattern P allows all refined in-

ertias except for (2, 0, 2, 0), (2, 0, 0, 2), (1, 0, 3, 0) and (1, 0, 1, 2) and their reversals.

Proof. By Theorem 1.1, there are 14 (excluding reversals) refined inertias to

verify. Without loss of generality a matrix A with zero-nonzero pattern P is of the

form

A =









a 1 0 0

b c 1 0

0 0 0 1

d 0 e 0









(3.1)

for some nonzero real numbers a, b, c, d and e. The characteristic polynomial of A is

pA(x) = x4 − (a+ c)x3 + (ac− b− e)x2 + e(a+ c)x+ (e(b− ac)− d). (3.2)

Note that in pA(x) the coefficient of x is zero if and only if the coefficient of x3 is

zero. Thus A cannot have refined inertia (2, 0, 2, 0) or (1, 0, 3, 0).

Now suppose the refined inertia of A is either (1, 0, 1, 2) or (2, 0, 0, 2). Then

pA(x) = (x2 + αx + β)(x2 + γ) = x4 + αx3 + (β + γ)x2 + αγx+ βγ (3.3)

for some real numbers α, β and γ where, in particular, α = −(a+ c) cannot be zero.

Comparison of the ratio of the coefficient of x to that of x3 in each of (3.2) and (3.3)

yields γ = −e. Equating the coefficients of x2 yields β + γ = ac− b− e = ac− b+ γ

and hence β = ac− b. Finally, equating the constant terms gives

βγ = e(b− ac)− d = (−γ)(−β)− d = βγ − d.

But this implies that d = 0, a contradiction. Hence A cannot have refined inertia

(1, 0, 1, 2) or (2, 0, 0, 2).

The following chart summarizes the refined inertias possible for a matrix with

pattern P . For each refined inertia allowed by P , we provide a vector (a, b, c, d, e) of

values for the entries of A in (3.1) such that A has this refined inertia.
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Refined inertia Allowed by P ( a, b, c, d, e )

(0,4,0,0) yes ( 1, -10, -5, 4, -1 )

(3,1,0,0) yes ( 3, -14, -4, -8, 5 )

(0,3,1,0) yes ( 1, - 203 , -4, 8
9 , − 1

3 )

(2,2,0,0) yes ( 1, 1
2 , -1, − 1

4 ,
1
2 )

(2,1,1,0) yes ( 1, 1
2 , 3, − 15

4 , 3
2 )

(2,0,2,0) no

(2,0,0,2) no

(1,1,2,0) yes ( 1, -5, -1, -20, 5 )

(1,1,0,2) yes ( 1, -2, -1, 1, 1 )

(1,0,3,0) no

(1,0,1,2) no

(0,0,4,0) yes ( 1, 1, -1, -4, -2 )

(0,0,2,2) yes ( 1, -3, -1, -2, 1 )

(0,0,0,4) yes ( 1, -4, -1, -4, 1 )

The following theorem gives a reducible pattern of order 6 that is an rIAP despite

failing to be a SAP. By Proposition 3.1 it is a smallest such example.

Theorem 3.4. The reducible zero-nonzero pattern P ⊕ T2 of order 6 is an rIAP

but not a SAP.

Proof. In Appendix A each refined inertia (excluding reversals) is expressed as

a sum of two refined inertias, the first allowed by P and the second allowed by T2.

Hence, P ⊕ T2 is an rIAP.

On the other hand, P ⊕ T2 is not a SAP, as it does not allow the characteristic

polynomial

x6 + x3 = x3(x3 + 1) = x3(x+ 1)(x2 − x+ 1),

since otherwise this polynomial would factor as p(x)t(x), where p(x) is a characteristic

polynomial allowed by P and t(x) is a characteristic polynomial allowed by T2. This

gives rise to the following exhaustive list of cases.

Case 1: If t(x) = x2 then p(x) = x(x + 1)(x2 − x+ 1) = x4 + x.

Case 2: If t(x) = x(x + 1) then p(x) = x2(x2 − x+ 1) = x4 − x3 + x2.

Case 3: If t(x) = x2 − x+ 1 then p(x) = x3(x+ 1) = x4 + x3.

As P allows only characteristic polynomials with coefficients of x and x3 either both

zero or both nonzero, none of these cases is possible. Hence, P ⊕ T2 is not a SAP.

