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PRODUCTS OF SKEW-INVOLUTIONS*

JESUS PAOLO E. JOVENT AND AGNES T. PARAST

Abstract. It is shown that every 2n-by-2n matrix over a field F with determinant 1 is a product of (i) four or fewer skew-
involutions (A2 = —I) provided F # Zs, and (ii) eight or fewer skew-involutions if F = Z3 and n > 1. Every real symplectic
matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into
two symplectic skew-involutions is given.
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1. Introduction. Let M, (F) be the set of all n-by-n matrices with entries in a field F, SL,(F) be
the set of all matrices in M,,(F) with determinant 1, and charF denote the characteristic of F. Suppose
A € M, (F). We say that A is an involution if A? = I,,, while A is called a skew-involution if A?> = —1I,.
Denote by 25, the skew-involution given by:

0o I,
I, 0 :| EMgn(]F)

We say B € Mo, (F) is symplectic if BT Q, B = Qa,,, and B is skew-symplectic if BT Q2, B = —Qa,.

In 1976, Gustafson et al. proved that every matrix in M, (F) with determinant +1 is a product of at
most four involutions [9]. In 1966, Wonenburger proved that every symplectic matrix over F is a product of
two skew-symplectic involutions provided char F # 2 [13]. In 1981, Gow proved that if char F = 2, then every
symplectic matrix over F is a product of two symplectic involutions [8]. In 2020, Ellers and Villa showed that
every symplectic matrix over F of size at least 4 is a product of 6 or fewer symplectic involutions provided
—1is a square in FF [6].

Suppose p(z) = 22 +1 has aroot a € F. Then, P is an involution if and only if £aP is a skew-involution.
If A e M, (F) has determinant +1, then A = Fy EyE3Ey, where each E; € M, (FF) is an involution [9]. Since
+akF; is a skew-involution for each i, we can write A = (aEy) (—aFE2) (aFs3) (—aEy) as a product of four skew-
involutions. If char F = 2, then an involution is a skew-involution, and every symplectic over F is a product
of two symplectic skew-involutions. If charF # 2 and B € M, (F) is symplectic, then B = 5155 where
each S, is a skew-symplectic involution [13]. Since S is a skew-symplectic involution if and only if +aS is a
symplectic skew-involution, we can write B = (aS1)(—aS2) as a product of two symplectic skew-involutions.

Suppose p(z) = 22 +1 has no root in F. If P € M,,(FF) is a skew-involution, then the minimal polynomial
of P is p(z), which is irreducible in F[z]. By the rational canonical form theorem, P is similar to
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Hence, n = 2k, det P = 1, and @ € M, (F) is a skew-involution if and only if @ similar to P. Thus, if A is a

product of skew-involutions, then A € SLgy(IF) when p(x) has no root in F.

In this paper, we consider products of skew-involutions in SLs,(F). In Section 2, we include some
elementary properties of skew-involutions. In Section 3, we show that every A € SL,,(F) is a product of
skew-involutions if and only if F # Z3 or n > 1. We prove in Section 4 that every real symplectic matrix is
a product of six or fewer real symplectic skew-involutions. We provide an explicit factorization of a complex
symplectic matrix into two symplectic skew-involutions in Section 5.

2. Preliminaries. Our notation is standard as in [10]. We denote a diagonal matrix of size n with
(i,1)-entry d; by diag(ds,ds,...,d,), and the n-by-n Jordan block corresponding to A € F by J,,(A\). Let
Sps, (F) denote the group of symplectic matrices in Ms, (F). The following proposition gives a description
of the blocks of a symplectic matrix when it is partitioned conformal to Qs,,.

A A
A_[As AJ’

such that each A; € M, (F). Then, A € Sp,,(F) if and only if both AyA] and A3A] are symmetric, and
A1A] — AA] =1. Ifn=1, then A € Spy(F) if and only if A € SLy(F).

PROPOSITION 2.1. Let

Let A € M, (F) be nonsingular. By Proposition 2.1, the following matrices are symplectic:

0 —-A°T
A 0 |

4 [ o Lo -4t [0 L]0 At
A@A_[—InoA 0o | |1, olla o

is a product of two skew-involutions and a product of two involutions. If; in addition, A is symmetric, then

A®d A™T and [

Observe that

A® A~ is a product of two symplectic skew-involutions. This proves the following.

LEMMA 2.2. If A € M,(F) is nonsingular, then A® A~! is

(a) a product of two involutions,
(b) a product of two skew-involutions, and
(¢) a product of two symplectic skew-involutions, when A is symmetric.

