PRODUCTS OF SKEW-INVOLUTIONS*

JESUS PAOLO E. JOVEN[†] AND AGNES T. PARAS[†]

Abstract. It is shown that every 2n-by-2n matrix over a field \mathbb{F} with determinant 1 is a product of (i) four or fewer skew-involutions ($A^2 = -I$) provided $\mathbb{F} \neq \mathbb{Z}_3$, and (ii) eight or fewer skew-involutions if $\mathbb{F} = \mathbb{Z}_3$ and n > 1. Every real symplectic matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions is given.

Key words. Involution, Skew-involution, Symplectic matrix, Binomial coefficients, Toeplitz matrix, Persymmetric matrix.

AMS subject classifications. 15A23, 15B05, 15B10, 05A10.

1. Introduction. Let $M_n(\mathbb{F})$ be the set of all n-by-n matrices with entries in a field \mathbb{F} , $SL_n(\mathbb{F})$ be the set of all matrices in $M_n(\mathbb{F})$ with determinant 1, and char \mathbb{F} denote the characteristic of \mathbb{F} . Suppose $A \in M_n(\mathbb{F})$. We say that A is an *involution* if $A^2 = I_n$, while A is called a *skew-involution* if $A^2 = -I_n$. Denote by Ω_{2n} the skew-involution given by:

$$\Omega_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in M_{2n}(\mathbb{F}).$$

We say $B \in M_{2n}(\mathbb{F})$ is symplectic if $B^{\top}\Omega_{2n}B = \Omega_{2n}$, and B is skew-symplectic if $B^{\top}\Omega_{2n}B = -\Omega_{2n}$.

In 1976, Gustafson et al. proved that every matrix in $M_n(\mathbb{F})$ with determinant ± 1 is a product of at most four involutions [9]. In 1966, Wonenburger proved that every symplectic matrix over \mathbb{F} is a product of two skew-symplectic involutions provided char $\mathbb{F} \neq 2$ [13]. In 1981, Gow proved that if char $\mathbb{F} = 2$, then every symplectic matrix over \mathbb{F} is a product of two symplectic involutions [8]. In 2020, Ellers and Villa showed that every symplectic matrix over \mathbb{F} of size at least 4 is a product of 6 or fewer symplectic involutions provided -1 is a square in \mathbb{F} [6].

Suppose $p(x) = x^2 + 1$ has a root $a \in \mathbb{F}$. Then, P is an involution if and only if $\pm aP$ is a skew-involution. If $A \in M_n(\mathbb{F})$ has determinant ± 1 , then $A = E_1E_2E_3E_4$, where each $E_i \in M_n(\mathbb{F})$ is an involution [9]. Since $\pm aE_i$ is a skew-involution for each i, we can write $A = (aE_1)(-aE_2)(aE_3)(-aE_4)$ as a product of four skew-involutions. If char $\mathbb{F} = 2$, then an involution is a skew-involution, and every symplectic over \mathbb{F} is a product of two symplectic skew-involutions. If char $\mathbb{F} \neq 2$ and $B \in M_{2n}(\mathbb{F})$ is symplectic, then $B = S_1S_2$ where each S_j is a skew-symplectic involution [13]. Since S is a skew-symplectic involution if and only if $\pm aS$ is a symplectic skew-involution, we can write $B = (aS_1)(-aS_2)$ as a product of two symplectic skew-involutions.

Suppose $p(x) = x^2 + 1$ has no root in \mathbb{F} . If $P \in M_n(\mathbb{F})$ is a skew-involution, then the minimal polynomial of P is p(x), which is irreducible in $\mathbb{F}[x]$. By the rational canonical form theorem, P is similar to

^{*}Received by the editors on January 29, 2023. Accepted for publication on March 14, 2023. Handling Editor: João Filipe Queiró. Corresponding Author: Agnes T. Paras.

[†]Institute of Mathematics, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines (jpjoven@math.upd.edu.ph, agnes@math.upd.edu.ph).

Products of skew-involutions

$$\bigoplus_k C(x^2+1) = \bigoplus_k \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Hence, n = 2k, $\det P = 1$, and $Q \in M_n(\mathbb{F})$ is a skew-involution if and only if Q similar to P. Thus, if A is a product of skew-involutions, then $A \in SL_{2k}(\mathbb{F})$ when p(x) has no root in \mathbb{F} .

In this paper, we consider products of skew-involutions in $SL_{2n}(\mathbb{F})$. In Section 2, we include some elementary properties of skew-involutions. In Section 3, we show that every $A \in SL_{2n}(\mathbb{F})$ is a product of skew-involutions if and only if $\mathbb{F} \neq \mathbb{Z}_3$ or n > 1. We prove in Section 4 that every real symplectic matrix is a product of six or fewer real symplectic skew-involutions. We provide an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions in Section 5.

2. Preliminaries. Our notation is standard as in [10]. We denote a diagonal matrix of size n with (i,i)-entry d_i by $\operatorname{diag}(d_1,d_2,\ldots,d_n)$, and the n-by-n Jordan block corresponding to $\lambda \in \mathbb{F}$ by $J_n(\lambda)$. Let $\operatorname{Sp}_{2n}(\mathbb{F})$ denote the group of symplectic matrices in $M_{2n}(\mathbb{F})$. The following proposition gives a description of the blocks of a symplectic matrix when it is partitioned conformal to Ω_{2n} .

Proposition 2.1. Let

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix},$$

such that each $A_i \in M_n(\mathbb{F})$. Then, $A \in \operatorname{Sp}_{2n}(\mathbb{F})$ if and only if both $A_1 A_2^{\top}$ and $A_3 A_4^{\top}$ are symmetric, and $A_1 A_4^{\top} - A_2 A_3^{\top} = I$. If n = 1, then $A \in \operatorname{Sp}_2(\mathbb{F})$ if and only if $A \in \operatorname{SL}_2(\mathbb{F})$.

Let $A \in M_n(\mathbb{F})$ be nonsingular. By Proposition 2.1, the following matrices are symplectic:

$$A \oplus A^{-\top}$$
 and $\begin{bmatrix} 0 & -A^{-\top} \\ A & 0 \end{bmatrix}$.

Observe that

$$A \oplus A^{-1} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \begin{bmatrix} 0 & -A^{-1} \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix} \begin{bmatrix} 0 & A^{-1} \\ A & 0 \end{bmatrix}$$

is a product of two skew-involutions and a product of two involutions. If, in addition, A is symmetric, then $A \oplus A^{-1}$ is a product of two symplectic skew-involutions. This proves the following.

LEMMA 2.2. If $A \in M_n(\mathbb{F})$ is nonsingular, then $A \oplus A^{-1}$ is

- (a) a product of two involutions,
- (b) a product of two skew-involutions, and
- (c) a product of two symplectic skew-involutions, when A is symmetric.

