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THE LINEAR INDEPENDENCE OF SETS OF TWO AND THREE

CANONICAL ALGEBRAIC CURVATURE TENSORS∗
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Abstract. We generalize the construction of canonical algebraic curvature tensors by self-

adjoint endomorphisms of a vector space to arbitrary endomorphisms. Provided certain basic rank

requirements are met, we establish a converse of the classical fact that if A is symmetric, then RA

is an algebraic curvature tensor. This allows us to establish a simultaneous diagonalization result

in the event that three algebraic curvature tensors are linearly dependent. We use these results to

establish necessary and sufficient conditions that a set of two or three algebraic curvature tensors be

linearly independent. We present the proofs of these results using elementary methods.
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1. Introduction. Let V be a real vector space of finite dimension n, and let

V ∗ = Hom(V,R) be its dual. An object R ∈ ⊗4V ∗ is an algebraic curvature tensor

[11] if it satisfies the following three properties for all x, y, z, w ∈ V :

R(x, y, z, w) = −R(y, x, z, w),

R(x, y, z, w) = R(z, w, x, y), and

0 = R(x, y, z, w) +R(x, z, w, y)

+R(x,w, y, z) .

(1.a)

The last property is known as the Bianchi identity. Let A(V ) be the vector space of

all algebraic curvature tensors on V .

Suppose ϕ is a symmetric bilinear form on V which is nondegenerate, and let A

be an endomorphism of V . Let A∗ be the adjoint of A with respect to ϕ, characterized

by the equation ϕ(Ax, y) = ϕ(x,A∗y). We say that A is symmetric if A∗ = A, and

we say that A is skew-symmetric if A∗ = −A. For the remainder of this paper, we

will always consider the adjoint A∗ of a linear endomorphism A of V with respect to

the form ϕ.
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Definition 1.1. If A : V → V is a linear map, then we may create the element

RA ∈ ⊗4V ∗ by

RA(x, y, z, w) = ϕ(Ax,w)ϕ(Ay, z) − ϕ(Ax, z)ϕ(Ay,w).(1.b)

In the event that A is the identity map, we simply denote RA as Rϕ. The object RA
satisfies the first property in Equation (1.a), although one requires A to be symmetric

to ensure RA ∈ A(V ). In the event that A∗ = −A, there is a different construction

[11]. A spanning set is known for the set of algebraic curvature tensors.

Theorem 1.2 (Fiedler [7, 8]). A(V ) = Span{RA|A
∗ = A}.

Given a pseudo-Riemannian manifold (M, g), one may use the Levi-Civita con-

nection to construct the Riemann curvature tensor Rg, and upon restriction to any

point P ∈ M , we have Rg(P ) ∈ A(TPM). In fact, if A is symmetric, then a classi-

cal differential geometric fact is that RA is realizable as the curvature tensor of an

embedded hypersurface in Euclidean space [11]. Hence there has been much interest

in determining the structure of the vector space A(V ), in addition to the generating

tensors RA when A is symmetric. By Theorem 1.2, the tensors RA are referred to as

canonical curvature tensors [12].

The study of algebraic curvature tensors has been approached in several ways. For

instance, B. Fiedler [7] investigatedA(V ) using methods from algebraic combinatorics,

and later used group representation theory to construct generators for A(V ) and the

vector space of algebraic covariant derivative tensors [8]. More of the general structure

of A(V ) has been studied using representation theory (for example, see [12], [13], and

[15]). There has been a strong connection that has been studied between algebraic

curvature tensors and corresponding geometrical consequences, and large areas of

mathematics depend, in part, on these connections. The list of references is much too

long to include here, although some representative examples are [1, 2, 5, 6, 10, 12].

