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ON THE NUMERICAL RANGE OF KAC-SYLVESTER MATRICES∗

N. BEBIANO† , R. LEMOS‡ , AND G. SOARES§

Abstract. In this paper, the boundary generating curves and the numerical range of Kac–Sylvester matrices up to the order
9 are characterized. Based on the obtained results and on several computational experiments performed with the Mathematica
and MatLab programs, we conjecture that the found types of algebraic curves, namely ellipses and ovals, will appear for an
arbitrary order.
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1. Introduction. Let Mn stand for the associative algebra of n × n complex matrices, and Ik be the
identity matrix or order k. Let the space Cn be endowed with the standard inner product: 〈x, y〉 = y∗x,
x, y ∈ Cn.

The numerical range (NR), also called field of values, of a matrix A ∈Mn is denoted and defined by

W (A) = {〈Ax, x〉 : x ∈ Cn, 〈x, x〉 = 1} .

This concept was introduced a century ago in pioneering works by O. Toeplitz [19] and F. Hausdorff [12], and
since then it has been intensively investigated due to its theoretical interest and applications. The numerical
range is a closed, bounded, connected subset of C, since it is the image of the unit sphere of Cn under the
continuous mapping fA(x) = 〈Ax, x〉. Moreover, it is well known that W (A) contains σ(A), the spectrum of
A, and it is a convex set, as asserted by the famous Toeplitz–Hausdorff Theorem [12, 19].

A related concept is the numerical radius of A ∈ Mn, which is the radius of the smallest circular disc
centered at the origin, containing the numerical range of A, i.e.,

w(A) = max
{
|z| : z ∈W (A)

}
= max
‖x‖=1

|〈Ax, x〉|.

This defines a norm in Mn equivalent to the operator norm [11].

A supporting line of a convex set S ⊂ C is a line containing a boundary point of S and defining two
half-planes, such that one of them does not contain S. A boundary point of W (A) belonging to more than
one of its supporting lines is called a corner of W (A). If z0 is a corner of W (A), then z0 is an eigenvalue
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of A. If A ∈ Mn is Hermitian, then W (A) is a closed line segment, joining the smallest and the greatest
eigenvalues of A.

For any square matrix A ∈Mn, we have that

<(A) =
A+A∗

2
and =(A) =

A−A∗

2i
,

are the Hermitian components of the Cartesian decomposition of A, which is given by A = <(A)+ i=(A). It
can be easily seen that the orthogonal projections of W (A) onto the real and imaginary axes are W (<(A))

and W (=(A)), respectively. Therefore, if λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn are the eigenvalues of <(A) and
=(A), respectively, then we clearly have

W (A) ⊂
[
λn, λ1

]
×
[
µn, µ1

]
.

For A ∈Mn and every angle θ ∈ R, let Hθ(A) = <(e−iθA). The matrix

(1) Hθ(A) = <(A) cos θ + =(A) sin θ,

is Hermitian, so its eigenvalues are real and we consider them arranged in nonincreasing order. The charac-
teristic polynomial of Hθ(A) is given by

pA,θ(z) = det(<(A) cos θ + =(A) sin θ − zIn)

and it plays an important role in the characterization of W (A) and it is here called the NR generating
polynomial of A.

Moreover, the Kippenhahn polynomial of A ∈Mn is the degree n homogeneous real ternary polynomial
given by

pA(x, y, z) = det(x<(A) + y=(A) + zIn).

The roots of pA(1, i,−z) = 0 are the eigenvalues of A. The convex hull of the real points of the dual curve of
the order n algebraic curve ΓA defined by pA(x, y, z) = 0 is the numerical range of A. In fact, to any matrix
A ∈ Mn, through the equation pA(x, y, z) = 0, is associated a class n algebraic curve in homogeneous line
coordinates. The supporting lines of W (A) are generating elements of this algebraic curve. Its real part,
called the boundary generating curve of W (A) and denoted by C(A), generates W (A) as its convex hull.
More details on the generating curve can be found in [14, 15].