Let $A = [A_{ij}] \in M_{2k}(\mathbb{F})$ and $B = [B_{ij}] \in M_{2m}(\mathbb{F})$, where $A_{ij} \in M_k(\mathbb{F})$ and $B_{ij} \in M_m(\mathbb{F})$ for $i, j \in \{1, 2\}$. We define the *expanding sum* of A and B by:

$$A \boxplus B := \begin{bmatrix} A_{11} \oplus B_{11} & A_{12} \oplus B_{12} \\ A_{21} \oplus B_{21} & A_{22} \oplus B_{22} \end{bmatrix} \in M_{2k+2m}(\mathbb{F}).$$

Observe that $A \boxplus B$ is permutation similar to $A \oplus B$. Moreover, $A \boxplus B$ is symplectic if and only if both A and B are symplectic. The preceding statement also holds if 'symplectic' is replaced with 'involution' or 'skew-involution'. In addition, if $C \in M_{2k}(\mathbb{F})$ and $D \in M_{2m}(\mathbb{F})$, then $(A \boxplus B) (C \boxplus D) = AC \boxplus BD$. The preceding discussion gives us the following.

Jesus Paolo E. Joven and Agnes T. Paras

PROPOSITION 2.3. Let $P \in M_{2k}(\mathbb{F})$ and $Q \in M_{2m}(\mathbb{F})$ be (symplectic) skew-involutions. Then $P \oplus Q$ is a skew-involution, and P^{-1} , P^{\top} , -P, and $P \boxplus Q$ are (symplectic) skew-involutions. If $R \in M_{2k}(\mathbb{F})$ is (symplectic) nonsingular, then RPR^{-1} is also a (symplectic) skew-involution.

Let $C \in SL_{2k}(\mathbb{F})$ and $D \in SL_{2l}(\mathbb{F})$ be products of m symplectic skew-involutions, say $C = C_1 \cdots C_m$ and $D = D_1 \cdots D_m$. Then,

$$C \boxplus D = (C_1 \boxplus D_1) \cdots (C_m \boxplus D_m)$$

is a product of m symplectic skew-involutions. This gives us the following.

PROPOSITION 2.4. Let $C \in SL_{2k}(\mathbb{F})$ and $D \in SL_{2l}(\mathbb{F})$ be products of m (symplectic) skew-involutions for some positive integer m. Then, $C \oplus D$ is a product of m skew-involutions, and $C \boxplus D$ is a product of m (symplectic) skew-involutions.

Let $A \in SL_{2n}(\mathbb{F})$ be an involution. If char $\mathbb{F} \neq 2$, then A is similar to $I_{2k} \oplus -I_{2n-2k}$ for some nonnegative integer k. Since we can write I_{2m} as a product of two skew-involutions for any positive integer m, we have the following by Propositions 2.3 and 2.4.

PROPOSITION 2.5. If $char \mathbb{F} \neq 2$, then every involution $A \in SL_{2n}(\mathbb{F})$ is a product of two skew-involutions. If $char \mathbb{F} = 2$, then every involution is a skew-involution.

- 3. Products of skew-involutions in $SL_{2n}(\mathbb{F})$. Let $A \in SL_{2n}(\mathbb{F})$. We divide our discussion into three cases: (i) $|\mathbb{F}| \geq 4$, (ii) n = 1 and $\mathbb{F} = \mathbb{Z}_3$, and (iii) n > 1 and $\mathbb{F} = \mathbb{Z}_3$.
- **3.1.** Case when $|\mathbb{F}| \geq 4$. A lower triangular matrix is called *special* if all entries in its first subdiagonal are nonzero. An upper triangular matrix is *special* if its transpose is special lower triangular. If we can write a matrix A as a product of a special lower triangular L and a special upper triangular U, we call A = LU a *special LU factorization* of A. The following result by Botha [2, Theorem 1] provides a characterization of a nonsingular matrix similar to one with a special LU factorization.

THEOREM 3.1. Let $A \in M_n(\mathbb{F})$ denote a nonsingular, nonscalar matrix over a field \mathbb{F} with at least four elements, and let $\beta_1, \ldots, \beta_n, \gamma_1, \ldots, \gamma_n$ denote nonzero elements in \mathbb{F} (repeats among the β 's or γ 's are labeled consecutively) such that $\det A = \prod_{i=1}^n \beta_i \gamma_i$. Then there exists a matrix similar to A with a special LU factorization such that the ith diagonal entry of L and U are β_i and γ_i , respectively, if and only if $\operatorname{rank}(A - \beta_i \gamma_i I_n) > 1$ for each i.

We make use of the above theorem to prove the following.

THEOREM 3.2. If \mathbb{F} is a field with at least four elements, then every $A \in SL_{2n}(\mathbb{F})$ is a product of four skew-involutions.

Proof. Let \mathbb{F} be a field with at least four elements. If $A \in SL_2(\mathbb{F})$, then there exists nonzero $d \in \mathbb{F}$ such that $d \neq d^{-1}$. By Theorem 3.1, there exist $B, C \in M_2(\mathbb{F})$, both having eigenvalues d and d^{-1} , such that A = BC. Since $d \neq d^{-1}$, B and C are similar to diag (d, d^{-1}) . It follows from Lemma 2.2 and Proposition 2.3 that B and C are products of two skew-involutions. Thus, A is a product of four skew-involutions.

Let n > 1 and $A \in SL_{2n}(\mathbb{F})$. If A is nonscalar, then rank $(A - I_{2n}) \ge 1$. If rank $(A - I_{2n}) = 1$, then there exist 2n - 1 Jordan blocks corresponding to 1 in the Jordan canonical form of A. Since det A = 1, the

Products of skew-involutions

eigenvalue 1 has algebraic multiplicity 2n. Thus, A is similar to $J_2(1) \oplus I_{2n-2}$. Observe that we can write

$$J_2(1)\oplus I_{2n-2}=\left(\left[\begin{matrix}-1&1\\0&1\end{matrix}\right]\oplus \left[-1\right]\oplus I_{2n-3}\right)\left(\left[\begin{matrix}-1&0\\0&1\end{matrix}\right]\oplus \left[-1\right]\oplus I_{2n-3}\right).$$

Since both factors are involutions in $SL_{2n}(\mathbb{F})$, it follows from Propositions 2.5 and 2.3 that A is product of four skew-involutions.

Suppose rank $(A - I_{2n}) > 1$. If \mathbb{F} has at least four elements, there exists nonzero $c \in \mathbb{F}$ such that $c \neq c^{-1}$. Since rank $(A - cc^{-1}I_{2n}) = \text{rank}(A - I_{2n}) > 1$, we may take $\beta_i = \gamma_{i+n} = c$ and $\beta_{i+n} = \gamma_i = c^{-1}$ for $i = 1, 2, \ldots, n$ and apply Theorem 3.1 to conclude that A is similar to a matrix with special LU factorization:

Since both factors are special and $c \neq c^{-1}$, each factor is similar to $J_n(c) \oplus J_n(c)^{-1}$ which, by Lemma 2.2, is a product of two skew-involutions. It follows from Proposition 2.3 that A is a product of four skew-involutions.

