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CONSTRUCTING MATRIX GEOMETRIC MEANS∗
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Abstract. In this paper, we analyze the process of “assembling” new matrix geometric means

from existing ones, through function composition or limit processes. We show that for n = 4 a new

matrix mean exists which is simpler to compute than the existing ones. Moreover, we show that

for n > 4 the existing proving strategies cannot provide a mean computationally simpler than the

existing ones.
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1. Introduction.

Literature review. In the last few years, several papers have been devoted to

defining a proper way to generalize the concept of geometric mean to n ≥ 3 Hermitian,

positive definite m×mmatrices. A seminal paper by Ando, Li and Mathias [1] defined

the mathematical problem by stating ten properties that a “good” matrix geometric

mean should satisfy. However, these properties do not uniquely define a multivariate

matrix geometric mean; thus several different definitions appeared in literature.

Ando, Li and Mathias [1] first proposed a mean whose definition for n matrices

is based on a limit process involving several geometric means of n− 1 matrices. Later

Bini, Meini and Poloni [4] noted that the slow convergence speed of this method pre-

vents its use in applications; its main shortcoming is the fact that its complexity grows

as O(n!) with the number of involved matrices. In the same paper, they proposed

a similar limit process with increased convergence speed, but still with complexity

O(n!). Pálfia [9] proposed a mean based on a similar process involving only means

of 2 matrices, and thus much simpler and cheaper to compute, but lacking property

P3 (permutation invariance) from the ALM list. Lim [6] proposed a family of matrix

geometric means that are based on an iteration requiring at each step the computa-

tion of a mean of m ≥ n matrices. Since the computational complexity for all known

means greatly increases with n, the resulting family is useful as an example but highly
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impractical for numerical computations.

At the same time, Moakher [7, 8] and Bhatia and Holbrook [3, 2] proposed

a completely different definition, which we shall call the Riemannian centroid of

A1, A2, . . . , An. The Riemannian centroid GR(A1, A2, . . . , An) is defined as the min-

imizer of a sum of squared distances,

GR(A1, A2, . . . , An) = argmin
X

n
∑

i=1

δ2(Ai, X), (1.1)

where δ is the geodesic distance induced by a natural Riemannian metric on the space

of symmetric positive definite matrices. The same X is the unique solution of the

equation

n
∑

i=1

log(A−1
i X) = 0, (1.2)

involving the matrix logarithm function. While most of the ALM properties are easy

to prove, it is still an open problem whether it satisfies P4 (monotonicity). The

computational experiments performed up to now gave no counterexamples, but the

monotonicity of the Riemannian centroid is still a conjecture [3], up to our knowledge.

Moreover, while the other means had constructive definitions, it is not apparent

how to compute the solution to either (1.1) or (1.2). Two methods have been proposed,

one based on a fixed-point iteration [8] and one on the Newton methods for manifolds

[9, 8]. Although both seem to work well on “tame” examples, their computational

results show a fast degradation of the convergence behavior as the number of matrices

and their dimension increase. It is unclear whether on more complicated examples

there is convergence in the first place; unlike the other means, the convergence of

these iteration processes has not been proved, as far as we know.

Notations. Let us denote by Pm the space of Hermitian positive-definite m ×m

matrices. For all A,B ∈ Pm, we shall say that A < B (A ≤ B) if B − A is positive

definite (semidefinite). With A∗ we denote the conjugate transpose of A. We shall say

that A = (Ai)
n
i=1 ∈ (Pm)n is a scalar n-tuple of matrices if A1 = A2 = · · · = An. We

shall use the convention that both Q(A) and Q(A1, . . . , An) denote the application of

the map Q : (Pm)n → Pm to the n-tuple A.

ALM properties. Ando, Li and Mathias [1] introduced ten properties defining

when a map G : (Pm)n → Pm can be called a geometric mean. Following their

paper, we report here the properties for n = 3 only, for the sake of simplicity; the

generalization to different values of n is straightforward.
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P1 (consistency with scalars) If A, B, C commute then G(A,B,C) = (ABC)1/3.

P1’ This implies G(A,A,A) = A.

P2 (joint homogeneity) G(αA, βB, γC) = (αβγ)1/3G(A,B,C), for each α, β, γ > 0.

P2’ This implies G(αA,αB, αC) = αG(A,B,C).

P3 (permutation invariance) G(A,B,C) = G(π(A,B,C)) for all the permutations

π(A,B,C) of A, B, C.

P4 (monotonicity) G(A,B,C) ≥ G(A′, B′, C′) whenever A ≥ A′, B ≥ B′, C ≥ C′.

P5 (continuity from above) If An, Bn, Cn are monotonic decreasing sequences con-

verging to A, B, C, respectively, then G(An, Bn, Cn) converges toG(A,B,C).