Let A = [A”] € Mzk(F) and B = [Bij] S Mgm(F), where Aij S Mk(F) and Bij S Mm(F) for i,j € {17 2}
We define the expanding sum of A and B by:

A @B A2 @By

ABB = € M. m ().
Aol @ Ba1 Ao @ Bao 22 (F)

Observe that A H B is permutation similar to A @ B. Moreover, A H B is symplectic if and only if both
A and B are symplectic. The preceding statement also holds if ‘symplectic’ is replaced with ‘involution’ or
‘skew-involution’. In addition, if C' € My (F) and D € My, (F), then (A8 B) (CH D) = ACH BD. The
preceding discussion gives us the following.
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PROPOSITION 2.3. Let P € Ms,(F) and Q € Moy (F) be (symplectic) skew-involutions. Then P & Q
is a skew-involution, and P~', PT, —P, and PB Q are (symplectic) skew-involutions. If R € Myy(F) is
(symplectic) nonsingular, then RPR™! is also a (symplectic) skew-involution.

Let C € SLog(F) and D € SLg(F) be products of m symplectic skew-involutions, say C = Cy - - Cy,
and D = Dy ---D,,. Then,

CED=(CyED;)--(Cp B Dy,)

is a product of m symplectic skew-involutions. This gives us the following.

PROPOSITION 2.4. Let C € SLoy(F) and D € SLy(F) be products of m (symplectic) skew-involutions
for some positive integer m. Then, C' ® D is a product of m skew-involutions, and C B D is a product of m
(symplectic) skew-involutions.

Let A € SLo,(F) be an involution. If charF # 2, then A is similar to Iog @ —Is, ok for some nonnegative
integer k. Since we can write Io,, as a product of two skew-involutions for any positive integer m, we have
the following by Propositions 2.3 and 2.4.

PROPOSITION 2.5. If charF # 2, then every involution A € S Loy, (F) is a product of two skew-involutions.
If charF = 2, then every involution is a skew-involution.

3. Products of skew-involutions in SL,, (F). Let A € SLy,(F). We divide our discussion into three
cases: (i) |F| >4, (ii) n =1 and F = Z3, and (iii) n > 1 and F = Zs.

3.1. Case when |F| > 4. A lower triangular matrix is called special if all entries in its first subdiagonal
are nonzero. An upper triangular matrix is special if its transpose is special lower triangular. If we can write
a matrix A as a product of a special lower triangular L and a special upper triangular U, we call A = LU a
special LU factorization of A. The following result by Botha [2, Theorem 1] provides a characterization of
a nonsingular matrix similar to one with a special LU factorization.

THEOREM 3.1. Let A € M, (F) denote a nonsingular, nonscalar matriz over a field F with at least four
elements, and let B1,...,Bn, 71,---,¥n denote nonzero elements in F (repeats among the ’s or 7’s are
labeled consecutively) such that detA = T, B;v;. Then there exists a matriz similar to A with a special
LU factorization such that the ith diagonal entry of L and U are B; and ~y;, respectively, if and only if
rank(A — By I,) > 1 for each i.

We make use of the above theorem to prove the following.

THEOREM 3.2. If F is a field with at least four elements, then every A € SLo,(F) is a product of four
skew-involutions.

Proof. Let F be a field with at least four elements. If A € SLy(F), then there exists nonzero d € F such
that d # d=!. By Theorem 3.1, there exist B,C € M(F), both having eigenvalues d and d~!, such that
A = BC. Since d # d~', B and C are similar to diag (d,d~"). It follows from Lemma 2.2 and Proposition
2.3 that B and C are products of two skew-involutions. Thus, A is a product of four skew-involutions.

Let n > 1 and A € SLy,(F). If A is nonscalar, then rank (A — Iz,) > 1. If rank (A — I5,,) = 1, then
there exist 2n — 1 Jordan blocks corresponding to 1 in the Jordan canonical form of A. Since det A = 1, the
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eigenvalue 1 has algebraic multiplicity 2n. Thus, A is similar to J2(1) @ I5,—2. Observe that we can write

Jo(1) @ Ipp_g = <[_01 ﬂ @ [-1] @IQn_?,) ({_01 ﬂ @ [—1] @Ign_3> .

Since both factors are involutions in S Loy, (F), it follows from Propositions 2.5 and 2.3 that A is product of
four skew-involutions.

Suppose rank(A — Iy,) > 1. If F has at least four elements, there exists nonzero ¢ € F such that
¢ # ¢~ !. Since rank (A — CC_llgn) = rank(A4 — Iy,) > 1, we may take 3; = Vi1, = cand B4, = v; = ¢! for

i =1,2,...,n and apply Theorem 3.1 to conclude that A is similar to a matrix with special LU factorization:
- N T
c
c c !
*
* c ¢t
¢! C ok
* ¢!
c
*
x ¢!