In [3, 10] it is shown that a direct sum of two patterns may be an IAP even if

neither of the summands is an IAP. This is shown in [3] both for sign patterns and for
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zero-nonzero patterns. Our next goal is to show that the analogous statement holds

for rIAPs in the zero-nonzero case.

Lemma 3.5. Let A be a zero-nonzero pattern of order 4 allowing all of the refined

inertias (4, 0, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4), (0, 0, 2, 2) and (2, 2, 0, 0). Then A ⊕ M is

an rIAP.

Proof. In Appendix B, each refined inertia possible for a pattern of order 8

(excluding reversals) is expressed as a sum of two refined inertias, where the first is

allowed by A and the second is allowed by M by Proposition 2.3.

Theorem 3.6. The reducible zero-nonzero pattern P ⊕M of order 8 is an rIAP

with neither of its summands an rIAP.

Proof. This follows immediately from Lemma 3.5 and Proposition 3.3.

Note that P ⊕ M in the statement of Theorem 3.6 cannot be replaced by any

direct sum with smaller order. To see this, consider some pattern A = A1 ⊕ A2 of

order n ≤ 7 and suppose A is an rIAP. Then neither of the Ai may have order 1.

Hence, at least one of them must have order k for k = 2 or k = 3. Say this is true

of A1. Since A allows the inertias (n, 0, 0) and (0, 0, n), it follows that A1 allows the

inertias (k, 0, 0) and (0, 0, k). But by [10, Corollary 2] (for k = 2) or [10, Theorem

3] (for k = 3) this implies that A1 is a SAP, and hence an rIAP. Therefore A1 ⊕A2

cannot replace P ⊕M in the statement of Theorem 3.6.

Note also that P ⊕ M is not a SAP, as it does not allow the characteristic

polynomial x2(x2 − 2x + 2)3. To justify this claim, we refer to the proof of [6,

Proposition 2.2 (case 3)] in which it is shown that a particular signing of M does

not allow any characteristic polynomial with two non-real zeros if the other two are

zero. In fact this proof shows that the same is true of the zero-nonzero pattern M.

Thus for x2(x2 − 2x + 2)3 to factor as the product of a characteristic polynomial

allowed by P and one allowed by M, the factor allowed by M must be (x2−2x+2)2.

But this leaves P to account for the factor x2(x2 − 2x+2), which by Proposition 3.3

it cannot, as P does not allow the refined inertia (2, 0, 2, 0).

4. Reducible spectrally arbitrary patterns. It is known that the direct sum

of two SAPs need not be a SAP. In fact, it is shown in [6, Proposition 2.1] that when

two or more summands are of odd order, a direct sum cannot be a SAP. On the other

hand, a particular signing of M ⊕ T2 is shown in [6, Proposition 2.4] to be a SAP,

despite one of its summands (the signing of M) failing to be itself a SAP. The natural

question has been raised (see [2, 3]) as to whether a direct sum of two non-SAPs could

be a SAP. The principal aim of this section is to show that this is indeed possible

for zero-nonzero patterns. To this end, we obtain for the pattern L introduced in

Definition 2.6 an analog of Lemma 2.2.
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Lemma 4.1. Let p(x) be a monic polynomial of degree 5 with real coefficients.

Each of the following conditions is sufficient for L to allow characteristic polynomial

p(x).

(i) p(0) = 0.

(ii) The sum of the zeros of p(x) is nonzero.

(iii) p(x) has only real zeros, one of which has multiplicity three or more.

(iv) p(x) has two irreducible quadratic factors with identical coefficients of x.

Proof. The sufficiency of each of conditions (i) and (ii) follows immediately from

Proposition 2.7.

Assume p(x) satisfies condition (iii). If p(0) = 0, then (i) applies and the proof is

complete. If not, then p(x) = (x− a)3(x− b)(x− c) for some nonzero real numbers a,

b and c, in which case the coefficient of x4 in p(x) is −(3a+ b+ c) while the coefficient

of x2 is −a(a2 +3ab+ 3ac+ 3bc). If L does not allow characteristic polynomial p(x),

then by Proposition 2.7 both of these coefficients are zero. In particular, the zero

coefficient of x4 gives a = − b+c
3 so that the zero coefficient of x2 requires

0 = a2 + 3ab+ 3ac+ 3bc =
−8(b+ c)2

9
+ 3bc.