A matrix A = (aij) ∈ Mn is centrosymmetric if it remains unchanged when reflected vertically and
horizontally, that is, if aij = an−i+1,n−j+1 for all i, j. Let Jn be the backward identity or exchange matrix of
order n, obtained from the identity matrix In by reversing the order of its columns, that is, the matrix with
(i, j) entry 1 if i+ j = n+ 1 and 0 elsewhere. Clearly, A ∈Mn is centrosymmetric if and only if A = JnAJn.
A matrix A = (aij) ∈Mn is tridiagonal if aij = 0 for |i− j| > 0. Centrosymmetric and tridiagonal matrices
appear naturally in many places and have several applications.

In this paper, we focus our study on the class of Kac–Sylvester matrices of order n ≥ 2, which are
n-square tridiagonal matrices with zero main diagonal, superdiagonal (1, 2, 3, . . . , n − 1) and subdiagonal
(n− 1, . . . , 3, 2, 1), that is, matrices of type
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Kn =



0 1

n− 1 0 2

n− 2 0
. . .

. . . . . . n− 2

2 0 n− 1

1 0


,(2)

which also appear in the literature under the names Kac matrices or Clement matrices, sometimes concerning
its transpose matrix instead. After James Joseph Sylvester [17] had presented the characteristic polynomials
of these matrices for small orders, their eigenvalues and eigenvectors were studied by Mark Kac (see the
historical remarks in [18]) and Clement proposed it as a test matrix for numerical eigenvalue computations
[7]. The Kac–Sylvester matrices are clearly centrosymmetric.

The spectrum of the matrix Kn is remarkably simple: the n distinct eigenvalues are symmetric around
zero, equidistant and range from −(n− 1) to n− 1. Thus, for n odd these are n consecutive even integers,
while for n even they are n consecutive odd integers.

The remaining of this note is organized as follows. In Section 2, some preliminary results are given,
including a result for the numerical radius of the Kac–Sylvester matrices. In Section 3, the boundary
generating curves and the numerical range of Kac–Sylvester matrices up to the order 9 are obtained. Further,
it is observed that a pair of horizontal flat portions occurs on the boundary of W (Kn) if and only if n ≥ 4 is
even. In Section 4, we present some final comments, where the following question naturally arises: does the
oval shape, or the convex hull of two ovals (with a pair of horizontal flat portions), present in small sized
orders characterize the numerical range of the Kac–Sylvester matrix of order n odd, or even, respectively?
Illustrative figures of the obtained results are also presented.

2. Preliminary results. Let A ∈ Mn. The following basic properties of the numerical range are well
known:

W1. W (αA+ βIn) = αW (A) + β for any α, β ∈ C;
W2. W (A) is unitarily invariant, that is, W (U∗AU) = W (A) for any unitary matrix U ∈Mn;
W3. W (A1 ⊕A2) is the convex hull of W (A1) and W (A2) for any matrices A1 ∈Mk and A2 ∈Mn−k.

The Elliptical Range Theorem characterizes W (A) in the case n = 2 and states the following.

Theorem 2.1. If A ∈M2, then W (A) is a possibly degenerate elliptical disc, with foci at the eigenvalues
λ1, λ2 of A, with major and minor axes of lengths(

Tr(A∗A)− 2<(λ1λ̄2)
) 1

2 and
(
Tr(A∗A)− |λ1|2 − |λ2|2

) 1
2 ,

respectively. For the degenerate cases, W (A) is a line segment, joining the eigenvalues λ1, λ2 if and only if
A is normal and, in particular, W (A) is a singleton if and only if A is a scalar matrix.

The elliptical shape of W (A) persists in certain cases independently of the size of A (see [1, 2, 4, 5] and
references therein). In particular, we recall the following result, which gives a criterion of ellipticity of the
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numerical range due to Chien et al. [5, Theorem 1]. For that, let the eigenvalues of Hθ(A) be labeled as
follows:

λ1
(
Hθ(A)

)
≥ λ2

(
Hθ(A)

)
≥ · · · ≥ λn

(
Hθ(A)

)
.

Proposition 2.2. Let A ∈ Mn, a, b > 0. Then W (A) is an elliptical disc, centered at the origin, with
horizontal major semi-axis of length a and vertical minor semi-axis of length b if and only if

λ1
(
Hθ(A)

)
=

√
a2 − (a2 − b2) sin2 θ,

for any 0 ≤ θ < 2π.

Kippenhahn [14] classified the boundary generating curves of the numerical range of matrices of order 3

as follows.