L -1 c |

Since both factors are special and ¢ # ¢~ !, each factor is similar to J,,(c) ®J,,(c)~* which, by Lemma 2.2, is a
product of two skew-involutions. It follows from Proposition 2.3 that A is a product of four skew-involutions.

Suppose a € F such that A = als, and a?” = 1. As in the proof of [2, Theorem 6], we may write
A = BC where

B =diag (®,a*,...,a" 2, a") and C = diag (o' ", a"%,... 0% a).
By applying permutation matrices to B and C, we obtain

n—lr o9 2n
. « 0 « 0
B (@{ 0 a4n2i:|>@|: 0 a4n]7

i=1

n—1 an—(2i—1) 2n+1
' o 0 «a 0
¢ = <@ [ 0 a%_l}) ® [ 0 aQn—1:| )

i=1

and

which are similar to B and C, respectively. Except for the last summand of B’ which is I, each direct
summand of B’ and C’ is of the form diag (ai7a’i) since a?” = 1. By Lemma 2.2, each direct summand
of B’ and C’ is a product of two skew-involutions. By Propositions 2.3, 2.4, and 2.5, it follows that A is a
product of four skew-involutions. 0

3.2. Case when n =1 and F = Z3. Observe that A € SLy(F) is a skew-involution if and only if

A= {Z b }, where a? + be = —1, with b, ¢ # 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 39, pp. 136-150, March 2023.

Jesus Paolo E. Joven and Agnes T. Paras 140

If F = Zs, then, by first setting all possible values of a € Zs in the above equation, we obtain that A is a
skew-involution if and only if A is one of the following matrices or their additive inverses:

S S S

It can be verified that (a) i) = k = —ji, (b) jk = i = —kj, and (c) ki = j = —ik. Thus, A € SLy(Zs) is
a product of skew-involutions if and only if A belongs to the set Q := {Ig,@j,l%, -1, —1,—7, —]AC} Since
J2(1) € SLy(Zs) is not in Q, not every A € SLo(Z3) can be written as a product of skew-involutions.

PROPOSITION 3.3. The group generated by the set of all skew-involutions in Ms(Z3) is isomorphic to
the quaternion group Qs.

3.3. Case when n > 1 and F = Z3. Suppose n > 1 and let A € SLo,(F) be a direct sum of Jordan
blocks with eigenvalue 1. Since A is similar to A~!, it is known that A is a product of two involutions [5,
Theorem 1]. However, the determinant of an involution is +£1. We show that A can be written as a product
of two involutions in SLa, (IF); hence, A is a product of four skew-involutions by Proposition 2.5. Instead of
considering Ji (1) for some positive integer k, we look at the similar companion matrix C ((x — l)k). If we

k
write (z — 1)% = Y ¢;z¢, then C ((z — 1)¥) = G By, where

=0
—c 0 - 0 1
— 0
(3.2) Gy = “ and By = L
—Ck—1 1 0 1
Observe that when k is even, we have ¢g = 1 and ¢; = ¢,_; for each 7. Otherwise, we have ¢g = —1 and
¢; = —cg—; for each i. Thus, Gy and By are involutions for each positive integer k.

Suppose k is even. If k = 4m — 2 for some positive integer m, then both Gy and Bj have determinant
—1. If k = 4m, then Gy, and By are in SLy(F).

Suppose k is odd. Since C' ((z — 1)*) = Gy By, = (—=Gi) (—Bg), we can write C ((z — 1)*) as a product
of two involutions with determinant —1, or as a product of two involutions in SLy(FF). This gives us the
following.

LEMMA 3.4. Let k be a positive integer. If k Z 2 mod 4, then Ji(1) is a product of two involutions in
SLi(F). If k=2 mod 4 or k is odd, then Ji(1) is a product of two involutions with determinant —1.

We use Lemma 3.4 to prove the following.

LEMMA 3.5. Let € € {1,—1} and A € My, (F) have Jordan form J consisting of Jordan blocks corre-
sponding to €. Then, A is a product of four skew-involutions.