This implies that (b + c)2 = 27
8 bc, which is impossible as (b + c)2 ≥ 4bc and bc is

nonzero.

Finally, suppose that p(x) satisfies condition (iv). Then

p(x) = (x+ a)(x2 + bx+ c)(x2 + bx+ d)

=x5 + (a+ 2b)x4 + (2ab+ b2 + c+ d)x3

+ (ab2 + ac+ ad+ bc+ bd)x2 + (abc+ abd+ cd)x+ (acd)

for some nonzero real numbers a, b, c and d such that x2 + bx + c and x2 + bx + d

are irreducible. Note that the irreducibility of these quadratic factors requires that

c and d be positive. If either the coefficient of x4 or that of x2 is nonzero, then by

Proposition 2.7 the proof is complete. Otherwise, the zero coefficient of x4 requires

a = −2b and hence

p(x) = x5 + (−3b2 + c+ d)x3 + (−2b3 − bc− bd)x2 + (−2b2c− 2b2d+ cd)x+ (−2bcd)

so that the zero coefficient of x2 requires −2b3 − bc− bd = −b(2b2 + c+ d) = 0. But

2b2 + c + d > 0, as c and d are positive. Hence it must be that b = 0, but then the

constant term of p(x) is zero, and so by Proposition 2.7 the proof is complete in this

case as well.

Theorem 4.2. The reducible pattern L⊕M of order 9 is a SAP with neither of

its summands a SAP.
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Proof. Let ΠL be the set of polynomials allowed as characteristic polynomials by

L and define ΠM similarly. Let p(x) be an arbitrary monic polynomial of degree 9

with real coefficients. We must show that L ⊕ M allows characteristic polynomial

p(x). It suffices to express p(x) as the product of a polynomial in ΠL and one in ΠM.

The proof breaks down naturally according to the number of irreducible quadratic

factors of p(x).

Case 1. Suppose p(x) has no irreducible quadratic factor. That is, p(x) has only

real zeros. Then

p(x) = g1g2g3g4g5g6g7g8g9

where each gi = x − ri for some real number ri. If at least two of the ri are zero,

say r1 = r5 = 0, then g1g2g3g4 ∈ ΠM by Lemma 2.2(ii) while g5g6g7g8g9 ∈ ΠL by

Lemma 4.1(i).

Now suppose exactly one of the ri is zero, say r1 = 0. Then, as no other ri is

zero, there must be some four among g2, . . . , g9 whose product has a positive constant

term. Assume this is true of g6, . . . , g9. Then g6g7g8g9 ∈ ΠM by Lemma 2.2(i), while

g1g2g3g4g5 ∈ ΠL by Lemma 4.1(i).

Finally, suppose no ri is zero. Then certainly there are some five of the ri with the

same sign. Assume this is true of r1, . . . , r5. Then any product of four factors from

g1, . . . , g5 has a positive constant term and therefore is in ΠM. Hence, if gig6g7g8g9 ∈

ΠL for any i ∈ {1, . . . , 5}, then the proof is complete. If not, then by Lemma 4.1(ii)

the zeros of each of these products must sum to zero. That is, ri = −r6− r7 − r8 − r9
for i = 1, . . . , 5. Thus, letting r = −r6 − r7 − r8 − r9 yields

p(x) = (x− r)5g6g7g8g9.

Clearly some pair from r6, . . . , r9 must have the same sign, say r6 and r7. Then

(x− r)2g6g7 ∈ ΠM by Lemma 2.2(i) while (x− r)3g8g9 ∈ ΠL by Lemma 4.1(iii).

Case 2. Suppose p(x) has exactly one irreducible quadratic factor. Then

p(x) = g1g2g3g4g5g6g7f1

where each gi = x−ri for some real number ri and f1 is a quadratic that is irreducible

and hence must have a positive constant term.

First suppose some ri is zero, say r1 = 0. Among g2, . . . , g7 there must be some

four factors whose product does not have a negative constant term, and so is in ΠM

by Lemma 2.2. Then, since r1 = 0, it follows from Lemma 4.1(i) that the product of

f1 and the remaining gi is in ΠL.