Theorem 2.3. A matrix A ∈ M3 can only possess the following types of curves as its boundary gener-
ating curve:

1. three points;
2. a point and a nondegenerate ellipse;
3. a curve of order 4 with a double tangent and a cusp;
4. a proper curve of order 6, consisting of an oval and a curve with three cusps lying in its interior.

This means that for A ∈M3, the shape of W (A) is triangular (possibly degenerate), if pA(x, y, z) factors
into three real linear factors; the convex hull of a nondegenerate elliptical disc and a point (possibly contained
in the disc), if pA(x, y, z) factors into a real linear factor and an irreducible quadratic factor; has a smooth
boundary curve with a flat portion, if pA(x, y, z) is irreducible and ΓA has a real node; is ovular, if pA(x, y, z)

is irreducible and ΓA has no singular point [6].

Moreover, for matrices A ∈ M4, Chien and Nakazato [6] classified the boundary generating curves of
W (A), via the factorability of the homogeneous ternary polynomial pA(x, y, z), as follows.

Theorem 2.4. The boundary generating curve of the numerical range of a matrix A ∈M4 falls into one
of the following cases:

1. the vertices of a (possibly degenerate) quadrilateral;
2. a (nondegenerate) ellipse and two points, one or two of these points may be contained in the elliptical

disc;
3. two (nondegenerate) ellipses, that may take arbitrary relative position;
4. the dual curve of an irreducible cubic curve and a point, which may be contained in the convex hull

of the dual curve;
5. the dual of an irreducible quartic curve.

Now, we recall that the spectral radius of a square matrix A, denoted by ρ(A), is the maximum of the
absolute values of its eigenvalues.

Concerning the numerical radius of the Kac–Sylvester matrices Kn, we have the following result.

Proposition 2.5. Let n ≥ 2. The numerical radius of Kn is

w(Kn) = n cos
π

n+ 1
.
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Proof. Since Kn is a positive matrix, then its numerical radius is equal to the spectral radius of its real
part in the Cartesian decomposition [10, Theorem 2.1], that is,

w(Kn) = ρ
(
<(Kn)

)
.

It is clear that <(Kn) = n
2 Tn, where

Tn =


0 1

1 0 1
. . . . . . . . .

1 0 1

1 0

 .(3)

The eigenvalues of Tn are

2 cos
kπ

n+ 1
, k = 1, . . . , n,

and its spectral radius is obtained when k = 1. Then the numerical radius of Kn easily follows.

We remark that 1
n−1Kn is a positive matrix whose columns sum to 1, that is, it is column-stochastic.

Having in mind the positivity of the matrix Kn, by [8, Proposition 3.3], the following result holds.

Proposition 2.6. The set W (Kn), n ≥ 3, is symmetric with respect to the x-axis and contains no
vertical line segment on its right boundary.

3. Main results. If n = 2, then

K2 =

[
0 1

1 0

]
,

is symmetric. Thus, its numerical range reduces to a line segment, joining the eigenvalues of K2, that is,

W (K2) = [−1, 1] and w(Kn) = 1.

If n ≥ 3 and m ∈ N, consider the principal submatrix of Kn defined by the first m rows and m columns:

Rn,m =



0 1

n− 1 0 2

n− 2
. . . . . .
. . . 0 m− 1

n−m+ 1 0


.(4)

For simplicity of notation, let J be the backward identity or exchange matrix of order m,

(5) Rem = R2m,m and Rom = R2m+1,m.

The Kac–Sylvester matrix can be written, depending on its order n being even or odd, in one of the following
block forms: either

K2m =

[
Rem mEm1

mE1m JRemJ

]
,
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where Eij denotes the m-square elementary matrix with 1 at the (i, j) entry and zero elsewhere, or

K2m+1 =

 Rom m em O

(m+ 1) eTm 0 (m+ 1) eT1
O m e1 JRomJ

 .
Theorem 3.1. For m ∈ N, let Rem and Rom be the matrices defined in (5).

(a) If n = 2m, then W (Kn) is the convex hull of

W (Rem −mEmm) and W (Rem +mEmm).

(b) If n = 2m+ 1, then W (Kn) is the convex hull of W (Rom) and W (Sm+1), where

Sm+1 =

[
0 (m+ 1)

√
2eTm

m
√

2em Rom

]
.