Proof. Tt is enough to consider the case ¢ = 1, since Ji(—1) is similar to —Ji(1). Without loss of
generality, we may write

« B 2
(3.3) J = (@ J4m(1)> @ (B Jus,2(1) | © (@ Jztk_1(1)> ,
i=1 j=1 k=1
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for some nonnegative integers «, 8,v. By Lemma 3.4, we can express Jp(1) as a product of two involutions
in SL,(F) when p # 2mod 4, and as a product of two involutions with determinant —1 when p = 2mod 4.
If 5 is even, then J is a product of two involutions in SLg4, (F). Suppose 8 is odd. Since J is of size 4n, we
have v > 0. We can write Jot, —1(1) as a product of two involutions with determinant —1 and the remaining
odd-sized blocks as a product of two involutions with determinant 1. Hence, J is a product of two involutions
in SL4,(F) when § is odd. By Propositions 2.5 and 2.3, A is a product of four skew-involutions. ]

Suppose A € Mg(Z3) has Jordan form J consisting of Jordan blocks with eigenvalue 1. Then, J has the
form given by equation (3.3) for some nonnegative integers a, 8,v. As in the proof of Lemma 3.5, we have
that J is a product of four skew-involutions if g is even, or if § is odd and v > 0. If 8 is odd and v = 0,
then J is Jﬁ(l), J4(1) D Jz(l), or JQ(I) b Jg(l) () Jg(l)

If J = Jg(1), then, since (x — 1) = 2% + 23 + 1 in Z3[z], J is similar to

-1 0 1
0 -1 -1 0
0 1 10
4 St+a®+1) =
(3.4) C(z°+2°+1) 1 1 10
0 1 1 0
| O 1] [ 1 0]

It can be verified that the first factor in equation (3.4) is an involution in SLg(Z3) and that the second factor
is similar to C(2% + 1) via [~1] & I5. Since

[ 1 1 1[0 -1 0[]0 =1 0]
1 1 -1 0 -1 0 0
1 1 0o 0 —-1]0 o0 1
Cab+1) =
(@ +1) 1 —1 0 -1 00 1 0
1 -1 -1 0 0 1 0 0
| 1 -1 i 0 O 1 0 0 1]
is a product of two skew-involutions in SLg(Z3), it follows from Propositions 2.5 and 2.3 that J is a product

of four skew-involutions.

If J = Jy(1) ® J2(1), then J is similar to J; = C((z — 1)*) ® C((z — 1)?), which can be written as:

(3.5) I [Cz' —1) & C(2? -1)].

-1
2 1

Since the first factor is an involution in SLg(Z3), it suffices to show that C(xz* — 1) ® C(2% — 1) is a product
of two skew-involutions. Consider the skew-involutions 7 and k defined in equation (3.1) and the involution
Bs defined in equation (3.2). Since

Ca*-1ecCk@*-1)=|- i I —k kB



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 39, pp. 136-150, March 2023.

Jesus Paolo E. Joven and Agnes T. Paras 142

is a product of two skew-involutions, it follows from Proposition 2.3 that J is a product of four skew-
involutions.

Let J = Jo(1) @ J2(1) @ Jo(1). Since Jo(1)3 = Iy in My(Z3), we can write
J=(Ll)e L)' eh) (L) e ().

By Lemma 2.2, both I and Jo(1) @ J(1)~! are products of two skew-involutions. Hence, J is a product of
four skew-involutions. This proves the following.

LEMMA 3.6. Ife € {1,—1} and A € Ms(Z3) has Jordan form consisting of Jordan blocks with eigenvalue
€, then A is a product of four skew-involutions.

The following theorem by Sourour [12, Theorem 1] decomposes a nonsingular nonscalar matrix into a
product of matrices with prescribed eigenvalues.

THEOREM 3.7. Let A € M, (F) be a nonsingular, nonscalar matriz over a field F, and let B;, v; (1 < j <
n) be elements in F such that II?_, B;y; = detA. Then, there exist B,C € M, (F) with eigenvalues b1, ..., Bn
and 1, ...,%n, respectively, such that A = BC. Furthermore, B and C can be chosen so that B is lower
triangularizable and C' is simultaneously upper triangularizable.

Suppose n > 1 and let A € SLy,,(Z3). If A is scalar, then A = £15,, is an involution, which is a product
of two skew-involutions by Proposition 2.5. If A is nonscalar, then, by Theorem 3.7, we can write A = BC
for some B,C € SLy,(Z3) with eigenvalues £y, ... (2, and B}, ... B;nl, respectively. If n is even, we take
Bi = 1 for each i so that B and C' are similar to Jordan matrices with eigenvalue 1. If n is odd, say n = 2k+3
for some nonnegative integer k, we take 5; =1 fori=1,...,6, and 5; = —1 for i = 7,...,2n so that B and
C are similar to a direct sum of a 6-by-6 Jordan matrix with eigenvalue 1 and a 4k-by-4k Jordan matrix with
eigenvalue —1. By Lemmas 3.5 and 3.6 and Proposition 2.4, B and C are products of four skew-involutions.
This shows the following theorem.