Now assume that no ri is zero. Suppose some five of the ri are of the same sign,

say r1, . . . , r5. Then the product of any four of g1, . . . , g5 is in ΠM by Lemma 2.2(i).
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Thus if gig6g7f1 ∈ ΠL for any i ∈ {1, . . . , 5}, then the proof is complete. If not, then

Lemma 4.1(ii) implies that r1 = r2 = · · · = r5. But then g1g2g3g6g7 ∈ ΠL by Lemma

4.1(iii) while g4g5f1 ∈ ΠM by Lemma 2.2(i).

Now suppose that four of the ri, say r1, . . . , r4, have one sign while r5, . . . , r7 have

the opposite sign. Then g1g2gigj ∈ ΠM for any i and j with 5 ≤ i < j ≤ 7. Thus if

gig3g4f1 ∈ ΠL for any i ∈ {5, 6, 7}, then the proof is complete. If not, then Lemma

4.1(ii) implies that r5 = r6 = r7. But then g3g4g5g6g7 ∈ ΠL by Lemma 4.1(iii) while

g1g2f1 ∈ ΠM by Lemma 2.2(i).

Case 3. Suppose p(x) has exactly two irreducible quadratic factors. Then

p(x) = g1g2g3g4g5f1f2

where each gi = x − ri for some real number ri and each fj is a quadratic that is

irreducible and hence must have a positive constant term.

If some ri is zero, say r1 = 0, then f1f2 ∈ ΠM by Lemma 2.2(i) while g1g2g3g4g5 ∈

ΠL by Lemma 4.1(i). If no ri is zero then certainly some two ri have the same sign,

say r1 and r2. Then g1g2f1 and g1g2f2 are in ΠM by Lemma 2.2(i). Thus if either

g3g4g5f1 or g3g4g5f2 is in ΠL, then the proof is complete. If not, then it follows from

Lemma 4.1(ii) that f1 and f2 have equal coefficients of x. But then gif1f2 ∈ ΠL for

each gi by Lemma 4.1(iv), and it suffices to show that some product of four of the

gi is in ΠM. But by Lemma 2.2(i) this fails to hold only if every such product has a

negative constant term, and it is easy to check that this is combinatorially impossible.

Case 4. Suppose p(x) has exactly three irreducible quadratic factors. Then

p(x) = g1g2g3f1f2f3

where each gi = x − ri for some real number ri and each fj is a quadratic that is

irreducible and hence must have a positive constant term.

If some ri is zero, say r1 = 0, then f1f2 ∈ ΠM by Lemma 2.2(i) while g1g2g3f3 ∈

ΠL by Lemma 4.1(i). If no ri is zero then certainly some two ri have the same sign,

say r1 and r2. Then g1g2f1 and g1g2f2 are in ΠM by Lemma 2.2(i). Thus if either

g3f2f3 or g3f1f3 is in ΠL, then the proof is complete. If not, then it follows from

Lemma 4.1(ii) that f1 and f2 have equal coefficients of x. But then g3f1f2 ∈ ΠL by

Lemma 4.1(iv) while g1g2f3 ∈ ΠM by Lemma 2.2(i).

Case 5. Suppose p(x) has exactly four irreducible quadratic factors. Then

p(x) = g1f1f2f3f4

where g1 = x−r1 for some real number r1 and each fj is a quadratic that is irreducible

and hence must have a positive constant term.
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By Lemma 2.2(i) both f1f3 and f1f4 are in ΠM. Thus if either g1f2f4 or g1f2f3
is in ΠL, then the proof is complete. If not, then it follows from Lemma 4.1(ii) that

f3 and f4 have equal coefficients of x. But then g1f3f4 ∈ ΠL by Lemma 4.1(iv) while

f1f2 ∈ ΠM by Lemma 2.2(i).

Note that the above proof of Theorem 4.2 uses only properties ofM following from

Lemma 2.2, and this lemma remains true for the particular signing of M analyzed in

[6].

5. Concluding remarks. The pattern L is a superpattern of the zero-nonzero

patternK introduced in [10]. In particular, K is the pattern that results from replacing

the (2, 5) entry of L with 0. In [10] it was shown that K is not an IAP but K ⊕K is

an IAP. As Theorem 2.9 shows, the pattern L provides a negative answer to the zero-

nonzero analog of question (b) of [9, page 174] that was asked in the sign pattern case.