P6 (congruence invariance) G(S∗AS, S∗BS, S∗CS) = S∗G(A,B,C)S for any non-

singular S.

P7 (joint concavity) If A = λA1+(1−λ)A2, B = λB1+(1−λ)B2, C = λC1+(1−λ)C2,

then G(A,B,C) ≥ λG(A1, B1, C1) + (1− λ)G(A2, B2, C2).

P8 (self-duality) G(A,B,C)−1 = G(A−1, B−1, C−1).

P9 (determinant identity) detG(A,B,C) = (detAdetB detC)1/3.

P10 (arithmetic–geometric–harmonic mean inequality)

A+B + C

3
≥ G(A,B,C) ≥

(

A−1 +B−1 + C−1

3

)−1

.

The matrix geometric mean for n = 2. For n = 2, the ALM properties uniquely

define a matrix geometric mean which can be expressed explicitly as

A#B := A(A−1B)1/2. (1.3)

This is a particular case of the more general map

A#t B := A(A−1B)t, t ∈ R, (1.4)

which has a geometrical interpretation as the parametrization of the geodesic joining

A and B for a certain Riemannian geometry on Pm [2].

The ALM and BMP means. Ando, Li and Mathias [1] recursively define a matrix

geometric mean GALM
n of n matrices in this way. The mean GALM

2 of two matrices

coincides with (1.3); for n ≥ 3, suppose the mean of n− 1 matrices GALM
n−1 is already

defined. Given A1, . . . , An, compute for each j = 1, 2, . . .

A
(j+1)
i := GALM

n−1 (A
(j)
1 , A

(j)
2 , . . . A

(j)
i−1, A

(j)
i+1, . . . A

(j)
n ) i = 1, . . . , n, (1.5)

where A
(0)
i := Ai, i = 1, . . . n. The sequences (A

(j)
i )∞j=1 converge to a common (not

depending on i) matrix, and this matrix is a geometric mean of A
(0)
1 , . . . , A

(0)
n .

The mean proposed by Bini, Meini and Poloni [4] is defined in the same way, but

with (1.5) replaced by

A
(j+1)
i := GBMP

n−1 (A
(j)
1 , A

(j)
2 , . . . A

(j)
i−1, A

(j)
i+1, . . . A

(j)
n )#1/n Ai i = 1, . . . , n. (1.6)
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Though both maps satisfy the ALM properties, matrices A,B,C exist for which

GALM (A,B,C) 6= GBMP (A,B,C).

While the former iteration converges linearly, the latter converges cubically, and

thus allows one to compute a matrix geometric mean with a lower number of iterations.

In fact, if we call pk the average number of iterations that the process giving a mean of

k matrices takes to converge (which may vary significantly depending on the starting

matrices), the total computational cost of the ALM and BMP means can be expressed

as O(n!p3p4 . . . pnm
3). The only difference between the two complexity bounds lies in

the expected magnitude of the values pk. The presence of a factorial and of a linear

number of factors pk is undesirable, since it means that the problem scales very badly

with n. In fact, already with n = 7, 8 and moderate values of m, a large CPU time is

generally needed to compute a matrix geometric mean [4].

The Pálfia mean. Pálfia [9] proposed to consider the following iteration. Let

again A
(0)
i := Ai, i = 1, . . . , n. Let us define

A
(k+1)
i := A

(k)
i #A

(k)
i+1, i = 1, . . . , n, (1.7)

where the indices are taken modulo n, i.e., A
(k)
n+1 = A

(k)
1 for all k. We point out

that the definition in the original paper [9] is slightly different, as it considers several

possible orderings of the input matrices, but the means defined there can be put in

the form (1.7) up to a permutation of the starting matrices A1, . . . , An.

As for the previous means, it can be proved that the iteration (1.7) converges to

a scalar n-tuple; we call the common limit of all components GP (A1, . . . , An). As we

noted above, this function does not satisfy P3 (permutation invariance), and thus it

is not a geometric mean in the ALM sense.

Other composite means. Apart from the Riemannian centroid, all the other defi-

nitions follow the same pattern:

• build new functions of n matrices by taking nested compositions of the exist-

ing means—preferably using only means of less than n matrices;

• take the common limit of a set of n functions defined as in the above step.

The possibilities for defining new iterations following this pattern are endless. Ando,

Li, Mathias, and Bini, Meini, Poloni chose to use in the first step composite functions

using computationally expensive means of n−1 matrices; this led to poor convergence

results. Pálfia chose instead to use more economical means of two variables as starting

points; this led to better convergence (no O(n!)), but to a function which is not

symmetric with respect to permutations of its entries (P3, permutation invariance).
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As we shall see in the following, the property P3 is crucial: all the other ones are

easily proved for a mean defined as composition/limit of existing means.