THEOREM 3.8. Ifn > 1, then every A € SLo,(Zs) is a product of eight or fewer skew-involutions.

Since every A € SLa,(F) can be written as a product of four skew-involutions when 22 4+ 1 has a root
in F, we obtain the following from Theorems 3.2 and 3.8, and Proposition 3.3.

THEOREM 3.9. Every A € SLy,(F) is a product of skew-involutions if and only if F # Zs orn > 1.

4. Products of real symplectic skew-involutions. If F = R or C, let U, (FF) denote the set of all
unitary matrices in M, (F). If F = R, then U,(R) is the set of all real orthogonal matrices. We recall
the Fuler decomposition of a symplectic matrix [7, Equation 1.28], and for brevity, we call an orthogonal
symplectic matrix as orthosymplectic.

THEOREM 4.1. Let A € Sp,,,(R). Then there exist real orthosymplectic P and P’ and positive diagonal
D such that

(4.6) A=P(DoD ") P.

Let A € M, (C). Write A = X +4Y where X,Y € M,,(R), and define the mapping L : M, (C) — Ms,(R)

by:
(4.7) L(X +iY) = Kf )ﬂ .
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The next proposition is Lemma 29 and Proposition 30 in [3].

PROPOSITION 4.2. The mapping L in equation (4.7) is an algebra monomorphism, that is, L is an
injective linear transformation over R such that

L(AB) = L(A)L(B),
for all A, B € M,,(C). The restriction of L to U,(C) is an isomorphism of U,(C) onto Us,(R) N Sp,,, (R).

Proposition 4.2 establishes a one-to-one correspondence between the set of complex unitary matrices
and the set of real orthosymplectic matrices. That is, U = X + 1Y is unitary if and only if

(4.8) A= [X _Y} , with XX +YY T =Tand XY =YX".

THEOREM 4.3. Every A € Sp,,,(R) is a product of siz real symplectic skew-involutions.

Proof. Let A € Sp,,,(R). By Theorem 4.1, there exist orthosymplectic P and P’, and positive diagonal
D such that A = P(D@® DY) P'. If we set Q := P(D@® D ')P~! and R := PP, then A = QR.
Observe that @ is symplectic and that, by Lemma 2.2, D @ D~! can be written as a product of two
symplectic skew-involutions. By Proposition 2.3, @ is a product of two symplectic skew-involutions. Now,
R is orthosymplectic since P and P’ are orthosymplectic. Thus, there exist X,Y € M, (R) such that

R:[X

By Proposition 4.2, we have U := X +4Y € U, (C). Hence, there exists unitary T" such that

-Y
e ] , with XXT +YY T =Tand XY" =YX,

T*UT = diag (cos b1 + isinby,...,cos0, +isinb,),

for some 04, ...,0, € R. By Proposition 4.2, there exists a real orthosymplectic S such that

SRS = M

cosf; —sind;
j=1 '

sinf; cosf;

Since each summand in the expanding sum is in SLy(R), it follows from Theorem 3.2 and Propositions 2.4
and 2.3 that R is a product of four symplectic skew-involutions. Thus, A is a product of six symplectic
skew-involutions. O

5. Products of complex symplectic skew-involutions. Let A € Sp,,, (C). Since 2% + 1 has a root
in C, then A is a product of two symplectic skew-involutions. The following lemma gives a canonical form
of a symplectic matrix under symplectic similarity, called the symplectic Jordan form [4, Lemma 5].

LEMMA 5.1. Fach symplectic complex matriz is symplectically similar to the expanding sum of matrices

of the following forms:

o J(\) @ Jk()\)_—r for X £ 0,41,
o Jok—1(€) D Jap—1(e)~ " fore=+£1, or
o +&(k), where

(5.9) E(k) ==
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and Uy, = [u;;] € My(C) such that

0 if i # k,
(310 b {(—1)M ifi=k.

By Proposition 2.3, it is enough to show that each matrix in Lemma 5.1 can be written as a product of
two symplectic skew-involutions.

Let k be a positive integer and A # 0. Let By be the k-by-k backward identity matrix in equation (3.2).
Define the symplectic matrices:

0 — [T By "

(511) Sy = |: 0 Bk:| and Tk()\) = le(A)TBk 0

—Bir 0
Since B = B,' = By, and By Ji(A\)By = Jx(\)T, we have that Sy, and Tj(\) are skew-involutions such
that SiTk(A\) = Jx(\) @ Ji(A)~T. This gives us the following lemma.