Proof. We easily see that each Kac–Sylvester matrix is orthogonally similar to a block diagonal matrix.
In fact,

Q =

√
2

2

[
Im Im
−J J

]
,

is an orthogonal matrix, such that

QTK2mQ =

[
Rem − JE1m O

O Rem + JE1m

]
,

and JE1m = mEmm. Then

W (K2m) = W
(
(Rem −mEmm)⊕ (Rem +mEmm)

)
.

On the other hand,

Q =

√
2

2

Im 0m Im
0Tm

√
2 0Tm

−J 0m J

 ,
is an orthogonal matrix, such that

QTK2m+1Q =

[
Rom O

O Sm+1

]
.

Then W (K2m+1) = W
(
Rom ⊕ Sm+1

)
. Therefore, by property W3, we conclude that W (K2m) is the convex

hull of W (Rem − mEmm) and W (Rem + mEmm), whereas W (K2m+1) is the convex hull of W (Rom) and
W (Sm+1).

3.1. Elliptical boundary generating curves. In this section, the shapes of the numerical range of
the Kac–Sylvester matrices of order n ≤ 5 are obtained. We will see that their boundary generating curves
are a point and an ellipse, if n = 3, or two nonconcentric ellipses, if n = 4, or a point and two concentric
ellipses, if n = 5.

We start by the smaller cases of odd order, that is, n = 3 and n = 5, in which cases this set is an
elliptical disc.
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Theorem 3.2. Let n ≤ 5 be odd. The numerical range of Kn is an elliptical disc centered at the origin,
with foci at 1− n and n− 1, with horizontal major axis and vertical minor axis of lengths:

i. 3
√

2 and
√

2, respectively, if n = 3;
ii. 5
√

3 and
√

11, respectively, if n = 5.

Proof. i. Let n = 3 and m = 1. In this case, Ro1 = 0 and, by Theorem 3.1, the set W (K3) is the convex
hull of the origin and W (S2), where

S2 =

[
0 2

√
2√

2 0

]
.

The eigenvalues of S2 are −2, 2 and Tr(ST2 S2) = 10. By the Elliptical Range Theorem, W (S2) is an elliptical
disc with foci at −2, 2, horizontal major axis and vertical minor axes of lengths 3

√
2 and

√
2, respectively.

Thus, the boundary generating curves of W (K3) are a point, the origin, which is one of the eigenvalues of
K3, and the previous ellipse, whose foci are at the remaining eigenvalues of K3. Therefore, the set W (K3)

is bounded by the ellipse with Cartesian equation

x2

9
2

+
y2

1
2

= 1.

ii. Let n = 5 and m = 2. By Theorem 3.1, the set W (K5) is the convex hull of W (Ro2) and W (S3),
where

Ro2 =

[
0 1

4 0

]
and S3 =

 0 0 3
√

2

0 0 1

2
√

2 4 0

 .
The eigenvalues of Ro2 are −2, 2 and Tr((Ro2)TRo2) = 17. By the Elliptical Range Theorem, the set

W (Ro2) is an elliptical disc with foci at −2, 2, horizontal major axis and vertical minor axis of lengths 5 and
3, respectively. Thus, one of the boundary generating curves of W (K5) is the ellipse that bounds W (Ro2).

The remaining eigenvalues of K5, which are −4, 0, 4, are those of S3 and

Hθ(S3) =
5

2

 0 0
√

2

0 0 1√
2 1 0

 cos θ +
1

2i

 0 0
√

2

0 0 −3

−
√

2 3 0

 sin θ

=
1

2

 0 0
√

2(5 cos θ − i sin θ)

0 0 5 cos θ + 3i sin θ√
2(5 cos θ + i sin θ) 5 cos θ − 3i sin θ 0

 .
The NR generating polynomial of S3 is given by

pS3,θ(z) = −z
(
z2 − 3

52

22
cos2 θ − 2 + 32

22
sin2 θ

)
,

with roots z = 0 and
z = ±1

2

√
3× 52 cos2 θ + 11 sin2 θ.