A natural question to ask is whether we can build a matrix geometric mean of

n matrices as the composition of matrix means of less matrices, without the need of

a limit process. Two such unsuccessful attempts are reported in the paper by Ando,

Li and Mathias [1], as examples of the fact that it is not easy to define a matrix

satisfying P1–P10. The first is

G4rec(A,B,C,D) := (A#B)#(C#D). (1.8)

Unfortunately, there are matrices such that (A#B)#(C#D) 6= (A#C)#(B#D),

so P3 fails. A second attempt is

Grec(A,B,C) := (A4/3 #B4/3)#C2/3, (1.9)

where the exponents are chosen so that P1 (consistency with scalars) is satisfied.

Again, this function is not symmetric in its arguments, and thus fails to satisfy P3.

A second natural question is whether an iterative scheme such as the ones for

GALM , GBMP and GP can yield P3 without having a O(n!) computational cost. For

example, if we could build a scheme similar to the ALM and BMP ones, but using

only means of n
2 matrices in the recursion, then the O(n!) growth would disappear.

In this paper, we aim to analyze in more detail the process of “assembling” new

matrix means from the existing ones, and show which new means can be found,

and what cannot be done because of group-theoretical obstructions related to the

symmetry properties of the composed functions. By means of a group-theoretical

analysis, we will show that for n = 4 a new matrix mean exists which is simpler to

compute than the existing ones; numerical experiments show that the new definition

leads to a significant computational advantage. Moreover, we will show that for n > 4

the existing strategies of composing matrix means and taking limits cannot provide

a mean which is computationally simpler than the existing ones.

2. Quasi-means and notation.

Quasi-means. Let us introduce the following variants to some of the Ando–Li–

Mathias properties.

P1” Weak consistency with scalars. There are α, β, γ ∈ R such that if A,B,C

commute, then G(A,B,C) = AαBβCγ .

P2” Weak homogeneity. There are α, β, γ ∈ R such that for each r, s, t > 0,

G(rA, sB, tC) = rαsβtγG(A,B,C). Notice that if P1” holds as well, these

must be the same α, β, γ (proof: substitute scalar values in P1”).
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P9’ Weak determinant identity. For all d > 0, if detA = detB = detC = d, then

detG(A,B,C) = d.

We shall call a quasi-mean a function Q : (Pm)n → (Pm) that satisfies P1”,P2”,

P4, P6, P7, P8, P9’. This models expressions which are built starting from basic

matrix means but are not symmetric, e.g., A#G(B,C,D#E), (1.8), and (1.9).

Theorem 2.1. If a quasi-mean Q satisfies P3 (permutation invariance), then it

is a geometric mean.

Proof. From P2” and P3, it follows that α = β = γ. From P9’, it follows that if

detA = detB = detC = 1,

2m = detQ(2A, 2B, 2C) = det
(

2α+β+γQ(A,B,C)
)

= 2m(α+β+γ),

thus α + β + γ = 1. The two relations combined together yield α = β = γ = 1/3.

Finally, it is proved in Ando, Li and Mathias [1] that P5 and P10 are implied by the

other eight properties P1–P4 and P6–P9.

For two quasi-meansQ and R of nmatrices, we shall write Q = R if Q(A) = R(A)

for each n-tuple A ∈ Pm

Group theory notation. The notation H ≤ G (H < G) means that H is a sub-

group (proper subgroup) of G. Let us denote by Sn the symmetric group on n

elements, i.e., the group of all permutations of the set {1, 2, . . . , n}. As usual, the

symbol (a1a2a3 . . . ak) stands for the permutation (“cycle”) that maps a1 7→ a2,

a2 7→ a3, . . . ak−1 7→ ak, ak 7→ a1 and leaves the other elements of {1, 2, . . . n}

unchanged. Different symbols in the above form can be chained to denote the group

operation of function composition; for instance, σ = (13)(24) is the permutation

(1, 2, 3, 4) 7→ (3, 4, 1, 2). We shall denote by An the alternating group on n elements,

i.e., the only subgroup of index 2 of Sn, and by Dn the dihedral group over n ele-

ments, with cardinality 2n. The latter is identified with the subgroup of Sn generated

by the rotation (1, 2, . . . , n) and the mirror symmetry (2, n)(3, n−1) · · · (n/2, n/2+2)

(for even values of n) or (2, n)(3, n− 1) · · · ((n+1)/2, (n+3)/2) (for odd values of n).

Coset transversals. Let now H ≤ Sn, and let {σ1, . . . , σr} ⊂ Sn be a transversal

for the right cosetsHσ, i.e., a set of maximal cardinality r = n!/|H | such that σjσ
−1
i 6∈

H for all i 6= j. The group Sn acts by permutation over the cosets (Hσ1, . . . , Hσr),

i.e., for each σ there is a permutation τ = ρH(σ) such that

(Hσ1σ, . . . , Hσrσ) = (Hστ(1), . . . , Hστ(r)).