Suppose $\alpha \in \mathbb{F}$ such that $A = \alpha I_{2n}$ and $\alpha^{2n} = 1$. As in the proof of [2, Theorem 6], we may write A = BC where

$$B = \operatorname{diag}\left(\alpha^2, \alpha^4, \dots, \alpha^{4n-2}, \alpha^{4n}\right) \text{ and } C = \operatorname{diag}\left(\alpha^{4n-1}, \alpha^{4n-3}, \dots, \alpha^3, \alpha\right).$$

By applying permutation matrices to B and C, we obtain

$$B' = \left(\bigoplus_{i=1}^{n-1} \begin{bmatrix} \alpha^{2i} & 0 \\ 0 & \alpha^{4n-2i} \end{bmatrix} \right) \oplus \begin{bmatrix} \alpha^{2n} & 0 \\ 0 & \alpha^{4n} \end{bmatrix},$$

and

$$C' = \left(\bigoplus_{i=1}^{n-1} \begin{bmatrix} \alpha^{4n-(2i-1)} & 0\\ 0 & \alpha^{2i-1} \end{bmatrix} \right) \oplus \begin{bmatrix} \alpha^{2n+1} & 0\\ 0 & \alpha^{2n-1} \end{bmatrix},$$

which are similar to B and C, respectively. Except for the last summand of B' which is I_2 , each direct summand of B' and C' is of the form diag (α^i, α^{-i}) since $\alpha^{2n} = 1$. By Lemma 2.2, each direct summand of B' and C' is a product of two skew-involutions. By Propositions 2.3, 2.4, and 2.5, it follows that A is a product of four skew-involutions.

3.2. Case when n=1 and $\mathbb{F}=\mathbb{Z}_3$. Observe that $A\in SL_2(\mathbb{F})$ is a skew-involution if and only if

$$A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$
, where $a^2 + bc = -1$, with $b, c \neq 0$.

If $\mathbb{F} = \mathbb{Z}_3$, then, by first setting all possible values of $a \in \mathbb{Z}_3$ in the above equation, we obtain that A is a skew-involution if and only if A is one of the following matrices or their additive inverses:

$$\hat{\imath} := \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad \hat{\jmath} := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \hat{k} := \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

It can be verified that (a) $\hat{i}\hat{j} = \hat{k} = -\hat{j}\hat{i}$, (b) $\hat{j}\hat{k} = \hat{i} = -\hat{k}\hat{j}$, and (c) $\hat{k}\hat{i} = \hat{j} = -\hat{i}\hat{k}$. Thus, $A \in SL_2(\mathbb{Z}_3)$ is a product of skew-involutions if and only if A belongs to the set $\mathcal{Q} := \{I_2, \hat{i}, \hat{j}, \hat{k}, -I_2, -\hat{i}, -\hat{j}, -\hat{k}\}$. Since $J_2(1) \in SL_2(\mathbb{Z}_3)$ is not in \mathcal{Q} , not every $A \in SL_2(\mathbb{Z}_3)$ can be written as a product of skew-involutions.

PROPOSITION 3.3. The group generated by the set of all skew-involutions in $M_2(\mathbb{Z}_3)$ is isomorphic to the quaternion group Q_8 .

3.3. Case when n > 1 and $\mathbb{F} = \mathbb{Z}_3$. Suppose n > 1 and let $A \in SL_{2n}(\mathbb{F})$ be a direct sum of Jordan blocks with eigenvalue 1. Since A is similar to A^{-1} , it is known that A is a product of two involutions [5, Theorem 1]. However, the determinant of an involution is ± 1 . We show that A can be written as a product of two involutions in $SL_{2n}(\mathbb{F})$; hence, A is a product of four skew-involutions by Proposition 2.5. Instead of considering $J_k(1)$ for some positive integer k, we look at the similar companion matrix $C\left((x-1)^k\right)$. If we write $(x-1)^k = \sum_{i=0}^k c_i x^i$, then $C\left((x-1)^k\right) = G_k B_k$ where

(3.2)
$$G_k := \begin{bmatrix} -c_0 & 0 & \cdots & 0 \\ -c_1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ -c_{k-1} & 1 & \cdots & 0 \end{bmatrix} \text{ and } B_k := \begin{bmatrix} & & & 1 \\ & & \ddots & \\ & 1 & & \\ 1 & & & \end{bmatrix}.$$

Observe that when k is even, we have $c_0 = 1$ and $c_i = c_{k-i}$ for each i. Otherwise, we have $c_0 = -1$ and $c_i = -c_{k-i}$ for each i. Thus, G_k and B_k are involutions for each positive integer k.

Suppose k is even. If k = 4m - 2 for some positive integer m, then both G_k and B_k have determinant -1. If k = 4m, then G_k and B_k are in $SL_k(\mathbb{F})$.

Suppose k is odd. Since $C((x-1)^k) = G_k B_k = (-G_k)(-B_k)$, we can write $C((x-1)^k)$ as a product of two involutions with determinant -1, or as a product of two involutions in $SL_k(\mathbb{F})$. This gives us the following.

LEMMA 3.4. Let k be a positive integer. If $k \not\equiv 2 \mod 4$, then $J_k(1)$ is a product of two involutions in $SL_k(\mathbb{F})$. If $k \equiv 2 \mod 4$ or k is odd, then $J_k(1)$ is a product of two involutions with determinant -1.

We use Lemma 3.4 to prove the following.

LEMMA 3.5. Let $\epsilon \in \{1, -1\}$ and $A \in M_{4n}(\mathbb{F})$ have Jordan form J consisting of Jordan blocks corresponding to ϵ . Then, A is a product of four skew-involutions.

Proof. It is enough to consider the case $\epsilon = 1$, since $J_k(-1)$ is similar to $-J_k(1)$. Without loss of generality, we may write

(3.3)
$$J = \left(\bigoplus_{i=1}^{\alpha} J_{4r_i}(1)\right) \oplus \left(\bigoplus_{j=1}^{\beta} J_{4s_j-2}(1)\right) \oplus \left(\bigoplus_{k=1}^{2\gamma} J_{2t_k-1}(1)\right),$$

Products of skew-involutions

for some nonnegative integers α, β, γ . By Lemma 3.4, we can express $J_p(1)$ as a product of two involutions in $SL_p(\mathbb{F})$ when $p \not\equiv 2 \mod 4$, and as a product of two involutions with determinant -1 when $p \equiv 2 \mod 4$. If β is even, then J is a product of two involutions in $SL_{4n}(\mathbb{F})$. Suppose β is odd. Since J is of size 4n, we have $\gamma > 0$. We can write $J_{2t_1-1}(1)$ as a product of two involutions with determinant -1 and the remaining odd-sized blocks as a product of two involutions with determinant 1. Hence, J is a product of two involutions in $SL_{4n}(\mathbb{F})$ when β is odd. By Propositions 2.5 and 2.3, A is a product of four skew-involutions. \square

Suppose $A \in M_6(\mathbb{Z}_3)$ has Jordan form J consisting of Jordan blocks with eigenvalue 1. Then, J has the form given by equation (3.3) for some nonnegative integers α, β, γ . As in the proof of Lemma 3.5, we have that J is a product of four skew-involutions if β is even, or if β is odd and $\gamma > 0$. If β is odd and $\gamma = 0$, then J is $J_6(1)$, $J_4(1) \oplus J_2(1)$, or $J_2(1) \oplus J_2(1)$.