The authors in [4] use the Nash embedding theorem [14] to show that, given

an arbitrary algebraic curvature tensor R on V , one needs no more than 1
2n(n + 1)

symmetric endomorphisms A1, . . . , A 1

2
n(n+1) so that R is a linear combination of the

tensors RAi
. This is a remarkable result, since the dimension of A(V ) is 1

12n
2(n2− 1)

[11]. (A similar result with the same bound of 1
2n(n + 1) is known for the vector

space of algebraic covariant derivative curvature tensors as well [3].) The authors in

[4] additionally show that if n = 3, then one needs at most two canonical algebraic

curvature tensors to express any R ∈ A(V ), and establish when one may express one

canonical algebraic curvature tensor as the linear combination of two others. Thus,

the bound of 1
2n(n+1) is not optimal, and, in an effort to improve upon this bound,

given symmetric endomorphisms ϕ, ψ of V , it is an interesting question as to when

there exists another symmetric endomorphism τ of V for which ±Rϕ ± Rψ = Rτ .

This is a question of linear dependence, and Section 5 is devoted to this study when
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n ≥ 4.

In this paper, it is our goal to present new results related to the linear inde-

pendence of sets of two and three algebraic curvature tensors defined by symmetric

operators, as in Definition 1.1. To make these results more accessible, we present the

proofs of these new results using elementary methods.

A brief outline of the paper is as follows. Throughout, we assume that ψ and τ

are symmetric endomorphisms, so that Rψ, Rτ ∈ A(V ). In Section 2, we prove the

following result which will be of later use. We note Theorem 1.3 is a generalization of

Lemma 1.8.6 of [11]; here we present a proof using different methods, and that does

not require that kerA have no vectors x so that ϕ(x, x) > 0.

Theorem 1.3. Let A : V → V , and RA ∈ A(V ). If Rank A ≥ 3, then A∗ = A.

We will use Theorem 1.3 to establish the following:

Theorem 1.4. Let A : V → V , and RA = Rψ ∈ A(V ). If Rank A ≥ 3, then A

is symmetric, and A = ±ψ.

After some brief introductory remarks, in Section 3 we prove our main result

regarding the linear independence of two algebraic curvature tensors–it will be more

convenient to state these conditions in terms of linear dependence, rather than linear

independence. We will prove

Theorem 1.5. Suppose Rank ϕ ≥ 3. The set {Rϕ, Rψ} is linearly dependent if

and only if Rψ 6= 0, and ϕ = λψ for some λ ∈ R.

We begin our study of linear independence of three curvature tensors in Section

4. The following will be a result crucial to our study of linear independence of three

(or fewer) algebraic curvature tensors. Using Theorem 1.4, we establish the following:

Theorem 1.6. Suppose ϕ is positive definite, Rank τ = n, and Rank ψ ≥ 3.

If {Rϕ, Rψ, Rτ} is linearly dependent, then ψ and τ are simultaneously orthogonally

diagonalizable with respect to ϕ.

The proof of the result above will first establish that the operators ψ and τ com-

mute, and it will follow that ψ and τ are simultaneously diagonalizable [9]. Of course,

there are large areas of mathematics that are concerned with the commutativity of

linear operators, although recently there has been an interest in the commutativity

of certain operators associated to the Riemann curvature tensor in differential geom-

etry. Tsankov proved [16] that if (M, g) is a Riemannian hypersurface in Euclidean

space, then J (x)J (y) = J (y)J (x) for x ⊥ y if and only if Rg has constant sectional

curvature, where J (x) is the Jacobi operator. This gave rise to a subsequent study of

a study of the Tsankov condition in pseudo-Riemannian geometry, along with other
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related notions. For an excellent survey on these and studies related to commuting

curvature operators, see [2].

In Section 5, we use Theorem 1.6 to prove our main result regarding the linear

independence of three algebraic curvature tensors. As in Theorem 1.5, it is more

convenient to state necessary and sufficient conditions in terms of linear dependence,

rather than linear independence. If A is an endomorphism of V , we denote the spec-

trum of A, Spec(A), as the set of eigenvalues of A, repeated according to multiplicity,

and |Spec(A)| as the number of distinct elements of Spec(A). It is understood that if

any of the quantities do not make sense in Condition (2) below, then Condition (2)

is not satisfied.