Then the maximum eigenvalue of Hθ(S3) is

λ1
(
Hθ(S3)

)
=

1

2

√
3× 52 − (3× 52 − 11) sin2 θ.
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By Proposition 2.2, the set W (S3) is an elliptical disc, with horizontal major axes and vertical minor axes
of lengths 5

√
3 and

√
11, respectively.

In this case, the boundary generating curves ofW (K5) are a point, the origin, and two concentric ellipses,
with foci at −2, 2 and −4, 4, respectively, defined by the Cartesian equations

x2(
5
2

)2 +
y2(
3
2

)2 = 1 and
x2

75
4

+
y2

11
4

= 1.

Then the numerical range of K5 is bounded by the outer ellipse.

Next, we see that the numerical range of the Kac–Sylvester matrix of order 4 is the convex hull of two
nonconcentric ellipses.

Theorem 3.3. The numerical range of the Kac–Sylvester matrix of order 4 is the convex hull of two
ellipses, centered at the points −1 and 1, with foci at −3, 1 and −1, 3, with horizontal major and minor
semi-axes of lengths

√
5 and 1, respectively, that is, the convex hull of the ellipses with Cartesian equations:

(x+ 1)2

5
+ y2 = 1 and

(x− 1)2

5
+ y2 = 1.

Proof. Let n = 4 and m = 2. By Theorem 3.1, the set W (K4) is the convex hull of W (Re2 − 2E22) and
W (Re2 + 2E22), where

Re2 ± 2E22 =

[
0 1

3 ±2

]
.

Concerning their spectra, we have

σ(Re2 − 2E22) = {−3, 1}, σ(Re2 + 2E22) = {−1, 3},

and
Tr
(
(Re2 ± 2E22)T (Re2 ± 2E22)

)
= 14.

By the Elliptical Range Theorem, W (Re2 − 2E22) and W (Re2 + 2E22) are bounded by the ellipses, centered
at −1 and 1, with foci at −3, 1 and −1, 3, respectively, both with horizontal major axis of length 2

√
5 and

vertical minor axis of length 2. Thus, the boundary generating curves of W (K4) are the previous ellipses
and their convex hull gives W (K4).

We remark that the convex hull of the ellipses generating the boundary of W (K4) yields a pair of
horizontal flat portions on its boundary, namely the line segments defined by −1 ≤ x ≤ 1 and y = ±1.

3.2. Oval and flat portions on the boundary. In this section, we show that the numerical range
of the Kac–Sylvester matrix of order 6 is the convex hull of two nonelliptical ovals, which yields a pair of
horizontal flat portions on its boundary (cf. Figure 1).

Theorem 3.4. The numerical range of the Kac–Sylvester matrix of order 6 is the convex hull of two
(nonelliptical) oval curves, symmetrically positioned with respect to the y-axis, which have horizontal tangent
lines, containing flat portions of the boundary of W (K6), defined by

(6) − 3

10
≤ x ≤ 3

10
and y = ±

√
5,

and vertical tangent lines given by x = ±w(K6), with w(K6) ≈ 5.4058.
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Proof. Let n = 6 and m = 3. By Theorem 3.1, the set W (K6) is the convex hull of W (Re3 − 3E33) and
W (Re3 + 3E33), where

Re3 ± 3E33 =

0 1 0

5 0 2

0 4 ±3

 .
Let A−= Re3 − 3E33 and A+ = Re3 + 3E33. Then

σ(A−) = {−5,−1, 3}, σ(A+) = {−3, 1, 5},

and

Hθ(A±) = 3

0 1 0

1 0 1

0 1 ±1

 cos θ +
1

i

0 −2 0

2 0 −1

0 1 0

 sin θ

=
1

2

 0 3 cos θ + 2i sin θ 0

3 cos θ − 2i sin θ 0 3 cos θ + i sin θ

0 3 cos θ − i sin θ ±3 cos θ

 .
The NR generating polynomials of the matrices A± are

pA±,θ(z) = −z3 ± 3z2 cos θ + (18 cos2 θ + 5 sin2 θ)z ∓ (27 cos3 θ + 12 cos θ sin2 θ).

We prove the theorem via the Kippenhahn polynomials of A±:

pA±(x, y, z) = det
(
x<(A±) + y=(A±) + zI3

)
,

that is,
pA±(x, y, z) = z3 ± 3xz2 − (18x2 + 5y2)z ∓ 3x(9x2 + 4y2).