If $J = J_6(1)$, then, since $(x-1)^6 = x^6 + x^3 + 1$ in $\mathbb{Z}_3[x]$, J is similar to

(3.4)
$$C\left(x^{6} + x^{3} + 1\right) = \begin{bmatrix} -1 & & & & \\ 0 & -1 & & & \\ 0 & & 1 & & \\ -1 & & & 1 & \\ 0 & & & & 1 \end{bmatrix} \begin{bmatrix} 0 & & & & 1 \\ -1 & 0 & & & \\ & & 1 & 0 & & \\ & & & 1 & 0 & \\ & & & & 1 & 0 \end{bmatrix}.$$

It can be verified that the first factor in equation (3.4) is an involution in $SL_6(\mathbb{Z}_3)$ and that the second factor is similar to $C(x^6+1)$ via $[-1] \oplus I_5$. Since

$$C(x^{6}+1) = \begin{bmatrix} & 1 & & & 1 \\ & 1 & & & 1 \\ & 1 & & & 1 \\ & & & 1 & & \\ & & 1 & & & -1 \\ & 1 & & & -1 \\ & 1 & & & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ \hline 0 & -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

is a product of two skew-involutions in $SL_6(\mathbb{Z}_3)$, it follows from Propositions 2.5 and 2.3 that J is a product of four skew-involutions.

If $J = J_4(1) \oplus J_2(1)$, then J is similar to $J_1 = C((x-1)^4) \oplus C((x-1)^2)$, which can be written as:

(3.5)
$$J_{1} = \begin{bmatrix} -1 & & & & & \\ 1 & 1 & & & & \\ 0 & 1 & & & \\ 1 & & 1 & & \\ \hline & & & -1 & \\ & & & 2 & 1 \end{bmatrix} \left[C(x^{4} - 1) \oplus C(x^{2} - 1) \right].$$

Since the first factor is an involution in $SL_6(\mathbb{Z}_3)$, it suffices to show that $C(x^4-1) \oplus C(x^2-1)$ is a product of two skew-involutions. Consider the skew-involutions \hat{i} and \hat{k} defined in equation (3.1) and the involution B_2 defined in equation (3.2). Since

$$C(x^4 - 1) \oplus C(x^2 - 1) = \begin{bmatrix} \hat{i} & -\hat{i} & I_2 \\ -\hat{i} & \hat{i} & I_2 \\ I_2 & I_2 & 0 \end{bmatrix} \begin{bmatrix} \hat{k} & -\hat{k} & -B_2 \\ -\hat{k} & \hat{k} & -B_2 \\ -B_2 & -B_2 & 0 \end{bmatrix}$$

is a product of two skew-involutions, it follows from Proposition 2.3 that J is a product of four skew-involutions.

Let
$$J = J_2(1) \oplus J_2(1) \oplus J_2(1)$$
. Since $J_2(1)^3 = I_2$ in $M_2(\mathbb{Z}_3)$, we can write

$$J = (J_2(1) \oplus J_2(1)^{-1} \oplus I_2) (I_2 \oplus J_2(1)^{-1} \oplus J_2(1)).$$

By Lemma 2.2, both I_2 and $J_2(1) \oplus J_2(1)^{-1}$ are products of two skew-involutions. Hence, J is a product of four skew-involutions. This proves the following.

LEMMA 3.6. If $\epsilon \in \{1, -1\}$ and $A \in M_6(\mathbb{Z}_3)$ has Jordan form consisting of Jordan blocks with eigenvalue ϵ , then A is a product of four skew-involutions.

The following theorem by Sourour [12, Theorem 1] decomposes a nonsingular nonscalar matrix into a product of matrices with prescribed eigenvalues.

THEOREM 3.7. Let $A \in M_n(\mathbb{F})$ be a nonsingular, nonscalar matrix over a field \mathbb{F} , and let β_j , γ_j $(1 \leq j \leq n)$ be elements in \mathbb{F} such that $\prod_{i=1}^n \beta_i \gamma_i = \det A$. Then, there exist $B, C \in M_n(\mathbb{F})$ with eigenvalues β_1, \ldots, β_n and $\gamma_1, \ldots, \gamma_n$, respectively, such that A = BC. Furthermore, B and C can be chosen so that B is lower triangularizable and C is simultaneously upper triangularizable.

Suppose n > 1 and let $A \in SL_{2n}(\mathbb{Z}_3)$. If A is scalar, then $A = \pm I_{2n}$ is an involution, which is a product of two skew-involutions by Proposition 2.5. If A is nonscalar, then, by Theorem 3.7, we can write A = BC for some $B, C \in SL_{2n}(\mathbb{Z}_3)$ with eigenvalues $\beta_1, \ldots, \beta_{2n}$ and $\beta_1^{-1}, \ldots, \beta_{2n}^{-1}$, respectively. If n is even, we take $\beta_i = 1$ for each i so that B and C are similar to Jordan matrices with eigenvalue 1. If n is odd, say n = 2k+3 for some nonnegative integer k, we take $\beta_i = 1$ for $i = 1, \ldots, 6$, and $\beta_i = -1$ for $i = 7, \ldots, 2n$ so that B and C are similar to a direct sum of a 6-by-6 Jordan matrix with eigenvalue 1 and a 4k-by-4k Jordan matrix with eigenvalue -1. By Lemmas 3.5 and 3.6 and Proposition 2.4, B and C are products of four skew-involutions. This shows the following theorem.

THEOREM 3.8. If n > 1, then every $A \in SL_{2n}(\mathbb{Z}_3)$ is a product of eight or fewer skew-involutions.

Since every $A \in SL_{2n}(\mathbb{F})$ can be written as a product of four skew-involutions when $x^2 + 1$ has a root in \mathbb{F} , we obtain the following from Theorems 3.2 and 3.8, and Proposition 3.3.

THEOREM 3.9. Every $A \in SL_{2n}(\mathbb{F})$ is a product of skew-involutions if and only if $\mathbb{F} \neq \mathbb{Z}_3$ or n > 1.

4. Products of real symplectic skew-involutions. If $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , let $U_n(\mathbb{F})$ denote the set of all unitary matrices in $M_n(\mathbb{F})$. If $\mathbb{F} = \mathbb{R}$, then $U_n(\mathbb{R})$ is the set of all real orthogonal matrices. We recall the *Euler decomposition* of a symplectic matrix [7, Equation 1.28], and for brevity, we call an orthogonal symplectic matrix as *orthosymplectic*.