Theorem 1.7. Suppose dim(V ) ≥ 4, ϕ is positive definite, Rank τ = n, and

Rank ψ ≥ 3. The set {Rϕ, Rψ , Rτ} is linearly dependent if and only if one of the

following is true:

1. |Spec(ψ)| = |Spec(τ)| = 1.

2. Spec(τ) = {η1, η2, η2, . . .}, and Spec(ψ) = {λ1, λ2, λ2, . . .}, with η1 6= η2,

λ22 = ǫ(δη22 − 1), and λ1 = ǫ
λ2

(δη1η2 − 1), where ε, δ = ±1.

It is interesting to note that in all of our results except Theorem 1.7, we assume

the rank of a certain object to be at least 3. However, in Theorem 1.7 we require that

dim(V ) ≥ 4, but there is no corresponding requirement that all objects involved have

a rank of at least 4. Indeed, there exists examples in dimension 3 where Theorem

1.7 does not hold, although the situation is more complicated. See Theorem 5.1 in

Section 5 for a detailed description of this situation.

2. A study of the tensors RA. Our main objective for this section is to es-

tablish Theorem 1.4. We begin with the lemma below.

Lemma 2.1. Suppose A,B, Ā : V → V .

1. RA+B +RA−B = 2RA + 2RB.

2. If RA ∈ A(V ), then RA∗ ∈ A(V ), and RA = RA∗ .

3. If Ā∗ = −Ā and RĀ ∈ A(V ), then RĀ(x, y, z, w) = ϕ(Āx, y)ϕ(Āw, z).

Proof. Assertion (1) follows from direct computation using Definition 1.1. To

prove Assertion (2), let x, y, z, w ∈ V , and we compute

RA(x, y, z, w) = RA(z, w, x, y)

= ϕ(Az, y)ϕ(Aw, x) − ϕ(Az, x)ϕ(Aw, y)

= ϕ(A∗y, z)ϕ(A∗x,w) − ϕ(A∗x, z)ϕ(A∗y, w)

= RA∗(x, y, z, w).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 436-448, August 2010



ELA

440 A. Diaz, C. Dunn

Now we prove Assertion (3). Note that since Ā∗ = −Ā, for all u, v ∈ V we have

ϕ(Āv, u) = −ϕ(v, Āu) = −ϕ(Āu, v). We use the Bianchi identity to see that

0 = RĀ(x, y, z, w) +RĀ(x,w, y, z) +RĀ(x, z, w, y)

= ϕ(Āx, w)ϕ(Āy, z)− ϕ(Āx, z)ϕ(Āy, w)

+ϕ(Āx, z)ϕ(Āw, y)− ϕ(Āx, y)ϕ(Āw, z)

+ϕ(Āx, y)ϕ(Āz, w)− ϕ(Āx, w)ϕ(Āz, y)

= 2ϕ(Āx, w)ϕ(Āy, z)− 2ϕ(Āx, z)ϕ(Āy, w)

+2ϕ(Āx, y)ϕ(Āz, w)

= 2RĀ(x, y, z, w) + 2ϕ(Āx, y)ϕ(Āz, w).

It follows that RĀ(x, y, z, w) = −ϕ(Āx, y)ϕ(Āz, w) = ϕ(Āx, y)ϕ(Āw, z).

Remark 2.2. With regards to Assertion (2) of Lemma 2.1, we will only require

that RA∗ ∈ A(V ) if RA ∈ A(V ). The fact that RA∗ = RA is not needed, although it

simplifies some calculations (see Equation (2.a)).

We now present a proof of Theorem 1.3.

Proof. (Proof of Theorem 1.3.) Define Ā = A−A∗. Then Ā∗ = −Ā. Then using

B = A∗ in Assertion (1) of Lemma 2.1 we have RA = RA∗ ∈ A(V ) and

RĀ = 4RA −RA+A∗ .(2.a)

Since (A + A∗)∗ = A + A∗, we have RA+A∗ ∈ A(V ), and so, as the linear

combination of algebraic curvature tensors, RĀ ∈ A(V ). Thus by Lemma 2.1, we

conclude that RĀ(x, y, z, w) = ϕ(Āx, y)ϕ(Āw, z).