We have pA−(x, y, z) = pA+(−x, y, z) and these are irreducible polynomials. In fact, if pA+ was reducible,
then

pA+
(x, y, z) = (ax+ by + z) qA+

(x, y, z),

for some real linear factor ax+ by + z and some quadratic homogeneous polynomial qA+
(x, y, z). Since the

eigenvalues of A+ are all real, from

pA+
(1, i,−z) = (a+ bi− z) qA+

(1, i,−z),

we find b = 0 and a ∈ σ(A+). Then ax + z would be a factor of pA+
(x, y, z) and pA+

(x, y,−ax) would be
the zero polynomial, for some a ∈ {−3, 1, 5}. However, this is not true, as

pA+
(x, y, 3x) = −27x(x2 + y2),

pA+(x, y,−x) = −7x(x2 + y2),

pA+
(x, y,−5x) = 13x(x2 + y2).

For this reason, the boundary generating curves of the numerical range of K6 cannot be either three points
or a point and an ellipse.

We recall that the discriminant ∆ of a cubic polynomial az3 + bz2 + cz + d is given by

∆ = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.
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The discriminant ∆(x, y) of the polynomial pA+(x, y, z) with respect to z is

∆(x, y) = 35721x6 + 23814x4y2 + 4977x2y4 + 500y6 > 0,

for every (x, y) ∈ R2, with (x, y) 6= (0, 0). Hence, the equation pA+,θ(z) = 0 has 3 distinct real roots, and
the analogous holds for pA−,θ(z) = 0. We may conclude that a curve of order 4 with a double tangent and
a cusp is not a generating curve of W (A±). By Theorem 2.3, the generating curves of the numerical range
of each matrix A± consist of an oval and a curve with three cusps lying in its interior, that is, a deltoid.
Then each set W (A±) is oval shaped. Thus, W (K6) is the convex hull of the oval shaped, symmetrically
positioned with respect to the y-axis, numerical ranges of A+ and A−.

In this case, W (K6) has a pair of horizontal flat portions on its boundary. In fact, from pA±(0, 1,−z) =

z(z2 − 5), we can see that
σ
(
=(A±)

)
= {−

√
5, 0,
√

5},

and so =(K6) has three multiple eigenvalues. Moreover, when x± = (−2,±
√

5i, 1), that is, x± is an eigen-
vector of =(A+) = =(A−) associated to the maximum/minimum eigenvalue ±

√
5, we get

〈<(A−)x±, x±〉
〈x±, x±〉

= − 3

10
,

〈<(A+)x±, x±〉
〈x±, x±〉

=
3

10
.

Therefore, we may conclude that the line segments given by (6) define the flat portions of the boundary of
the set W (K6). Finally, it is easy to see that the vertical tangent lines of the set W (K6) are x = ±w(K6)

with w(K6) = 6 cos π7 ≈ 5.4058, by Proposition 2.5.

-6 -4 -2 0 2 4 6

-3

-2

-1

0
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x

Figure 1. Boundary generating curves of W (K6).

In general, a pair of horizontal flat portions occurs on the boundary ofW (Kn) if and only if n ≥ 4 is even.
Otherwise, no flat portions exist. This was observed in [3, Example 11], as a consequence of a criterion of
existence of line segments on the boundary of the numerical range of tridiagonal matrices in [3, Theorem 10]
(see also the simpler reworded [16, Theorem 1]) applied in the case θ = 0. In fact, that equivalently follows
from the existence of multiple eigenvalues ±λ of the matrix =(Kn) which are the maximum/mimimum of
its spectrum, and of more than one point in the sets{

〈<(Kn)x, x〉
〈x, x〉

: x ∈ E±λ
}
,

where E±λ denotes the eigenspace of =(Kn) associated to ±λ, which is true whenever n ≥ 4 is even.
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3.3. Oval-shaped numerical range. In this section, we first show that the numerical range of the
Kac–Sylvester matrix of order 7 has a nonelliptical ovular shape. We will afterward see that this oval shape
of the numerical range persists, by presenting some examples, for Kac–Sylvester matrices of higher odd
orders.

Theorem 3.5. The numerical range of the Kac–Sylvester matrix of order 7 has an oval shape and

w(K7) =
7

2

√
2 +
√

2.