LEMMA 5.2. If k is a positive integer and X # 0, then Jp(\) @ J(A\)~ T is a product of two symplectic
skew-involutions.

It remains to show that £(k), as defined in equation (5.9), is a product of two symplectic skew-involutions.
To do this, we recall some important identities involving binomial coefficients and properties of persymmetric
matrices.

5.1. Binomial coefficients. We use the convention that for any nonnegative r, s € Z,

0 ifs<r
()1 =
- | ’
- s! .
rl(s —r)! fszr
and observe that (7) = (,° ). When r is a positive integer, the binomial coefficient (") is given by:
- —1
(5.12) ( 7‘) =(-1)° (T te ), for non-negative s € Z.
s s

The following are identities involving binomial coefficients [11, Chapter 2, Section 6].

THEOREM 5.3. Let s,t € Z, where s > 0 and t > 0.

1. Forallx,y € Z,

(5.13) ; <$> ( ! ) N <x + y)

2. Forr=20,1,2,...,t—1,

(5.14) i(_nk(]i) _ (_1)T(t; 1).

t
When r = t, we have - (=1)*(;) = 0.
k=0

Equation (5.13) is called the Chu—Vandermonde identity, or the Vandermonde convolution formula. This
identity is generalized to z,y € C in [11].
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5.2. Persymmetric matrices. If P € M, (F), define
PF:=B,P"B,.

If PP = P, we say that the matrix P is persymmetric. The transpose of P is obtained by flipping P along
its main diagonal, while P¥ is obtained by flipping P along its main anti-diagonal (or the northeast-to-
southwest diagonal), that is, if P = [p”] and PF = [pﬂ, then pf; = Ppn—j+1,n—i+1. For instance, every
Toeplitz matrix is persymmetric since each diagonal from left to right has equal entries. It can be observed
that

n

Moreover, the following hold for all ¢ € F and A, B € M,,(F):

Bf =B, and (PF)' =B,PB,=(P")".

(AFY =4, (cA)F =cAF, (A+B)F = AF + BF, (AB)F = BFAF.

LEMMA 5.4. If A, B € M, (F) are persymmetric, then so are AT, aA+ BB for any a,b € F, and A" if
A is nonsingular.

5.3. The matrix £(n). Let n be a positive integer and let £(n) be defined as in equation (5.9). We
define

1 -1 1 -1 (=1)n!
0 -1 2 -3 (=) 1("
0 0 1 =3 - (=" 1(")h
(5.15) Be=lo 0 0 21 o ey |
pY
0 0 0 0 (-t
and
[0 0 0 0 1]
0 0 0 1 ™
LM G
. R N R )
0 1
LG Gl Gl Gl

Observe that P, is an involution, @, is symmetric, and
(5.17) Jn(V)P,J, (1) = P,.

Let Y, := P, and Z,, :=i(—1)"Q,, and set

Yo Zn
(5.18) X, =
0 v, T
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Note that Z,, is symmetric, since @,, is symmetric. Since P, is an involution, we have Y, is a skew-involution
and, by equation (5.17),

(5.19) In(1)YnJn (1) = Y.

We claim that X,, is a symplectic skew-involution and that £(n) is similar to £(n)~! via X,, to obtain the
following result.

LEMMA 5.5. If n is a positive integer, then £(n) is a product of two symplectic skew-involutions.

By Lemmas 5.1, 5.2, and 5.5, we have the following theorem.

THEOREM 5.6. Each complex symplectic matriz is a product of two complex symplectic skew-involutions.

To show that the matrix X,, as defined in equation (5.18) is a symplectic skew-involution, it suffices
to show that Y, Z,, = (—1)"*1P,Q,, is symmetric by Proposition 2.1, or, equivalently, P,Q,, is symmetric.
Since @, is symmetric and Q,, = R, B, where R, is the Toeplitz matrix

1 0 0 - 0 0
M1 0 -~ 0 0

@) 1 - 0 0
(5.20) R, = , ) : ) N

(") () () e 10

LG Gl GRe)o (D) 1]
we have P,Q, is symmetric if and only if P,R,B, = R,B,P]], which holds if and only if P,R, =
R,B,P| B, = REPF = (P,R,)". Thus, it is enough to show that P, R,, is persymmetric.

If P, = [p;;] and R, = [r;;], then

0 if 1 > j,
(5.21) Dij = it 1 i e
(D7) = ()T i
and
0 ifi <y,
(5.22) Tij =
QQ) if i > 7.

We establish some identities involving P,,, R,, and U,.