THEOREM 4.1. Let $A \in \operatorname{Sp}_{2n}(\mathbb{R})$. Then there exist real orthosymplectic P and P' and positive diagonal D such that

$$(4.6) A = P\left(D \oplus D^{-1}\right)P'.$$

Let $A \in M_n(\mathbb{C})$. Write A = X + iY where $X, Y \in M_n(\mathbb{R})$, and define the mapping $L : M_n(\mathbb{C}) \to M_{2n}(\mathbb{R})$ by:

(4.7)
$$L(X+iY) = \begin{bmatrix} X & -Y \\ Y & X \end{bmatrix}.$$

Products of skew-involutions

The next proposition is Lemma 29 and Proposition 30 in [3].

PROPOSITION 4.2. The mapping L in equation (4.7) is an algebra monomorphism, that is, L is an injective linear transformation over \mathbb{R} such that

$$L(AB) = L(A)L(B),$$

for all $A, B \in M_n(\mathbb{C})$. The restriction of L to $U_n(\mathbb{C})$ is an isomorphism of $U_n(\mathbb{C})$ onto $U_{2n}(\mathbb{R}) \cap \operatorname{Sp}_{2n}(\mathbb{R})$.

Proposition 4.2 establishes a one-to-one correspondence between the set of complex unitary matrices and the set of real orthosymplectic matrices. That is, U = X + iY is unitary if and only if

$$(4.8) A = \begin{bmatrix} X & -Y \\ Y & X \end{bmatrix}, \text{ with } XX^{\top} + YY^{\top} = I \text{ and } XY^{\top} = YX^{\top}.$$

Theorem 4.3. Every $A \in \operatorname{Sp}_{2n}(\mathbb{R})$ is a product of six real symplectic skew-involutions.

Proof. Let $A \in \operatorname{Sp}_{2n}(\mathbb{R})$. By Theorem 4.1, there exist orthosymplectic P and P', and positive diagonal D such that $A = P\left(D \oplus D^{-1}\right)P'$. If we set $Q := P(D \oplus D^{-1})P^{-1}$ and R := PP', then A = QR. Observe that Q is symplectic and that, by Lemma 2.2, $D \oplus D^{-1}$ can be written as a product of two symplectic skew-involutions. By Proposition 2.3, Q is a product of two symplectic skew-involutions. Now, R is orthosymplectic since P and P' are orthosymplectic. Thus, there exist $X, Y \in M_n(\mathbb{R})$ such that

$$R = \begin{bmatrix} X & -Y \\ Y & X \end{bmatrix}, \text{ with } XX^\top + YY^\top = I \text{ and } XY^\top = YX^\top.$$

By Proposition 4.2, we have $U := X + iY \in U_n(\mathbb{C})$. Hence, there exists unitary T such that

$$T^*UT = \operatorname{diag}\left(\cos\theta_1 + i\sin\theta_1, \dots, \cos\theta_n + i\sin\theta_n\right),$$

for some $\theta_1, \ldots, \theta_n \in \mathbb{R}$. By Proposition 4.2, there exists a real orthosymplectic S such that

$$S^{-1}RS = \bigoplus_{j=1}^{n} \begin{bmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{bmatrix}.$$

Since each summand in the expanding sum is in $SL_2(\mathbb{R})$, it follows from Theorem 3.2 and Propositions 2.4 and 2.3 that R is a product of four symplectic skew-involutions. Thus, A is a product of six symplectic skew-involutions.

5. Products of complex symplectic skew-involutions. Let $A \in \operatorname{Sp}_{2n}(\mathbb{C})$. Since $x^2 + 1$ has a root in \mathbb{C} , then A is a product of two symplectic skew-involutions. The following lemma gives a canonical form of a symplectic matrix under symplectic similarity, called the *symplectic Jordan form* [4, Lemma 5].

Lemma 5.1. Each symplectic complex matrix is symplectically similar to the expanding sum of matrices of the following forms:

- $J_k(\lambda) \oplus J_k(\lambda)^{-\top}$ for $\lambda \neq 0, \pm 1$.
- $J_{2k-1}(\epsilon) \oplus J_{2k-1}(\epsilon)^{-\top}$ for $\epsilon = \pm 1$, or
- $\pm \mathcal{E}(k)$, where

(5.9)
$$\mathcal{E}(k) := \begin{bmatrix} J_k(1) & U_k \\ 0 & J_k(1)^{-\top} \end{bmatrix} \in M_{2k}(\mathbb{C}),$$

and $U_k = [u_{ij}] \in M_k(\mathbb{C})$ such that

(5.10)
$$u_{ij} = \begin{cases} 0 & \text{if } i \neq k, \\ (-1)^{k-j} & \text{if } i = k. \end{cases}$$

By Proposition 2.3, it is enough to show that each matrix in Lemma 5.1 can be written as a product of two symplectic skew-involutions.

Let k be a positive integer and $\lambda \neq 0$. Let B_k be the k-by-k backward identity matrix in equation (3.2). Define the symplectic matrices:

(5.11)
$$S_k := \begin{bmatrix} 0 & B_k \\ -B_k & 0 \end{bmatrix} \quad \text{and} \quad T_k(\lambda) := \begin{bmatrix} 0 & -\left[J_k(\lambda)^\top B_k\right]^{-\top} \\ J_k(\lambda)^\top B_k & 0 \end{bmatrix}.$$

Since $B_k^{\top} = B_k^{-1} = B_k$, and $B_k J_k(\lambda) B_k = J_k(\lambda)^{\top}$, we have that S_k and $T_k(\lambda)$ are skew-involutions such that $S_k T_k(\lambda) = J_k(\lambda) \oplus J_k(\lambda)^{-\top}$. This gives us the following lemma.

LEMMA 5.2. If k is a positive integer and $\lambda \neq 0$, then $J_k(\lambda) \oplus J_k(\lambda)^{-\top}$ is a product of two symplectic skew-involutions.

It remains to show that $\mathcal{E}(k)$, as defined in equation (5.9), is a product of two symplectic skew-involutions. To do this, we recall some important identities involving binomial coefficients and properties of persymmetric matrices.

5.1. Binomial coefficients. We use the convention that for any nonnegative $r, s \in \mathbb{Z}$,

$$\binom{s}{r} = \begin{cases} 0 & \text{if } s < r \\ \frac{s!}{r!(s-r)!} & \text{if } s \ge r \end{cases},$$

and observe that $\binom{s}{r} = \binom{s}{s-r}$. When r is a positive integer, the binomial coefficient $\binom{-r}{s}$ is given by:

(5.12)
$${\binom{-r}{s}} = (-1)^s {\binom{r+s-1}{s}}, \text{ for non-negative } s \in \mathbb{Z}.$$

The following are identities involving binomial coefficients [11, Chapter 2, Section 6].

Theorem 5.3. Let $s, t \in \mathbb{Z}$, where $s \geq 0$ and t > 0.

1. For all $x, y \in \mathbb{Z}$,

(5.13)
$$\sum_{r=0}^{s} {x \choose r} {y \choose s-r} = {x+y \choose s}.$$

2. For $r = 0, 1, 2, \dots, t - 1$,

(5.14)
$$\sum_{k=0}^{r} (-1)^k \binom{t}{k} = (-1)^r \binom{t-1}{r}.$$

When
$$r = t$$
, we have $\sum_{k=0}^{t} (-1)^k {t \choose k} = 0$.