Since Ā is skew-symmetric with respect to ϕ, Rank Ā is even. We note that if

Rank Ā = 0, then Ā = 0, and A = A∗. So we break the remainder of the proof up

into two cases: Rank Ā ≥ 4, and Rank Ā = 2.

Suppose Rank Ā ≥ 4. Then there exist x, y, z, w ∈ V with

ϕ(Āx, y) = ϕ(Āw, z) = 1, and ϕ(Āx, z) = ϕ(Āx, w) = 0.

Then we compute RĀ(x, y, z, w) in two ways. First, we use Definition 1.1, and next

we use Assertion (3) of Lemma 2.1:

RĀ(x, y, z, w) = ϕ(Āx, w)ϕ(Āy, z)− ϕ(Āx, z)ϕ(Āy, w)

= 0.

RĀ(x, y, z, w) = ϕ(Āx, y)ϕ(Āw, z)

= 1.

This contradiction shows that Rank Ā is not 4 or more.
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Finally, we assume Rank Ā = 2. There exists a basis {e1, e2, . . . , en} that is

orthonormal with respect to ϕ, where ker Ā = Span{e3, . . . , en}, and we have the

relations ϕ(Āe2, e1) = −ϕ(Āe1, e2) = λ 6= 0. Let Aij = ϕ(Aei, ej) be the (j, i) entry

of the matrix A with respect to this basis, similarly for Ā, A∗, and A + A∗. With

respect to this basis, the only nonzero entries Āij are A12 − A12 = Ā12 = −Ā21 =

λ. Thus, unless {i, j} = {1, 2}, we have Aij = Aji, and in such a case, we have

(A+A∗)ij = 2Aij .

Now suppose that {i, j} 6⊆ {1, 2}. We compute RĀ(ei, e2, ej, e1) in two ways.

According to Assertion (3) of Lemma 2.1, we have

RĀ(ei, e2, ej , e1) = ϕ(Āei, e2)ϕ(Āe1, ej) = 0.(2.b)

Now according to Equation (2.a), we have

RĀ(ei, e2, ej, e1) = (4RA −RA+A∗)(ei, e2, ej, e1)

= 4Ai1A2j − 4AijA21 − (2Ai1)(2A2j) + (2Aij)(A21 +A12)

= 2Aij(A12 −A21)

= 2λAij .

(2.c)

Comparing Equations (2.b) and (2.c) and recalling that λ 6= 0, we see that Aij = 0 if

one or both of i or j exceed 2. This shows that Rank A ≤ 2, which is a contradiction

to our original hypothesis.

Remark 2.3. If Rank A = 1 or 0, then RA = 0, and in the rank 1 case, A∗ need

not equal A. In addition, if A is any rank 2 endomorphism, then there exists examples

of 0 6= RA ∈ A(V ) where A∗ 6= A. Thus, Theorem 1.3 can fail if Rank A ≤ 2.

We may now prove Theorem 1.4 as a corollary to Theorem 1.3. The following

result found in [12] will be of use, and we state it here for completeness.

Lemma 2.4. If Rank ϕ ≥ 3, then Rϕ = Rψ if and only if ϕ = ±ψ.

Proof. (Proof of Theorem 1.4.) According to Theorem 1.3, we conclude A is

symmetric. Since Rank A ≥ 3 we apply Lemma 2.4 to conclude A = ±ψ.

3. Linear independence of two algebraic curvature tensors. This sec-

tion begins our study of linear independence of algebraic curvature tensors. Some

preliminary remarks are in order before we begin this study.

Let A,Ai : V → V be a collection of symmetric endomorphisms. It is easy to

verify that for any real number c, we have cRA = ǫR
|c|

1

2A
, where ǫ = sign(c) = ±1.

Let ci ∈ R, and let ǫi = sign(ci) = ±1. By replacing Ai with Bi = |c|
1

2Ai, we may
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express any linear combination of algebraic curvature tensors

k
∑

i=1

ciRAi
=

k
∑

i=1

ǫiRBi
.