5.4. Some technical lemmas. Let P,, R,,, and U,, be defined as in equations (5.21), (5.22), and (5.10)
respectively.

LEMMA 5.7. For any positive integer n, we have P, Pf = (=1)"*1R.

Proof. Since P, and PI" are upper triangular and R, is lower triangular, both P, Pf and R are upper
triangular. If i < j, then the (i, j)-entry of P, PI is

i:pikpn—j-i-lm—k'*‘l - ZJ: [(_1)i+1 (k:_i z)] [(_1)n_j (j ;ﬁ; 1)] .

k=i k=1
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We re-index the above summation using m = k — ¢ and apply equation (5.13) to get

(—1)ntimit :;; (T_nl> (j : :‘:ﬂi) — (—1)nHiiH (j - Zj—_ZL — 1)'

Since j —i < n + 1, we apply equation (5.12) to obtain
o fj—i-n—1 n
-1 n+i—j+1 J t—=n = (=1 n+1 = (=1 n+1 y
aprn (T e () = aen
which is the (i, j)-entry of (=1)"T'R!. Thus, P,Pf = (-1)"*'R. O

LEMMA 5.8. For any positive integer n, we have P, B, P, = B, P, B, = (PT)F.

n

Proof. Observe that the (¢, j)-entry of (P, B,,) P, is given by Zpi’n,kﬂpkj. Let m:=min{n—i+1,j}.
k=1
Since pys and (3) are 0 when s < r, we have

gjlpi,nkﬂpkj 3 {(‘1)“1 (n - k_+Z 1 zﬂ {(_1)%1 (j_—kk)] '

k=1

We apply equation (5.12) to (j:lz) and re-index the summation from k£ = 0 to m — 1 to obtain

0 RN L of Rl [ s

Since (2) = (Sir) for any nonnegative r, s € Z with r > s, we obtain

n m—1 . .

i -1 —1
2 E : — S (_1)itd Z J .
(5.23) k:1pz,n kPR = (1) ( k ) (n — 17— k)

k=0

Observe that when k > j — 1, we have (jgl) =0. If m = j, then j <n —i+ 1 and the terms corresponding
tok=3,7+1,...,n—1 are 0. Hence, we may assume, without loss of generality, that m =n — i+ 1, and
apply equation (5.13) on equation (5.23) to obtain

n . .
(i —1—1
o2 ;;pi,n—kﬂpkj = (-1 ( n—i )
If j >i,then j—1—4>0. Since j — 1 < n, we have 0 < j — 1 —i < n—1, and so the (i, j)-entry of P, B, P,
is 0. Since P, is upper triangular, we have B, P, B, = (P, )F is lower triangular, and so the corresponding
(i, j)-entries of P, B, P, and (P,;'—)F are equal to 0 when j > ¢ . Suppose j < i. Then j —i —1 < 0 and,
using equation (5.12) on equation (5.24), the (4, j)-entry of P,B,P, is

ki::lpi,nkﬂpkj = (- <_ U=t-i)tn-i- 1) = (-1 (n B J),

n—1

which is equal to pp_it1,n—j+1 or the (i, j)-entry of B, P, B,,. 0
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LEMMA 5.9. The matriz P,U, + (—1)"QnJn (1)~ is symmetric.

Proof. Let P, = [p;;] and U,, = [u;;] be defined as in equations (5.21) and (5.10), respectively. Since
only the last row of U, is non-zero, the (i, j)-entry of P,U, is given by:

(5.25) ]nnunj(lyl(?:jj).

If J,,(1)~ T = [e;5], then
0 ifi <y,

Cij = o
(=17 ifi >3]

Since Q,, = R, By, it follows that the (i, j)-entry of @Q,J,(1)~ " is given by:

n n B n . .
Zri7n7k+1ck7j = Z(_l)k ]<i—n—|—k—1)7 for m:=max{n—i+1,j}.
k=1

k=m

By re-indexing the summation from [ = 0 to n — m, we have
n—m n
5.26 —1)Htm=i :
(5.26) ;( ) <i—n+l+m—1)
If n—i+12>j, then m =n —i+ 1 and equation (5.26) becomes

i—1 i—1
_\n—it1—g (T _ qyn—i—j+1 i (n
S (}) = o e (h):
1=0 1=0

By equation (5.14), the (4, j)-entry of Q,J,,(1)~ " is given by:

n

n—1
(527) Zri,"—k—i-lck,j = (71)”1*] <ZL_ 1) when 1 +] <n+ 1.
k=1

If j >n—i+1, then t := i+ j —n—1is a positive integer. Since Q,,J,(1)"" = R, (BnJ,(1)"") and
Tpg = Cpg = 0 when p < g, the (i, j)-entry of Q,J, (1)~ is