Equation (5.13) is called the Chu-Vandermonde identity, or the Vandermonde convolution formula. This identity is generalized to $x, y \in \mathbb{C}$ in [11].

5.2. Persymmetric matrices. If $P \in M_n(\mathbb{F})$, define

$$P^F := B_n P^\top B_n$$
.

If $P^F = P$, we say that the matrix P is persymmetric. The transpose of P is obtained by flipping P along its main diagonal, while P^F is obtained by flipping P along its main anti-diagonal (or the northeast-to-southwest diagonal), that is, if $P = [p_{ij}]$ and $P^F = [p_{ij}^F]$, then $p_{ij}^F = p_{n-j+1,n-i+1}$. For instance, every Toeplitz matrix is persymmetric since each diagonal from left to right has equal entries. It can be observed that

$$B_n^F = B_n$$
 and $(P^F)^\top = B_n P B_n = (P^\top)^F$.

Moreover, the following hold for all $c \in \mathbb{F}$ and $A, B \in M_n(\mathbb{F})$:

$$(A^F)^F = A$$
, $(cA)^F = cA^F$, $(A+B)^F = A^F + B^F$, $(AB)^F = B^F A^F$.

LEMMA 5.4. If $A, B \in M_n(\mathbb{F})$ are persymmetric, then so are A^{\top} , $\alpha A + \beta B$ for any $a, b \in \mathbb{F}$, and A^{-1} if A is nonsingular.

5.3. The matrix $\mathcal{E}(n)$. Let n be a positive integer and let $\mathcal{E}(n)$ be defined as in equation (5.9). We define

(5.15)
$$P_{n} := \begin{bmatrix} 1 & -1 & 1 & -1 & \cdots & (-1)^{n-1} \\ 0 & -1 & 2 & -3 & \cdots & (-1)^{n-1} {n-1 \choose 1} \\ 0 & 0 & 1 & -3 & \cdots & (-1)^{n-1} {n-1 \choose 2} \\ 0 & 0 & 0 & -1 & \cdots & (-1)^{n-1} {n-1 \choose 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (-1)^{n-1} \end{bmatrix},$$

and

(5.16)
$$Q_{n} := \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 & \binom{n}{1} \\ \vdots & \vdots & \ddots & 1 & \binom{n}{1} & \binom{n}{2} \\ 0 & 0 & \ddots & \binom{n}{1} & \binom{n}{2} & \binom{n}{3} \\ 0 & 1 & \ddots & \vdots & \vdots & \vdots \\ 1 & \binom{n}{1} & \cdots & \binom{n}{n-3} & \binom{n}{n-2} & \binom{n}{n-1} \end{bmatrix}.$$

Observe that P_n is an involution, Q_n is symmetric, and

$$(5.17) J_n(1)P_nJ_n(1) = P_n.$$

Let $Y_n := iP_n$ and $Z_n := i(-1)^nQ_n$ and set

(5.18)
$$X_n := \begin{bmatrix} Y_n & Z_n \\ 0 & Y_n^{-\top} \end{bmatrix}.$$

Note that Z_n is symmetric, since Q_n is symmetric. Since P_n is an involution, we have Y_n is a skew-involution and, by equation (5.17),

$$(5.19) J_n(1)Y_nJ_n(1) = Y_n.$$

We claim that X_n is a symplectic skew-involution and that $\mathcal{E}(n)$ is similar to $\mathcal{E}(n)^{-1}$ via X_n to obtain the following result.

LEMMA 5.5. If n is a positive integer, then $\mathcal{E}(n)$ is a product of two symplectic skew-involutions.

By Lemmas 5.1, 5.2, and 5.5, we have the following theorem.

Theorem 5.6. Each complex symplectic matrix is a product of two complex symplectic skew-involutions.

To show that the matrix X_n as defined in equation (5.18) is a symplectic skew-involution, it suffices to show that $Y_n Z_n = (-1)^{n+1} P_n Q_n$ is symmetric by Proposition 2.1, or, equivalently, $P_n Q_n$ is symmetric. Since Q_n is symmetric and $Q_n = R_n B_n$, where R_n is the Toeplitz matrix

(5.20)
$$R_{n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ \binom{n}{1} & 1 & 0 & \cdots & 0 & 0 \\ \binom{n}{2} & \binom{n}{1} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \binom{n}{n-2} & \binom{n}{n-3} & \binom{n}{n-4} & \cdots & 1 & 0 \\ \binom{n}{n-1} & \binom{n}{n-2} & \binom{n}{n-3} & \cdots & \binom{n}{1} & 1 \end{bmatrix},$$

we have P_nQ_n is symmetric if and only if $P_nR_nB_n=R_nB_nP_n^{\top}$, which holds if and only if $P_nR_n=R_nB_nP_n^{\top}B_n=R_n^FP_n^F=(P_nR_n)^F$. Thus, it is enough to show that P_nR_n is persymmetric.

If
$$P_n = [p_{ij}]$$
 and $R_n = [r_{ij}]$, then

(5.21)
$$p_{ij} = \begin{cases} 0 & \text{if } i > j, \\ (-1)^{j+1} {j-1 \choose i-1} = (-1)^{i+1} {-i \choose i-j} & \text{if } i \leq j, \end{cases}$$

and

(5.22)
$$r_{ij} = \begin{cases} 0 & \text{if } i < j, \\ \binom{n}{i-j} & \text{if } i \ge j. \end{cases}$$

We establish some identities involving P_n , R_n , and U_n .

5.4. Some technical lemmas. Let P_n , R_n , and U_n be defined as in equations (5.21), (5.22), and (5.10) respectively.

LEMMA 5.7. For any positive integer n, we have $P_n P_n^F = (-1)^{n+1} R_n^{\top}$.

Proof. Since P_n and P_n^F are upper triangular and R_n is lower triangular, both $P_n P_n^F$ and R_n^\top are upper triangular. If $i \leq j$, then the (i, j)-entry of $P_n P_n^F$ is

$$\sum_{k=i}^{j} p_{ik} p_{n-j+1,n-k+1} = \sum_{k=i}^{j} \left[(-1)^{i+1} {i \choose k-i} \right] \left[(-1)^{n-j} {j-n-1 \choose j-k} \right].$$

Products of skew-involutions

We re-index the above summation using m = k - i and apply equation (5.13) to get

$$(-1)^{n+i-j+1} \sum_{m=0}^{j-i} \binom{-i}{m} \binom{j-n-1}{j-i-m} = (-1)^{n+i-j+1} \binom{j-i-n-1}{j-i}.$$

Since j - i < n + 1, we apply equation (5.12) to obtain

$$(-1)^{n+i-j+1} \binom{j-i-n-1}{j-i} = (-1)^{n+1} \binom{n}{j-i} = (-1)^{n+1} r_{ji},$$

which is the (i,j)-entry of $(-1)^{n+1}R_n^{\mathsf{T}}$. Thus, $P_nP_n^F=(-1)^{n+1}R_n^{\mathsf{T}}$.