Thus the study of linear independence of algebraic curvature tensors amounts to a

study of when a sum or difference of RAi
equal another canonical algebraic curvature

tensor. This would always be the case if each of the Ai are multiples of one another–

this possibility is discussed here. Proceeding systematically from the case of two

algebraic curvature tensors, we would assume that each of the constants ci are nonzero,

leading us to study the equation RA1
± RA2

= 0 in this section, and, for ǫ and δ a

choice of signs, RA1
+ ǫRA2

= δRA3
in Section 5.

We begin with a lemma exploring the possibility that Rϕ = −Rψ. The proof

follows similarly to the proof in [12].

Lemma 3.1. Suppose Rank ϕ ≥ 3. There does not exist a symmetric ψ so that

Rϕ = −Rψ.

Proof. Suppose to the contrary that there is such a solution. By replacing ϕ

with −ϕ if need be, we may assume that there are vectors e1, e2, e3 with the relations

ϕ(e1, e1) = ϕ(e2, e2) = ǫϕ(e3, e3) = 1, where ǫ = ±1. Thus on π = Span{e1, e2},

the form ϕ|π is positive definite, and we may diagonalize ψ|π with respect to ϕ|π .

Therefore the matrix [(ψ|π)ij ] of ψ|π has (ψ|π)12 = (ψ|π)21 = 0, and (ψ|π)ii = λi for

i = 1, 2, 3. Now we compute

1 = Rϕ(e1, e2, e2, e1) = −λ1λ2,(3.a)

so λ1 and λ2 6= 0. We compute

0 = Rϕ(e1, e2, e3, e1) = −λ1(ψ|π)23,

so (ψ|π)23 = 0. Similarly,

0 = Rϕ(e2, e1, e3, e2) = −λ2(ψ|π)13,

and so (ψπ)13 = 0. Now, for j = 1, 2, we have

ǫ = Rϕ(ej , e3, e3, ej) = −λjλ3.

We conclude λ3 6= 0, and that λ1 = λ2. This contradicts Equation (3.a), since it

would follow that 1 = −λ21 < 0.

We now use Lemma 3.1 to establish Theorem 1.5.

Proof. (Proof of Theorem 1.5.) Suppose c1Rϕ + c2Rψ = 0, and at least one of c1
or c2 is not zero. Since Rψ 6= 0, and ϕ is of rank 3 or more (which implies Rϕ 6= 0),
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we conclude that both c1, c2 6= 0. Thus, we may write

c1Rϕ + c2Rψ = 0 ⇔ Rϕ = ǫRλ̃ψ

for some λ̃ 6= 0, and for ǫ a choice of signs. If ǫ = 1, then we use Lemma 2.4 to

conclude that ϕ = ±λ̃ψ, in which case ϕ = λψ for 0 6= λ = ±λ̃. Lemma 3.1 eliminates

the possibility that ǫ = −1.

Conversely, suppose ϕ = λψ for some λ 6= 0. Then we have

Rϕ + (−λ2)Rψ = Rλψ + (−λ2)Rψ
= λ2Rψ + (−λ2)Rψ
= 0.

This demonstrates the linear dependence of the tensors Rϕ and Rψ and completes

the proof.

4. Commuting symmetric endomorphisms. Our main objective in this sec-

tion is to establish Theorem 1.6 concerning the simultaneous diagonalization of the

endomorphisms ψ and τ with respect to ϕ. The following lemma is easily verified

using Definition 1.1.

Lemma 4.1. Suppose θ : V → V . For all x, y, z, w ∈ V , we have

Rθ(x, y, z, w) = Rϕ(θx, θy, z, w) = Rϕ(x, y, θ
∗z, θ∗w).

We may now provide a proof to Theorem 1.6.