It is easy to check that in this case ρH : Sn → Sr must be a group homomorphism.

Notice that if H is a normal subgroup of Sn, then the action of Sn over the coset

space is represented by the quotient group Sn/H , and the kernel of ρH is H .
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Example 2.2. The coset space of H = D4 has size 4!/8 = 3, and a possible

transversal is σ1 = e, σ2 = (12), σ3 = (14). We have ρH(S4) ∼= S3: indeed, the

permutation σ = (12) ∈ S4 is such that (Hσ1σ,Hσ2σ,Hσ3σ) = (Hσ2, Hσ1, Hσ3),

and therefore ρH(σ) = (12), while the permutation σ̃ = (14) ∈ S4 is such that

(Hσ1σ̃, Hσ2σ̃, Hσ3σ̃) = (Hσ3, Hσ2, Hσ1), therefore ρH(σ̃) = (13). Thus ρH(S4)

must be a subgroup of S3 containing (12) and (13), that is, S3 itself.

With the same technique, noting that σ−1
i σj maps the coset Hσi to Hσj , we can

prove that the action ρH of Sn over the coset space is transitive.

Group action and composition of quasi-means. We may define a right action of

Sn on the set of quasi-means of n matrices as

(Qσ)(A1, . . . , An) := Q(Aσ(1), . . . , Aσ(n)).

The choice of putting σ to the right, albeit slightly unusual, was chosen to simplify

some of the notations used in Section 4.

When Q is a quasi-mean of r matrices and R1, R2, . . . Rr are quasi-means of n

matrices, let us define Q ◦ (R1, R2, . . . Rr) as the map

(Q ◦ (R1, R2, . . . Rr)) (A) := Q(R1(A), R2(A), . . . , Rr(A)). (2.1)

Theorem 2.3. Let Q(A1, . . . , Ar) and Rj(A1, . . . An) (for j = 1, . . . , r) be quasi-

means. Then,

1. For all σ ∈ Sr, Qσ is a quasi-mean.

2. (A1, . . . , Ar, Ar+1) 7→ Q(A1, . . . , Ar) is a quasi-mean.

3. Q ◦ (R1, R2, . . . Rr) is a quasi-mean.

Proof. All properties follow directly from the monotonicity (P4) and from the

corresponding properties for the means Q and Rj .

We may then define the isotropy group, or stabilizer group of a quasi-mean Q

Stab(Q) := {σ ∈ S
n : Q = Qσ}. (2.2)

3. Means obtained as map compositions.

Reductive symmetries. Let us define the concept of reductive symmetries of a

quasi-mean as follows.

• in the special case in which G2(A,B) = A#B, the symmetry property that

A#B = B#A is a reductive symmetry.
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• let Q◦(R1, . . . , Rr) be a quasi-mean obtained by composition. The symmetry

with respect to the permutation σ (i.e., the fact that Q = Qσ) is a reductive

symmetry for Q◦ (R1, . . . , Rr) if this property can be formally proved relying

only on the reductive symmetries of Q and R1, . . . , Rr.

For instance, if we take Q(A,B,C) := A#(B#C), then we can deduce that

Q(A,B,C) = Q(A,C,B) for all A,B,C, but not that Q(A,B,C) = Q(B,C,A) for all

A,B,C. This does not imply that such a symmetry property does not hold: if we were

considering the operator + instead of #, then it would hold that A+B+C = B+C+A,

but there are no means of proving it relying only on the commutativity of addition

— in fact, associativity is crucial.

As we stated in the introduction, Ando, Li and Mathias [1] showed explicit coun-

terexamples proving that all the symmetry properties of G4rec and Grec are reductive

symmetries. We conjecture the following.

Conjecture 1. All the symmetries of a quasi-mean obtained by recursive com-

position from G2 are reductive symmetries.

In other words, we postulate that no “unexpected symmetries” appear while

examining quasi-means compositions. This is a rather strong statement; however,

the numerical experiments and the theoretical analysis performed up to now never

showed any invariance property that could not be inferred by those of the underlying

means.

We shall prove several result limiting the reductive symmetries that a mean can

have; to this aim, we introduce the reductive isotropy group

RStab(Q) = {σ ∈ Stab(Q) : Q = Qσ is a reductive symmetry}. (3.1)

We will prove that there is no quasi-mean Q such that RStab(Q) = Sn. This shows

that the existing “tools” in the mathematician’s “toolbox” do not allow one to con-

struct a matrix geometric mean (with full proof) based only on map compositions;

thus we need either to devise a completely new construction or to find a novel way to

prove additional invariance properties involving map compositions.

Reduction to a special form. The following results show that when looking for a

reductive matrix geometric mean, i.e., a quasi-mean Q with RStabQ = Sn, we may

restrict our search to quasi-means of a special form.