LEMMA 5.8. For any positive integer n, we have $P_nB_nP_n=B_nP_nB_n=\left(P_n^{\top}\right)^F$.

Proof. Observe that the (i, j)-entry of $(P_n B_n) P_n$ is given by $\sum_{k=1}^n p_{i,n-k+1} p_{kj}$. Let $m := \min\{n-i+1, j\}$.

Since p_{rs} and $\binom{s}{r}$ are 0 when s < r, we have

$$\sum_{k=1}^{n} p_{i,n-k+1} p_{kj} = \sum_{k=1}^{m} \left[(-1)^{i+1} \binom{-i}{n-k+1-i} \right] \left[(-1)^{k+1} \binom{-k}{j-k} \right].$$

We apply equation (5.12) to $\binom{-k}{j-k}$ and re-index the summation from k=0 to m-1 to obtain

$$\sum_{k=1}^{m} (-1)^{i+j} \binom{-i}{n-k+1-i} \binom{j-1}{j-k} = (-1)^{i+j} \sum_{k=0}^{m-1} \binom{-i}{n-k-i} \binom{j-1}{j-1-k}.$$

Since $\binom{r}{s} = \binom{r}{s-r}$ for any nonnegative $r, s \in \mathbb{Z}$ with $r \geq s$, we obtain

(5.23)
$$\sum_{k=1}^{n} p_{i,n-k+1} p_{kj} = (-1)^{i+j} \sum_{k=0}^{m-1} {j-1 \choose k} {-i \choose n-i-k}.$$

Observe that when k > j-1, we have $\binom{j-1}{k} = 0$. If m = j, then $j \le n-i+1$ and the terms corresponding to $k = j, j+1, \ldots, n-i$ are 0. Hence, we may assume, without loss of generality, that m = n-i+1, and apply equation (5.13) on equation (5.23) to obtain

(5.24)
$$\sum_{k=1}^{n} p_{i,n-k+1} p_{kj} = (-1)^{i+j} {j-1-i \choose n-i}.$$

If j > i, then $j - 1 - i \ge 0$. Since j - 1 < n, we have $0 \le j - 1 - i < n - i$, and so the (i, j)-entry of $P_n B_n P_n$ is 0. Since P_n is upper triangular, we have $B_n P_n B_n = \left(P_n^{\top}\right)^F$ is lower triangular, and so the corresponding (i, j)-entries of $P_n B_n P_n$ and $\left(P_n^{\top}\right)^F$ are equal to 0 when j > i. Suppose $j \le i$. Then j - i - 1 < 0 and, using equation (5.12) on equation (5.24), the (i, j)-entry of $P_n B_n P_n$ is

$$\sum_{k=1}^{n} p_{i,n-k+1} p_{kj} = (-1)^{n+j} \binom{-(j-1-i)+n-i-1}{n-i} = (-1)^{n-j} \binom{n-j}{n-i},$$

which is equal to $p_{n-i+1,n-j+1}$ or the (i,j)-entry of $B_n P_n B_n$.

LEMMA 5.9. The matrix $P_nU_n + (-1)^nQ_nJ_n(1)^{-\top}$ is symmetric.

Proof. Let $P_n = [p_{ij}]$ and $U_n = [u_{ij}]$ be defined as in equations (5.21) and (5.10), respectively. Since only the last row of U_n is non-zero, the (i, j)-entry of $P_n U_n$ is given by:

(5.25)
$$p_{in}u_{nj} = (-1)^{j-1} \binom{n-1}{i-1}.$$

If $J_n(1)^{-\top} = [c_{ij}]$, then

$$c_{ij} = \begin{cases} 0 & \text{if } i < j, \\ (-1)^{i-j} & \text{if } i \ge j. \end{cases}$$

Since $Q_n = R_n B_n$, it follows that the (i, j)-entry of $Q_n J_n(1)^{-\top}$ is given by:

$$\sum_{k=1}^{n} r_{i,n-k+1} c_{k,j} = \sum_{k=m}^{n} (-1)^{k-j} \binom{n}{i-n+k-1}, \text{ for } m := \max\{n-i+1,j\}.$$

By re-indexing the summation from l = 0 to n - m, we have

(5.26)
$$\sum_{l=0}^{n-m} (-1)^{l+m-j} \binom{n}{i-n+l+m-1}.$$

If $n-i+1 \ge j$, then m=n-i+1 and equation (5.26) becomes

$$\sum_{l=0}^{i-1} (-1)^{l+n-i+1-j} \binom{n}{l} = (-1)^{n-i-j+1} \sum_{l=0}^{i-1} (-1)^l \binom{n}{l}.$$

By equation (5.14), the (i,j)-entry of $Q_n J_n(1)^{-\top}$ is given by:

(5.27)
$$\sum_{k=1}^{n} r_{i,n-k+1} c_{k,j} = (-1)^{n-j} \binom{n-1}{i-1} \text{ when } i+j \le n+1.$$

If j > n-i+1, then t := i+j-n-1 is a positive integer. Since $Q_n J_n(1)^{-\top} = R_n \left(B_n J_n(1)^{-\top} \right)$ and $r_{pq} = c_{pq} = 0$ when p < q, the (i,j)-entry of $Q_n J_n(1)^{-\top}$ is

$$\sum_{k=1}^{n} r_{ik} c_{n-k+1,j} = \sum_{k=1}^{n-j+1} r_{ik} c_{n-k+1,j}.$$

By subtracting i from both limits of summation, we may re-index from k = 1 - i to n + 1 - i - j = -t to obtain

$$\sum_{k=1-i}^{-t} r_{i,k+i} c_{n-k-i+1,j} = \sum_{k=1-i}^{-t} (-1)^{n+1-i-j-k} \binom{n}{-k}.$$

If we set l = -k, then

(5.28)
$$\sum_{k=1-i}^{-t} (-1)^{n+1-i-j-k} \binom{n}{-k} = (-1)^{-t} \sum_{l=t}^{i-1} (-1)^l \binom{n}{l}.$$

Products of skew-involutions

Since

149

(5.29)
$$\sum_{l=t}^{i-1} (-1)^l \binom{n}{l} = \sum_{l=0}^{i-1} (-1)^l \binom{n}{l} - \sum_{l=0}^{t-1} (-1)^l \binom{n}{l},$$

it follows from equations (5.14) and (5.29) that we can write equation (5.28) as:

$$(-1)^{-t} \left[(-1)^{i-1} \binom{n-1}{i-1} - (-1)^{t-1} \binom{n-1}{t-1} \right].$$

Thus, the (i, j)-entry of $Q_n J_n(1)^{-\top}$ is given by:

(5.30)
$$\sum_{k=1}^{n} r_{i,n-k+1} c_{k,j} = (-1)^{n-j} {n-1 \choose i-1} + {n-1 \choose t-1}, \text{ when } i+j > n+1.$$

If t_{ij} is the (i,j)-entry of $P_nU_n + (-1)^nQ_nJ_n(1)^{-\top}$, it follows from equations (5.25), (5.27), and (5.30) that

(5.31)
$$t_{ij} = \begin{cases} 0 & \text{if } i+j \le n+1, \\ (-1)^n \binom{n-1}{i+j-n-2} & \text{if } i+j > n+1. \end{cases}$$

Since $t_{ij} = t_{ji}$, it follows that $P_n U_n + (-1)^n Q_n J_n(1)^{-\top}$ is symmetric.