The vertical and horizontal tangent lines of W (K7) are

(7) x = ±7

2

√
2 +
√

2 and y = ±1

2

√
18 +

√
274.

The set W (K7) is contained in the elliptical disc bounded by the ellipse defined by

(8)
x2

49
4 (2 +

√
2)

+
y2

9
2 + 1

4

√
274

= 1.

Proof. By Proposition 2.5, the numerical radius of K7 is

w(K7) = 7 cos
π

8
=

7

2

√
2 +
√

2.

Let n = 7 and m = 3. By Theorem 3.1, the set W (K7) is the convex hull of W (Ro3) and W (S4), where

Ro3 =

0 1 0

6 0 2

0 5 0

 and S4 =


0 0 0 4

√
2

0 0 1 0

0 6 0 2

3
√

2 0 5 0

 .

Then

Hθ(R
o
3) =

7

2

0 1 0

1 0 1

0 1 0

 cos θ +
1

2i

0 −5 0

5 0 −3

0 3 0

 sin θ

=
1

2

 0 7 cos θ + 5i sin θ 0

7 cos θ − 5i sin θ 0 7 cos θ + 3i sin θ

0 7 cos θ − 3i sin θ 0

 ,
and the NR generating polynomial of the matrix Ro3 is given by

pRo3,θ(z) = −1

2
z(2z2 − 72 cos2 θ − 17 sin2 θ).

The greatest eigenvalue of Hθ

(
Ro3
)
is

λ1
(
Hθ(R

o
3)
)

=

√
2

2

√
72 − (72 − 17) sin2 θ.
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By Proposition 2.2, the set W (Ro3) is an elliptical disc, centered at the origin, with horizontal major axes
and vertical minor axes of lengths 7

√
2 and

√
34, respectively. The foci of the ellipse are −4, 4, and the

length of its major semi-axis is smaller than w(K7).

Concerning the matrix S4, we have

Hθ(S4) =
7

2


0 0 0

√
2

0 0 1 0

0 1 0 1√
2 0 1 0

 cos θ +
1

2i


0 0 0

√
2

0 0 −5 0

0 5 0 −3

−
√

2 0 3 0

 sin θ.

The Kippenhahn polynomial of S4 is given by

pS4(x, y, z) =

∣∣∣∣∣∣∣∣∣
z 0 0

√
2
2 (7x− iy)

0 z 1
2 (7x+ 5iy) 0

0 1
2 (7x− 5iy) z 1

2 (7x+ 3iy)√
2
2 (7x+ iy) 0 1

2 (7x− 3iy) z

∣∣∣∣∣∣∣∣∣ ,
that is,

pS4
(x, y, z) = z4 − (72x2 + 32y2)z2 +

1

23
(72x2 + 5y2)2 + 2× 72x2y2,

which is an irreducible polynomial. In fact, suppose that

pS4(x, y, z) = (ax+ by + z) cS4(x, y, z),

for some real linear factor ax+ by+z and some cubic homogeneous polynomial cS4
(x, y, z). As the spectrum

of S4 is real, we have b = 0 and a ∈ σ(S4). Then pS4
(x, y,−ax) would be the zero polynomial, for some

a ∈ {−6,−2, 2, 6}, which can be easily seen not to hold. On the other hand, suppose that

pS4
(x, y, z) = q1(x, y, z)q2(x, y, z),

for some quadratic homogeneous polynomials of type

q1(x, y, z) = ax2 + bxy + cxz + dy2 + eyz + z2,

q2(x, y, z) = gx2 + hxy − cxz + ky2 − eyz + z2,

due to the null coefficient in z3 of pS4
(x, y, z). But pS4

(x, y, z) has the null coefficient in z too, that is, we
would have

(9) (cx+ ey)
(
(g − a)x2 + (h− b)xy + (k − d)y2

)
= 0,

which implies either c = e = 0 or g = a and h = b and k = d. Then the coefficient of q1(x, y, z)q2(x, y, z)

associated with z2 has, respectively, one of the following forms:

(a+ g)x2 + (b+ h)xy + (d+ k)y2 or 2(ax2 + bxy + dy2)− (cx+ ey)2.