Proof. (Proof of Theorem 1.6.) Suppose c1Rϕ + c2Rψ + c3Rτ = 0. According

to the discussion at the beginning of the previous section, we reduce the situation to

one of two cases. If one or more of the ci are zero, then since none of ϕ, ψ or τ have

a rank less than 3, Theorem 1.5 applies, and the result holds. Otherwise, we have all

ci 6= 0, and we are reduced to the case that Rϕ + ǫRψ = δRτ , where ǫ and δ are a

choice of signs.

Let x, y, z, w ∈ V . By hypothesis, τ−1 exists. Note first that τ is self-adjoint with

respect to ϕ, so that according to Lemma 4.1

Rϕ(τx, τy, τ
−1z, τ−1w) = Rϕ(x, y, z, w), and

Rτ (τx, τy, τ
−1z, τ−1w) = Rϕ(τx, τy, z, w)

= Rτ (x, y, z, w).

Note that τ is self-adjoint with respect to ϕ if and only if τ−1 is self-adjoint with
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respect to ϕ. Now we use the hypothesis Rϕ+ ǫRψ = δRτ and Lemma 4.1 to see that

δRτ (x, y, z, w) = δRτ (τx, τy, τ
−1z, τ−1w)

= Rϕ(τx, τy, τ
−1z, τ−1w) + ǫRψ(τx, τy, τ

−1z, τ−1w)

= Rϕ(x, y, z, w) + ǫRϕ(ψτx, ψτy, τ
−1z, τ−1w)

= Rϕ(x, y, z, w) + ǫRϕ(τ
−1ψτx, τ−1ψτy, z, w)

= Rϕ(x, y, z, w) + ǫRτ−1ψτ (x, y, z, w).

It follows that Rτ−1ψτ = Rψ. Now Rank τ−1ψτ = Rank ψ ≥ 3, so using A = τ−1ψτ

in Theorem 1.4 gives us τ−1ψτ = ±ψ. We show presently that τ−1ψτ = −ψ is not

possible.

Suppose τ−1ψτ = −ψ. We diagonalize τ with respect to ϕ with the basis

{e1, . . . , en}. Suppose i, j, and k are distinct indices. With respect to this basis,

for all v ∈ V we have

Rϕ(ei, ek, v, ej) = Rτ (ei, ek, v, ej) = 0.

Let ψij be the (j, i) entry of ψ with respect to this basis. Since τ and ψ anti-commute,

and τ is diagonal, ψii = 0. Thus there exists an entry ψij 6= 0. Fix this i and j for

the remainder of the proof. We must have i 6= j. Then for indices i, j, k, ℓ with i, j, k

distinct, we have

0 = δRτ (ei, ek, eℓ, ej) = (Rϕ + ǫRψ)(ei, ek, eℓ, ej)

= ǫRψ(ei, ek, eℓ, ej)

= ǫ(ψijψkℓ − ψiℓψkj).

(4.a)

If ℓ = i, then Equation (4.a) with ψii = 0 and ψij 6= 0 shows that ψki = ψik = 0 for

all k 6= j. Exchanging the roles of i and j and setting ℓ = j shows that ψjk = ψkj = 0

as well. Finally, for i, j, k, ℓ distinct, we use Equation (4.a) again to see that ψkℓ =

ψℓk = 0. Thus, under the assumption that there is at least one nonzero entry in the

matrix [ψab] leads us to the conclusion that there are at most two nonzero entries

(ψij = ψji 6= 0) in [ψab]. This contradicts the assumption that Rank ψ ≥ 3. We

conclude that ψ and τ must not anticommute.

Otherwise, we have τ−1ψτ = ψ, and so ψτ = τψ. Thus, we may simultaneously

diagonalize ψ and τ .

5. Linear independence of three algebraic curvature tensors. We may

now use our previous results to establish our main results concerning the linear inde-

pendence of three algebraic curvature tensors. This section is devoted to the proof of

Theorem 1.7, and to the description of the exceptional setting when dim(V ) = 3.