This question, which remains open for both an irreducible sign pattern and a direct

sum of sign patterns, asks if a refined inertially arbitrary sign pattern is necessarily

spectrally arbitrary. In addition, the question remains open as to whether there exists

a direct sum of two sign patterns that is spectrally arbitrary with neither summand

being spectrally arbitrary (cf. Theorem 4.2), although it is known [6, Proposition

2.4] that a direct sum may be spectrally arbitrary if only one of the summands is

spectrally arbitrary.
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Appendix A. List of refined inertias allowed by P⊕T2 for Theorem 3.4.

(6, 0, 0, 0)=(4, 0, 0, 0)+(2, 0, 0, 0) (3, 1, 0, 2)=(3, 1, 0, 0)+(0, 0, 0, 2) (1, 1, 4, 0)=(0, 0, 4, 0)+(1, 1, 0, 0)

(5, 1, 0, 0)=(4, 0, 0, 0)+(1, 1, 0, 0) (3, 0, 3, 0)=(3, 0, 1, 0)+(0, 0, 2, 0) (1, 1, 2, 2)=(0, 0, 2, 2)+(1, 1, 0, 0)

(5, 0, 1, 0)=(4, 0, 0, 0)+(1, 0, 1, 0) (3, 0, 1, 2)=(3, 0, 1, 0)+(0, 0, 0, 2) (1, 1, 0, 4)=(0, 0, 0, 4)+(1, 1, 0, 0)

(4, 2, 0, 0)=(4, 0, 0, 0)+(0, 2, 0, 0) (2, 2, 2, 0)=(2, 2, 0, 0)+(0, 0, 2, 0) (1, 0, 5, 0)=(0, 0, 4, 0)+(1, 0, 1, 0)

(4, 1, 1, 0)=(4, 0, 0, 0)+(0, 1, 1, 0) (2, 2, 0, 2)=(2, 2, 0, 0)+(0, 0, 0, 2) (1, 0, 3, 2)=(0, 0, 2, 2)+(1, 0, 1, 0)

(4, 0, 2, 0)=(4, 0, 0, 0)+(0, 0, 2, 0) (2, 1, 3, 0)=(2, 1, 1, 0)+(0, 0, 2, 0) (1, 0, 1, 4)=(0, 0, 0, 4)+(1, 0, 1, 0)

(4, 0, 0, 2)=(4, 0, 0, 0)+(0, 0, 0, 2) (2, 1, 1, 2)=(2, 1, 1, 0)+(0, 0, 0, 2) (0, 0, 6, 0)=(0, 0, 4, 0)+(0, 0, 2, 0)

(3, 3, 0, 0)=(3, 1, 0, 0)+(0, 2, 0, 0) (2, 0, 4, 0)=(0, 0, 4, 0)+(2, 0, 0, 0) (0, 0, 4, 2)=(0, 0, 4, 0)+(0, 0, 0, 2)

(3, 2, 1, 0)=(3, 1, 0, 0)+(0, 1, 1, 0) (2, 0, 2, 2)=(0, 0, 2, 2)+(2, 0, 0, 0) (0, 0, 2, 4)=(0, 0, 0, 4)+(0, 0, 2, 0)

(3, 1, 2, 0)=(3, 1, 0, 0)+(0, 0, 2, 0) (2, 0, 0, 4)=(0, 0, 0, 4)+(2, 0, 0, 0) (0, 0, 0, 6)=(0, 0, 0, 4)+(0, 0, 0, 2)

Appendix B. List of refined inertias allowed by A⊕M for Lemma 3.5.

(8, 0, 0, 0)=(4, 0, 0, 0)+(4, 0, 0, 0) (4, 0, 4, 0)=(4, 0, 0, 0)+(0, 0, 4, 0) (2, 1, 1, 4)=(0, 0, 0, 4)+(2, 1, 1, 0)

(7, 1, 0, 0)=(4, 0, 0, 0)+(3, 1, 0, 0) (4, 0, 2, 2)=(0, 0, 2, 2)+(4, 0, 0, 0) (2, 0, 6, 0)=(0, 0, 4, 0)+(2, 0, 2, 0)

(7, 0, 1, 0)=(4, 0, 0, 0)+(3, 0, 1, 0) (4, 0, 0, 4)=(4, 0, 0, 0)+(0, 0, 0, 4) (2, 0, 4, 2)=(0, 0, 4, 0)+(2, 0, 0, 2)