Theorem 3.1. Let Q be a quasi-mean of r + s matrices, and R1, R2, . . . , Rr,

S1, S2, . . . , Ss be quasi-means of n matrices such that Ri 6= Sjσ for all i, j and every
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σ ∈ Sn. Then,

RStab(Q ◦ (R1, R2, . . . , Rr, S1, S2, . . . , Ss))

⊆ RStab(Q ◦ (R1, . . . , Rr, R1, R1, . . . , R1)). (3.2)

Proof. Let σ ∈ RStab(Q◦(R1, R2, . . . , Rr, S1, S2, . . . Ss)); since the only invariance

properties that we may assume on Q are those predicted by its invariance group, it

must be the case that

(R1σ,R2σ, . . . , Rrσ, S1σ, S2σ, . . . Ssσ)

is a permutation of (R1, R2, . . . , Rr, S1, S2, . . . Ss) belonging to RStab(Q). Since Ri 6=

Sjσ, this permutation must map the sets {R1, R2, . . . , Rr} and {S1, S2, . . . Ss} to

themselves. Therefore, the same permutation maps

(R1, R2, . . . , Rr, R1, R1, . . . R1)

to

(R1σ,R2σ, . . . , Rrσ,R1σ,R1σ, . . . R1σ).

This implies that

Q(R1, R2, . . . , Rr, R1, R1, . . . R1) = Q(R1σ,R2σ, . . . , Rrσ,R1σ,R1σ, . . . R1σ)

as requested.

Theorem 3.2. Let M1 := Q ◦ (R1, R2, . . . , Rr) be a quasi-mean. Then there is a

quasi-mean M2 in the form

Q̃ ◦ (R̃σ1, R̃σ2, . . . , R̃σr̃), (3.3)

where (σ1, σ2, . . . , σr̃) is a right coset transversal for RStab(R̃) in Sn, such that

RStab(M1) ⊆ RStab(M2).

Proof. Set R̃ = R1. For each i = 2, 3, . . . , r if Ri 6= R̃σ, we may replace it with R̃,

and by Theorem 3.1 the restricted isotropy group increases or stays the same. Thus

by repeated application of this theorem, we may reduce to the case in which each Ri

is in the form R̃τi for some permutation τi.

Since {σi} is a right transversal, we may write τi = hiσk(i) for some hi ∈ H and

k(i) ∈ {1, 2, . . . , r̃}. We have R̃h = R̃ since h ∈ Stab R̃, thus Ri = R̃σk(i). The

resulting quasi-mean is Q ◦ (R̃σk(1), . . . , R̃σk(r)). Notice that we may have k(i) =
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k(j), or some cosets may be missing. Let now Q̃ be defined as Q̃(A1, A2, . . . , Ar̃) :=

Q(Ak(1), . . . , Ak(r)); then we have

Q̃(R̃σ1, . . . , R̃σr̃) = Q(R̃σk(1), . . . , R̃σk(r)) (3.4)

and thus the isotropy groups of the left-hand side and right-hand side coincide.

For the sake of brevity, we shall define

Q ◦R := Q ◦ (Rσ1, . . . , Rσr),

assuming a standard choice of the transversal for H = StabR. Notice that Q ◦ R

depends on the ordering of the cosets Hσ1, . . . , Hσr, but not on the choice of the

coset representative σi, since Qhσi = Qσi for each h ∈ H .

Example 3.3. The quasi-mean (A,B,C) 7→ (A#B)#(B#C) is Q ◦Q, where

Q(X,Y, Z) = X#Y , H = {e, (12)}, and the transversal is {e, (13), (23)}.

Example 3.4. The quasi-mean (A,B,C) 7→ (A#B)#C is not in the form

(3.3), but in view of Theorem 3.1, its restricted isotropy group is a subgroup of that

of (A,B,C) 7→ (A#B)#(A#B).

The following theorem shows which permutations we can actually prove to belong

to the reductive isotropy group of a mean in the form (3.3).

Theorem 3.5. Let H ≤ Sn, R be a quasi-mean of n matrices such that

RStabR = H and Q be a quasi-mean of r = n!/|H | matrices. Let G ∈ Sn be the

largest permutation subgroup such that ρH(G) ≤ RStab(Q). Then, G = RStab(Q ◦

R).

Proof. Let σ ∈ G and τ = ρH(σ); we have

(Q ◦R)σ(A) = Q
(

Rσ1σ(A), Rσ2σ(A), . . . , Rσrσ(A)
)

= Q
(

Rστ(1)(A), Rστ(2)(A), . . . , Rστ(r)(A)
)

= Q
(

Rσ1(A), Rσ2(A), . . . , Rσr(A)
)

,

where the last equality holds because τ ∈ Stab(Q).