Proof. (Proof of Theorem 1.7.) We assume first that {Rϕ, Rψ, Rτ} is linearly

dependent, and show that one of Conditions (1) or (2) must be satisfied. As such,
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we suppose there exist ci (not all zero) so that c1Rϕ + c2Rψ + c3Rτ = 0. As in the

proof of Theorem 1.6 in Section 4, if any of the ci are zero, then this case reduces to

Theorem 1.5, and all of the forms involved are real multiples of one another. Namely,

|Spec(ψ)| = |Spec(τ)| = 1, and Condition (1) holds.

So we consider the situation that none of the ci are zero. This question of linear

dependence reduces to the equation

Rϕ + ǫRψ = δRτ .(5.a)

We use Theorem 1.6 to simultaneously diagonalize ψ and τ with respect to ϕ to find

a basis {e1, . . . , en} which is orthonormal with respect to ϕ. Therefore, if Spec(ψ) =

{λ1, . . . , λn}, and Spec(τ) = {η1, . . . , ηn}, evaluating Equation (5.a) at (ei, ej , ej, ei)

gives us the equations

1 + ǫλiλj = δηiηj(5.b)

for any i 6= j. The remainder of this portion of the proof eliminates all possibilities

except those found in Conditions (1) and (2).

If |Spec(τ)| ≥ 3, then we permute the basis vectors so that η1, η2 and η3 are

distinct. Then we have, according to Equation (5.b) for i, j, and k distinct:

1 + ǫλiλj = δηiηj

1 + ǫλiλk = δηiηk, so subtracting,

ǫλi(λj − λk) = δηi(ηj − ηk).

(5.c)

All ηi 6= 0 since det τ 6= 0, and so since ηj 6= ηk, the above equation shows that all

λi 6= 0, and that λj 6= λk for {i, j, k} = {1, 2, 3}. Since dim(V ) ≥ 4, we may compute

(1 + ǫλ1λ2)(1 + ǫλ3λ4) = η1η2η3η4

= (1 + ǫλ1λ3)(1 + ǫλ2λ4).

Multiplying the above and cancelling, we have λ1λ2 + λ3λ4 = λ1λ3 + λ2λ4. In other

words, λ2(λ1 − λ4) = λ3(λ1 − λ4). Since λ2 6= λ3, we conclude λ1 = λ4. Performing

the same manipulation, we have

(1 + ǫλ1λ4)(1 + ǫλ2λ3) = η1η2η3η4

= (1 + ǫλ1λ3)(1 + ǫλ2λ4).

One then concludes, similarly to above, that λ4 = λ3. This is a contradiction, since

λ4 = λ1 6= λ3 = λ4.

Now suppose that |Spec(τ)| = 2, and that there are at least two pairs of repeated

eigenvalues of τ . We may assume that Spec(τ) = {η1, η1, η3, η3, . . .}, and that η1 6= η3.

Proceeding as in Equation (5.b), we have

1 + ǫλ1λ3 = 1 + ǫλ1λ4 = δη1η3 = 1 + ǫλ2λ3 = 1 + ǫλ2λ4.
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Now, as in Equation (5.c) we have the equations

λ1(λ3 − λ4) = 0, λ3(λ1 − λ2) = 0,

λ2(λ3 − λ4) = 0, λ4(λ1 − λ2) = 0.
(5.d)

Now according to Equation (5.b), we have 1 + ǫλ1λ2 = δη21 , and 1 + ǫλ1λ3 = δη1η2.

Subtracting, we conclude ǫλ1(λ2−λ3) = δη1(η1−η3) 6= 0. Thus λ1 6= 0, and λ2 6= λ3.

We use a similar argument to conclude λ2, λ3, and λ4 6= 0. According to Equation

(5.d), we have λ3 = λ4, and λ1 = λ2.

We find a contradiction after performing one more calculation from Equation

(5.b). Note that

(1 + ǫλ21)(1 + ǫλ23) = η21η
2
1 = (1 + ǫλ1λ3)(1 + ǫλ1λ3).

After multiplying out and cancelling the common constant and quartic terms, we

conclude

λ21 + λ23 = 2λ1λ3
⇔ (λ1 − λ3)

2 = 0

⇔ λ1 = λ3.

This is a contradiction since λ1 = λ2 6= λ3.