We are now ready to prove Lemma 5.5.

5.5. Proof of Lemma 5.5. We first show that P_nR_n is persymmetric. Observe that, by Lemma 5.7, we have $P_nR_n = (-1)^{n+1}P_n\left(P_n^F\right)^\top P^\top = (-1)^{n+1}P_n(B_nP_nB_n)P_n^\top$. Since P_n is an involution, it follows from Lemmas 5.8 and 5.7 that

$$(P_n B_n P_n) B_n P_n^\top = (P_n B_n P_n) P_n^\top \left(P_n^\top B_n P_n^\top \right) = (P_n^\top)^F P_n^\top P_n^F = (-1)^{n+1} R_n P_n^F.$$

Hence, $P_n R_n = R_n P_n^F$, and, since R_n is persymmetric, we have $P_n R_n = R_n P_n^F = R_n^F P_n^F = (P_n R_n)^F$. Thus, $P_n R_n$ is persymmetric and the matrix X_n defined in equation (5.18) is a symplectic skew-involution.

We now show that $\mathcal{E}(n)$ is similar to $\mathcal{E}(n)^{-1}$ via X_n . It suffices to show that $X_n\mathcal{E}(n) = -(X_n\mathcal{E}(n))^{-1}$, i.e. $X_n\mathcal{E}(n)$ is a skew-involution. Since

$$X_n \mathcal{E}(n) = \begin{bmatrix} Y_n J_n(1) & Y_n U_n + Z_n J_n(1)^{-\top} \\ 0 & Y_n^{-\top} J_n(1)^{-\top} \end{bmatrix},$$

we set

$$V_n := Y_n J_n(1) \text{ and } W_n := Y_n U_n + Z_n J_n(1)^{-\top}.$$

Then $X_n\mathcal{E}(n)$ is a skew-involution if and only if V_n is a skew-involution and $V_nW_n=W_nV_n^{\top}$. It follows from equation (5.19) that V_n is a skew-involution. Since $X_n\mathcal{E}(n)$ is symplectic, we have $V_nW_n^{\top}=W_nV_n^{\top}$. To show that $V_nW_n=W_nV_n^{\top}$ (= $V_nW_n^{\top}$), it is enough to show that W_n is symmetric since V_n is nonsingular. Since $Y_n=iP_n$ and $Z_n=i(-1)^nQ_n$, we have $W_n=iP_nU_n+i(-1)^nQ_nJ_n(1)^{-\top}$. It follows from Lemma 5.9 that W_n is symmetric. Since both X_n and $X_n\mathcal{E}(n)$ are symplectic skew-involutions, we can write

$$\mathcal{E}(n) = (X_n^{-1}) (X_n \mathcal{E}(n)),$$

which proves Lemma 5.5.

Jesus Paolo E. Joven and Agnes T. Paras

Remark 5.10. In the above discussion, a symplectic A similar to A^{-1} via a symplectic skew-involution B can be written as a product of two symplectic skew-involutions B^{-1} and BA. Thus, if $S \in \operatorname{Sp}_{2n}(\mathbb{C})$, there exists a symplectic R such that RSR^{-1} is the expanding sum Q of matrices found in Lemma 5.1. Since each summand of the form $J_k(\lambda) \oplus J_k(\lambda)^{-\top}$ can be written as $S_k T_k(\lambda)$ where S_k and $T_k(\lambda)$ are defined as in equation (5.11), and $\mathcal{E}(m)$ can be written as $X_m^{-1}(X_m\mathcal{E}(m))$ where X_m is defined as in equation (5.18), then we can write $S = (R^{-1}A_1R)(R^{-1}A_2R)$, where A_1 is an expanding sum of matrices S_{k_i} or $X_{k_j}^{-1}$, and A_2 is an expanding sum of matrices $T_{k_i}(\lambda)$ or $X_{k_j}\mathcal{E}(k_j)$.

If $S \in \operatorname{Sp}_{2n}(\mathbb{C})$, then $S = C_1C_2$ where C_1 and C_2 are symplectic skew-involutions. Observe that $(C_1\Omega_{2n})^{\top} = \Omega_{2n}^{-1}C_1^{\top} = C_1^{-1}\Omega_{2n}^{-1} = C_1\Omega_{2n}$, that is, $C_1\Omega_{2n}$ is symmetric. Similarly, $\Omega_{2n}^{-1}C_2$ is symmetric. Thus, $S = (C_1\Omega_{2n})\left(\Omega_{2n}^{-1}C_2\right)$ is a product of two symplectic symmetric matrices. Analogous to the result of Bosch [1, Theorem 1] where every complex square matrix can be decomposed into a product of two complex symmetric matrices, we have the following.

COROLLARY 5.11. Every complex symplectic matrix can be written as a product of two complex symplectic symmetric matrices.

Acknowledgment. The work of the authors was supported by the MacArthur and Josefina Delos Reyes Research Grant and the U.P. Diliman Mathematics Foundation Inc.

REFERENCES

- [1] A.J. Bosch. The factorization of a square matrix into two symmetric matrices. Am. Math. Mon., 93:462-464, 1986.
- [2] J.D. Botha. Spectrally arbitrary, nonderogatory factorization over a general field. Linear Algebra Appl., 433:1-11, 2010.
- [3] M.A. de Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser, 2011.
- [4] R.J. de la Cruz. Every symplectic matrix is a product of four symplectic involutions. Linear Algebra Appl., 466:382-400, 2015.
- [5] D.Ž. Djoković. Products of two involutions. Arch. Math., 18:582–584, 1967.
- [6] E.W. Ellers and O. Villa. Generation of the symplectic group by involutions. Linear Algebra Appl., 591:154–159, 2020.
- [7] A. Ferraro, S. Olivares, and M.G.A. Paris. Gaussian States in Continuous Variable Quantum Information. Bibliopolis, Napoli, 2005.
- [8] R. Gow. Products of two involutions in classical groups of characteristic 2. J. Algebra, 71:583-591, 1981.
- [9] W.H. Gustafson and P.R. Halmos. Products of involutions. Linear Algebra Appl., 13:157-162, 1976.
- [10] R.A. Horn and C.R. Johnson. *Matrix Analysis*. Cambridge University Press, New York, 1985.
- [11] S. Roman. The Umbral Calculus. Academic Press, New York, 1984.
- [12] A.R. Sourour. A factorization theorem for matrices. Linear and Multilinear Algebra, 19:2, 141–147, 1986.
- [13] M.J. Wonenburger. Transformations which are products of two involutions. J. Appl. Math. Mech., 16:327–338, 1966.

150