Notice that the above construction is the only way to obtain invariance with

respect to a given permutation σ: indeed, to prove invariance relying only on the

invariance properties of Q, (Rσ1σ, . . . , Rσrσ) = (Rστ(1), . . . , Rστ(r)) must be a per-

mutation of (Rσ1, . . . , Rσr) belonging to RStabQ, and thus ρH(σ) = τ ∈ StabQ.

Thus the reductive invariance group of the composite mean is precisely the largest

subgroup G such that ρH(G) ≤ StabQ.

Example 3.6. Let n = 4, Q be any (reductive) geometric mean of three ma-

trices (i.e., RStabQ = S3), and R(A,B,C,D) := (A#C)#(B#D). We have
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H = RStabR = D4, the dihedral group over four elements, with cardinality 8. There

are r = 4!/|H | = 3 cosets. Since ρH(S4) is a subset of StabQ = S3, the isotropy

group of Q ◦ R contains G = S4 by Theorem 3.5. Therefore Q ◦ R is a geometric

mean of four matrices.

Indeed, the only assertion we have to check explicitly is that RStabR = D4. The

isotropy group of R contains (24) and (1234), since by using repeatedly the fact that

# is symmetric in its arguments we can prove that R(A,B,C,D) = R(A,D,C,B)

and R(A,B,C,D) = R(D,A,B,C). Thus it must contain the subgroup generated by

these two elements, that is, D4 ≤ RStabR. The only subgroups of S4 containing D4

as a subgroup are the two trivial ones S4 and D4. We cannot have RStabR = S4,

since R has the same definition as G4rec of equation (1.8), apart from a reordering,

and it was proved [1] that this is not a geometric mean.

It is important to notice that by choosing G3 = GALM
3 or G3 = GBMP

3 in the

previous example we may obtain a geometric mean of four matrices using a single

limit process, the one needed for G3. This is more efficient than GALM
4 and GBMP

4 ,

which compute a mean of four matrices via several means of three matrices, each of

which requires a limit process in its computation. We will return to this topic in

Section 5.

Above four elements. Is it possible to obtain a reductive geometric mean of n

matrices, for n > 4, starting from simpler means and using the construction of The-

orem 3.5? The following result shows that the answer is no.

Theorem 3.7. Suppose G := RStab(Q ◦ R) ≥ An and n > 4. Then An ≤

RStab(Q) or An ≤ RStab(R).

Proof. Let us consider K = ker ρH . It is a normal subgroup of Sn, but for n > 4

the only normal subgroups of Sn are the trivial group {e}, An and Sn [5]. Let us

consider the three cases separately.

1. K = {e}. In this case, ρH(G) ∼= G, and thus G ≤ RStabQ.

2. K = Sn. In this case, ρH(Sn) is the trivial group. But the action of Sn over

the coset space is transitive, since σ−1
i σj sends the coset Hσi to the coset

Hσj . So the only possibility is that there is a single coset in the coset space,

i.e., H = Sn.

3. K = An. As in the above case, since the action is transitive, it must be the

case that there are at most two cosets in the coset space, and thus H = Sn

or H = An.

Thus it is impossible to apply Theorem 3.5 to obtain a quasi-mean with reductive

isotropy group containing An, unless one of the two starting quasi-means has a re-
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ductive isotropy group already containing An.

4. Means obtained as limits.

An algebraic setting for limit means. We shall now describe a unifying algebraic

setting in terms of isotropy groups, generalizing the procedures leading to the means

defined by limit processes GALM , GBMP and GP .

Let S : (Pm)n → (Pm)n be a map; we shall say that S preserves a subgroup

H < Sn if there is a map τ : H → H such that Sh(A) = τ(h)S(A) for all A ∈ Pm.

Theorem 4.1. Let S : (Pm)n → (Pm)n be a map and H < Sn be a permutation

group such that

1. (A) →
(

S(A)
)

i
is a quasi-mean for all i = 1, . . . , n,

2. S preserves H,

3. for all A ∈ (Pm)n, limk→∞ Sk(A) is a scalar n-tuple1,

and let us denote by S∞(A) the common value of all entries of the scalar n-tuple

limk→∞ Sk(A). Then, S∞(A) is a quasi-mean with isotropy group containing H.

Proof. From Theorem 2.3, it follows that A 7→
(

Sk(A)
)

i
is a quasi-mean for each

k. Since all the properties defining a quasi-mean pass to the limit, S∞ is a quasi-mean

itself.

Let us take h ∈ H andA ∈ Pn. It is easy to prove by induction on k that Skh(A) =

τk(h)
(

Sk(A)
)

. Now, choose a matrix norm inducing the Euclidean topology on Pm;

let ε > 0 be fixed, and let us take K such that for all k > K and for all i = 1, . . . , n

the following inequalities hold:

•
∥

∥

(

Sk(A)
)

i
− S∞(A)

∥

∥ < ε,

•
∥

∥

(

Skh(A)
)

i
− S∞h(A)

∥

∥ < ε.