In order to finish the proof of one implication in Theorem 1.7, we consider the case

that Spec(τ) = {η1, η2, η2, . . .}. Using i = 1 in Equation (5.b), we see that λj = λ2

for all j ≥ 2. In that event we may solve for λ2 and λ1 to be as given in Condition

(2) of Theorem 1.7. This concludes the proof that if the set {Rϕ, Rψ, Rτ} is linearly

dependent, then Condition (1) or Condition (2) must hold.

Conversely, we suppose one of Condition (1) or (2) from Theorem 1.7 holds, and

show that the set {Rϕ, Rψ, Rτ} is linearly dependent. If Condition (1) is satisfied,

then ψ = λϕ, and τ = ηϕ for some λ and η. The set {Rϕ, Rψ} is a linearly dependent

set by Theorem 1.5, and so it follows that {Rϕ, Rψ, Rτ} is linearly dependent as well.

If Condition (2) holds, then the discussion already presented in the above paragraph

shows that, for this choice of ψ and τ , that Rϕ + ǫRψ = δRτ .

The following result shows that the assumption that dim(V ) = 4 is necessary in

Theorem 1.7 by exhibiting (in certain cases) a unique solution up to sign ψ of full

rank in the case dim(V ) = 3. Of course, our assumptions put certain restrictions on

the eigenvalues ηi of τ for there to exist a solution, in particular, since we assume ψ

and τ have full rank, none of their eigenvalues can be 0.
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Theorem 5.1. Let φ be a positive definite symmetric bilinear form on a real

vector space V of dimension 3. Suppose Spec(τ) = {η1, η2, η3}, and ε, δ = ±1. Set

η(i, j, k) = (−ǫ)

√

(1 − δηiηj)(1− δηiηk)

(−ǫ)(1 − δηjηk)
.

If Rank ψ = Rank τ = 3, and Spec(ψ) = {λ1, λ2, λ3}, where

λ1 = (−ǫ)η(1, 2, 3), λ2 = (−ǫ)η(2, 3, 1), λ3 = η(3, 1, 2),

then ψ and −ψ are the only solutions to the equation Rϕ + ǫRψ = δRτ .

Proof. If a solution exists, we use Theorem 1.6 that orthogonally diagonalizes ψ

and τ with respect to ϕ. The diagonal entries λi of ψ and ηi of τ are their respective

eigenvalues. We have the following equations for i 6= j:

ǫRψ(ei, ej, ej , ei) = ǫλiλj = −Rφ(ei, ej, ej , ei) + δRτ (ei, ej , ej, ei)

= −1 + δηiηj .

Since ψ has full rank, we know λ3 6= 0. Solving for λ1 and λ2 gives

λ1 =
−1 + δη1η3

ǫλ3
, and λ2 =

−1 + δη2η3

ǫλ3
.

Substituting into Rψ(e1, e2, e2, e1) gives

ǫ

(

−1 + δη1η3

ǫλ3

)(

−1 + δη2η3

ǫλ3

)

= −1 + δη1η2, so

ǫ(−1 + δη1η3)(−1 + δη2η3)

ǫ2λ23
= −1 + δη1η2, and so

(−1 + δη1η3)(−1 + δη2η3)

(−ǫ)(1− δη1η2)
= η(3, 1, 2)2 = λ23.

One checks that for these values of λ1, λ2, and λ3, that ψ is a solution, and that

these λi are completely determined in this way by the ηi, hence, they are the only

solutions.
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[4] J.C. Dı́az-Ramos and E. Garćıa-Ŕıo. A note on the structure of algebraic curvature

tensors. Linear Algebra and its Applications, 382, 271–277, 2004.

[5] C. Dunn. A new family of curvature homogeneous pseudo-Riemannian manifolds.

Rocky Mountain Journal of Mathematics, 39, no. 5, 1443–1465, 2009.

[6] C. Dunn and P. Gilkey. Curvature homogeneous pseudo-Riemannian manifolds which

are not locally homogeneous. Complex, Contact and Symmetric Manifolds.
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