(6, 2, 0, 0)=(4, 0, 0, 0)+(2, 2, 0, 0) (3, 3, 2, 0)=(2, 2, 0, 0)+(1, 1, 2, 0) (2, 0, 2, 4)=(0, 0, 0, 4)+(2, 0, 2, 0)

(6, 1, 1, 0)=(4, 0, 0, 0)+(2, 1, 1, 0) (3, 3, 0, 2)=(2, 2, 0, 0)+(1, 1, 0, 2) (2, 0, 0, 6)=(0, 0, 0, 4)+(2, 0, 0, 2)

(6, 0, 2, 0)=(4, 0, 0, 0)+(2, 0, 2, 0) (3, 2, 3, 0)=(2, 2, 0, 0)+(1, 0, 3, 0) (1, 1, 6, 0)=(0, 0, 4, 0)+(1, 1, 2, 0)

(6, 0, 0, 2)=(4, 0, 0, 0)+(2, 0, 0, 2) (3, 2, 1, 2)=(2, 2, 0, 0)+(1, 0, 1, 2) (1, 1, 4, 2)=(0, 0, 4, 0)+(1, 1, 0, 2)

(5, 3, 0, 0)=(4, 0, 0, 0)+(1, 3, 0, 0) (3, 1, 4, 0)=(0, 0, 4, 0)+(3, 1, 0, 0) (1, 1, 2, 4)=(0, 0, 0, 4)+(1, 1, 2, 0)

(5, 2, 1, 0)=(4, 0, 0, 0)+(1, 2, 1, 0) (3, 1, 2, 2)=(0, 0, 2, 2)+(3, 1, 0, 0) (1, 1, 0, 6)=(0, 0, 0, 4)+(1, 1, 0, 2)

(5, 1, 2, 0)=(4, 0, 0, 0)+(1, 1, 2, 0) (3, 1, 0, 4)=(0, 0, 0, 4)+(3, 1, 0, 0) (1, 0, 7, 0)=(0, 0, 4, 0)+(1, 0, 3, 0)

(5, 1, 0, 2)=(4, 0, 0, 0)+(1, 1, 0, 2) (3, 0, 5, 0)=(0, 0, 4, 0)+(3, 0, 1, 0) (1, 0, 5, 2)=(0, 0, 4, 0)+(1, 0, 1, 2)

(5, 0, 3, 0)=(4, 0, 0, 0)+(1, 0, 3, 0) (3, 0, 3, 2)=(0, 0, 2, 2)+(3, 0, 1, 0) (1, 0, 3, 4)=(0, 0, 0, 4)+(1, 0, 3, 0)

(5, 0, 1, 2)=(4, 0, 0, 0)+(1, 0, 1, 2) (3, 0, 1, 4)=(0, 0, 0, 4)+(3, 0, 1, 0) (1, 0, 1, 6)=(0, 0, 0, 4)+(1, 0, 1, 2)

(4, 4, 0, 0)=(4, 0, 0, 0)+(0, 4, 0, 0) (2, 2, 4, 0)=(0, 0, 4, 0)+(2, 2, 0, 0) (0, 0, 8, 0)=(0, 0, 4, 0)+(0, 0, 4, 0)

(4, 3, 1, 0)=(4, 0, 0, 0)+(0, 3, 1, 0) (2, 2, 2, 2)=(0, 0, 2, 2)+(2, 2, 0, 0) (0, 0, 6, 2)=(0, 0, 2, 2)+(0, 0, 4, 0)

(4, 2, 2, 0)=(4, 0, 0, 0)+(0, 2, 2, 0) (2, 2, 0, 4)=(0, 0, 0, 4)+(2, 2, 0, 0) (0, 0, 4, 4)=(0, 0, 4, 0)+(0, 0, 0, 4)

(4, 2, 0, 2)=(4, 0, 0, 0)+(0, 2, 0, 2) (2, 1, 5, 0)=(0, 0, 4, 0)+(2, 1, 1, 0) (0, 0, 2, 6)=(0, 0, 2, 2)+(0, 0, 0, 4)

(4, 1, 3, 0)=(4, 0, 0, 0)+(0, 1, 3, 0) (2, 1, 3, 2)=(0, 0, 2, 2)+(2, 1, 1, 0) (0, 0, 0, 8)=(0, 0, 0, 4)+(0, 0, 0, 4)

(4, 1, 1, 2)=(4, 0, 0, 0)+(0, 1, 1, 2)
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