We know that
(

Skh(A)
)

i
=

(

τk(h)Sk(A)
)

i
=

(

Sk(A)
)

τk(h)(i)
, therefore

‖S∞(A)− S∞h(A)‖ ≤
∥

∥

∥

(

Sk(A)
)

τk(h)(i)
− S∞(A)

∥

∥

∥

+
∥

∥

(

Skh(A)
)

i
− S∞h(A)

∥

∥ < 2ε.

Since ε is arbitrary, the two limits must coincide. This holds for each h ∈ H , therefore

H ≤ StabS∞.

1Here Sk denotes function iteration: S1 = S and Sk+1(A) = S(Sk(A)) for all k.
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Example 4.2. The map S defining GALM
4 is









A

B

C

D









7→









GALM
3 (B,C,D)

GALM
3 (A,C,D)

GALM
3 (A,B,D)

GALM
3 (A,B,C)









.

One can see that Sσ = σ−1S for each σ ∈ S4, and thus with the choice τ(σ) := σ−1

we get that S preserves S4. Thus, by Theorem 4.1, S∞ = GALM
4 is a geometric mean

of four matrices. The same reasoning applies to GBMP .

Example 4.3. The map S defining GP
4 is









A

B

C

D









7→









A#B

B#C

C#D

D#A









.

S preserves the dihedral groupD4. Therefore, provided the iteration process converges

to a scalar n-tuple, S∞ is a quasi-mean with isotropy group containing D4.

Efficiency of the limit process. As in the previous section, we are interested in

seeing whether this approach, which is the one that has been used to prove invariance

properties of the known limit means [1, 4], can yield better results for a different map

S.

Theorem 4.4. Let S : (Pm)n → (Pm)n preserve a group H. Then, the invariance

group of each of its components Si, i = 1, . . . , n, is a subgroup of H of index at most

n.

Proof. Let i be fixed, and set Ik := {h ∈ H : τ(h)(i) = k}. The sets Ik are

mutually disjoint and their union is H , so the largest one has cardinality at least

|H |/n, let us call it Ik̄.

From the hypothesis that S preserves H , we get Sih(A) = Sk̄(A) for each A and

each h ∈ Ik. Let h̄ be an element of Ik; then Sih(h̄
−1A) = Sk̄(h̄

−1A) = Si(A). Thus

the isotropy group of Si contains all the elements of the form hh̄−1, h ∈ Ik, and those

are at least |H |/n.

The following result holds [5, page 147].

Theorem 4.5. For n > 4, the only subgroups of Sn with index at most n are:

• the alternating group An,

• the n groups Tk = {σ ∈ Sn : σ(k) = k}, k = 1, . . . , n, all of which are

isomorphic to Sn−1,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 419-435, July 2010



ELA

432 F. Poloni

• for n = 6 only, another conjugacy class of 6 subgroups of index 6 isomorphic

to S5.

Analogously, the only subgroups of An with index at most n are:

• the n groups Uk = {σ ∈ An : σ(k) = k}, k = 1, . . . , n, all of which are

isomorphic to An−1,

• for n = 6 only, another conjugacy class of 6 subgroups of index 6 isomorphic

to A5.

This shows that whenever we try to construct a geometric mean of n matrices

by taking a limit processes, such as in the Ando–Li–Mathias approach, the isotropy

groups of the starting means must contain An−1. On the other hand, by Theorem 3.5,

we cannot generate means whose isotropy group contains An−1 by composition of

simpler means; therefore, there is no simpler approach than that of building a mean

of nmatrices as a limit process of means of n−1 matrices (or at least quasi-means with

StabQ = An−1, which makes little difference). This shows that the recursive approach

of GALM and GBMP cannot be simplified while still maintaining P3 (permutation

invariance).

5. Computational issues and numerical experiments.

A faster mean of four matrices. The results we have exposed up to now are

negative results, and they hold for n > 4. On the other hand, it turns out that for

n = 4, since An is not a simple group, there is the possibility of obtaining a mean that

is computationally simpler than the ones in use. Such a mean is the one we described

in Example 3.6. Let us take any mean of three elements (we shall use GBMP
3 here

since it is the one with the best computational results); the new mean is therefore

defined as

GNEW
4 (A,B,C,D) := GBMP

3 ((A#B)#(C#D), (A#C)#(B#D),

(A#D)#(B#C)) . (5.1)

Notice that only one limit process is needed to compute the mean; conversely, when

computing GALM
4 or GBMP

4 we are performing an iteration whose elements are com-

puted by doing four additional limit processes; thus we may expect a large saving in

the overall computational cost.