n n—j+1
Zﬁkcn—k-s-l,j = Z TikCn—k+1,j-
k=1 k=1
By subtracting ¢ from both limits of summation, we may re-index from k=1—diton+1—4i—j = —t to

obtain

—t —t
s n
3 it = 30 Capsie( ),

k=1—1i k=1—1i

If we set [ = —k, then

(5.28) > e (1) = o e (1),
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Since

i—1 n i—1 n t—1 n
5.29 —1)! = —1l< >-— —1l< ),
(5.20) S0 (7)) =2 () - S (]

it follows from equations (5.14) and (5.29) that we can write equation (5.28) as:

e () ()

Thus, the (i, j)-entry of Q,J,(1)~ " is given by:

n
neifn—1 n—1 S
(5.30) ;Ti,n—k-&-lck,j =(-)" <Z - 1) + (t— 1)’ wheni+j>mnt1.

If t;; is the (i, j)-entry of P, U, + (=1)"Q,J, (1)~ T, it follows from equations (5.25), (5.27), and (5.30) that

0 ifi+j<n+l,
(5.31) ti; =
()" ( ) it >nt L
Since t;; = t;;, it follows that P, U, + (=1)"Q,J, (1)~ T is symmetric. O

We are now ready to prove Lemma 5.5.

5.5. Proof of Lemma 5.5. We first show that P, R, is persymmetric. Observe that, by Lemma 5.7,
we have P,R, = (-1)"*1P, (Pf)—r PT = (-1)""'P,(B,P,B,)P]. Since P, is an involution, it follows
from Lemmas 5.8 and 5.7 that

(P,B,P,)B,P, = (P,B,P,)P, (P, B,P,)=(P]) P Pf =(-1)""'R,PF.

Hence, P, R,, = R, P, and, since R, is persymmetric, we have P, R,, = R, P = REPI' = (P,R,)F. Thus,
P, R, is persymmetric and the matrix X,, defined in equation (5.18) is a symplectic skew-involution.

We now show that &(n) is similar to £(n)~! via X,,. It suffices to show that X,&(n) = — (X,E(n)) ",
ie. X,&(n) is a skew-involution. Since

_ [Yadu(1) YU, + ZyJn(1)77

Xné'(n) 0 Yn,TJn(1>,T ’

we set

Vn = Yan(l) and Wn = YTLUTL + Zan(l)_T

Then X,,€(n) is a skew-involution if and only if V,, is a skew-involution and V,W,, = WnVnT. It follows from
equation (5.19) that V;, is a skew-involution. Since X, &(n) is symplectic, we have V,W,] = W, V.. To
show that V,W,, = W,,V,[ (= V,,W,]), it is enough to show that W,, is symmetric since V;, is nonsingular.
Since Y,, = iP, and Z, = i(—1)"Q,,, we have W,, = iP,,U, +i(—1)"Q,J,, (1)~ . It follows from Lemma 5.9
that W, is symmetric. Since both X,, and X,€(n) are symplectic skew-involutions, we can write

E(n) = (X, 1) (Xn&(n)),

which proves Lemma 5.5.
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Remark 5.10. In the above discussion, a symplectic A similar to A~! via a symplectic skew-involution
B can be written as a product of two symplectic skew-involutions B~! and BA. Thus, if S € Sp,,,(C), there
exists a symplectic R such that RSR™! is the expanding sum @ of matrices found in Lemma 5.1. Since
each summand of the form Ji(\) @ Jx(\)~" can be written as SiTk()\) where Sy and Ty ()\) are defined as
in equation (5.11), and £(m) can be written as X,,! (X,,€(m)) where X,, is defined as in equation (5.18),
then we can write S = (R_lAlR) (R_IAQR), where A; is an expanding sum of matrices Sy, or X,;,l, and
Ay is an expanding sum of matrices Tk, (A) or Xy, E(k;).

If S € Spy,(C), then S = C1Cy where C; and Cy are symplectic skew-involutions. Observe that
(C192,) " = QQ_nlC’lT = 01—192—711 = C1Q9,, that is, C19s, is symmetric. Similarly, QQ_nlC’g is symmetric.
Thus, S = (C1Q2,) (Q;nng) is a product of two symplectic symmetric matrices. Analogous to the result of
Bosch [1, Theorem 1] where every complex square matrix can be decomposed into a product of two complex
symmetric matrices, we have the following.

COROLLARY 5.11. Fvery complex symplectic matrix can be written as a product of two complex symplec-
tic symmetric matrices.
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