We may extend the definition recursively to n > 4 elements using the con-

struction described in (1.6), but with GNEW instead of GBMP . The total com-

putational cost, computed in the same fashion as for the ALM and BMP means, is

O(n!p3p5p6 . . . pnm
3). Thus the undesirable dependence from n! does not disappear;

the new mean should only yield a saving measured by a multiplicative constant in the
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Data set (number of matrices) BMP mean New mean

NaClO3 (5) 1.3E+00 3.1E-01

Ammonium dihydrogen phosphate (4) 3.5E-01 3.9E-02

Potassium dihydrogen phosphate (4) 3.5E-01 3.9E-02

Quartz (6) 2.9E+01 6.7E+00

Rochelle salt (4) 6.0E-01 5.5E-02
Table 5.1

CPU times for the elasticity data sets

BMP mean New mean

Outer iterations (n = 4) 3 none

Inner iterations (n = 3) 4× 2.0 (avg.) per outer iteration 2

Matrix square roots (sqrtm) 72 15

Matrix p-th roots (rootm) 84 6
Table 5.2

Number of inner and outer iterations needed, and number of matrix roots needed (ammonium

dihydrogen phosphate)

complexity bound.

Benchmarks. We have implemented the original BMP algorithm and the new one

described in the above section with MATLAB R© and run some tests on the same set

of examples used by Moakher [8] and Bini et al. [4]. It is an example deriving from

physical experiments on elasticity. It consists of five sets of matrices to average, with

n varying from 4 to 6, and 6× 6 matrices split into smaller diagonal blocks.

For each of the five data sets, we have computed both the BMP and the new

matrix mean. The CPU times are reported in Table 5.1. As a stopping criterion for

the iterations, we used

max
i,j,k

∣

∣

∣
(A

(h)
i )jk − (A

(h+1)
i )jk

∣

∣

∣
< 10−13.

As we expected, our mean provides a substantial reduction of the CPU time which

is roughly by an order of magnitude.

Following Bini et al. [4], we then focused on the second data set (ammonium

dihydrogen phosphate) for a deeper analysis; we report in Table 5 the number of

iterations and matrix roots needed in both computations.

The examples in these data sets are mainly composed of matrices very close to

each other; we shall consider here instead an example of mean of four matrices whose
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BMP mean New mean

Outer iterations (n = 4) 4 none

Inner iterations (n = 3) 4× 2.5 (avg.) per outer iteration 3

Matrix square roots (sqrtm) 120 18

Matrix p-th roots (rootm) 136 9
Table 5.3

Number of inner and outer iterations needed, and number of matrix roots needed

Operation Result
∥

∥GBMP (M−2,M,M2,M3)−M
∥

∥

2
4.0E-14

∥

∥GNEW (M−2,M,M2,M3)−M
∥

∥

2
2.5E-14

∣

∣det(GBMP (A,B,C,D)) − (det(A) det(B) det(C) det(D))1/4
∣

∣ 5.5E-13
∣

∣det(GBMP (A,B,C,D)) − (det(A) det(B) det(C) det(D))1/4
∣

∣ 2.1E-13
Table 5.4

Accuracy tests

mutual distances are larger:

A =





1 0 0

0 1 0

0 0 1



 , B =





3 0 0

0 4 0

0 0 100



 , C =





2 1 1

1 2 1

1 1 2



 , D =





20 0 −10

0 20 0

−10 0 20



 .

(5.2)

The results regarding these matrices are reported in Table 5.3.

Accuracy. It is not clear how to check the accuracy of a limit process yielding

a matrix geometric mean, since the exact value of the mean is not known a priori,

apart from the cases in which all the Ai commute. In those cases, P1 yields a compact

expression for the result. So we cannot test accuracy in the general case; instead, we

have focused on two special examples.

As a first accuracy experiment, we computed G(M−2,M,M2,M3) − M , where

M is taken as the first matrix of the second data set on elasticity; the result of this

computation should be zero according to P1. As a second experiment, we tested the

validity of P9 (determinant identity) on the means of the four matrices in (5.2). The

results of both computations are reported in Table 5.4; the results are well within the

errors permitted by the stopping criterion, and show that both algorithms can reach

a satisfying precision.
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6. Conclusions.

Research lines. The results of this paper show that, by combining existing matrix

means, it is possible to create a new mean which is faster to compute than the existing

ones. Moreover, we show that using only function compositions and limit processes

with the existing proof strategies, it is not possible to achieve any further significant

improvement with respect to the existing algorithms. In particular, the dependency

from n! cannot be removed. New attempts should focus on other aspects, such as:

• proving new “unexpected” algebraic relations involving the existing matrix

means, which would allow to break out of the framework of Theorem 3.5–

Theorem 4.1.

• introducing new kinds of matrix geometric means or quasi-means, different

from the ones built using function composition and limits.

• proving that the Riemannian centroid (1.1) is a matrix mean in the sense of

Ando–Li–Mathias (currently P4 is an open problem), or providing faster and

reliable algorithms to compute it.

It is an interesting question whether it is possible to construct a quasi-mean whose

isotropy group is exactly An.
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