The first one implies g = −a− 49 and h = −b and k = −d− 9, while the second one implies 2a = −49 and
2d = −9 and b = c = e = 0; but in both cases, the independent terms of pS4(x, y, z) and q1(x, y, z)q2(x, y, z)

would not be equal.
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Then the boundary generating curve of W (S4) is the dual of an irreducible quartic curve.

The discriminant ∆(x, y) of a quartic curve of the form az4 +bz2 +c = 0 is 16ac(b2−4ac)2. We compute
the discriminant ∆(x, y) of the polynomial pS4

(x, y, z) with respect to z and obtain

∆(x, y) =
1

2
(72x2 + y2)(72x2 + 52y2)(2401x4 + 490x2y2 + 137y4)2 > 0,

for every (x, y) ∈ R2, with (x, y) 6= (0, 0). Then pS4,θ(z) has four real distinct roots and the greatest one is
equal to

λ1
(
Hθ(S4)

)
=

1

2

√
58 + 40 cos(2θ) +

√
2026 + 2264 cos(2θ) + 512 cos(4θ).

The equation of a supporting line of W (S4) perpendicular to the direction θ ∈ [0, 2π) is

(10) x cos θ + y sin θ = λ1
(
Hθ(S4)

)
.

The envelope of this family of supporting lines with θ ranging over θ ∈ [0, 2π), gives the boundary generating
curve of W (S4). To compute this envelope, note that it has parametric equations given by{

x = λ1
(
Hθ(S4)

)
cos θ − λ′1

(
Hθ(S4)

)
sin θ

y = λ1
(
Hθ(S4)

)
sin θ + λ′1

(
Hθ(S4)

)
cos θ

.

After some heavy and lengthy computations for eliminating the parameter θ, performed with the program
Mathematica, we find that the boundary of W (S4) is the outer oval curve depicted in Figure 2.

Since the elliptical boundary ofW (Ro3) and the oval boundary ofW (S4) are nested curves, the numerical
range of K7 is bounded by the outer oval, that is, we have W (K7) = W (S4).

Moreover, the maximum eigenvalues of <(S4) and =(S4) are given by

(11) λ1
(
H0(S4)

)
=

7

2

√
2 +
√

2 and λ1
(
Hπ

2
(S4)

)
=

1

2

√
18 +

√
274,

whereas the minimum eigenvalues of <(S4) and =(S4) are the corresponding symmetric values. Then the
vertical and horizontal tangent lines of W (K7) are defined by (7). Further, since

λ1
(
Hθ(S4)

)
≤
√
λ21
(
H0(S4)

)
cos2(θ) + λ21

(
Hπ

2
(S4)

)
sin2(θ),

for every θ ∈ [0, 2π), we may conclude that W (K7) is contained in the disc, bounded by the ellipse, centered
at the origin, with horizontal major and vertical minor semi-axes of lengths (11), respectively, that is, with
the Cartesian equation (8).

In Figure 3, we can see the oval boundary of W (K7), as well as the ellipse defined by (8), containing
W (K7), and we may conclude how well it approximates the first oval curve.

Analogously, we may prove the next result for the order 9. We sketch the main steps of the proof below,
being the more involved computational details omitted, as the arguments used are similar to those of the
previous proof. By Proposition 2.5 for the numerical radius, we get

w(K9) = 9 cos
π

10
=

9

4

√
10 + 2

√
5.
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Figure 2. Boundary generating curves
of W (K7).
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Figure 3. Elliptical disc approximating
W (K7).

By Theorem 3.1, the set W (K9) is the convex hull of W (Ro4) and W (S5). We can prove that

W (Ro4) ⊂W (S5),

and the Kippenhahn polynomial of S5 is given by the product of −z and

z4 −
(

405

4
x2 + 85y2

)
z2 +

1

16
(32805x2 + 17010x2y2 + 589y4),

which is an irreducible quartic polynomial. Therefore, we obtain the oval boundary of W (K9), its vertical
and horizontal tangent lines, having in mind that

λ1
(
Hθ(S5)

)
=

1

2

√
245

2
+ 80 cos(2θ) +

3

2

√
1581 + 1552 cos(2θ) + 512 cos(4θ),

as well as the elliptical disc, containing W (K9), given in the next theorem.

Theorem 3.6. The numerical ranges of the Kac–Sylvester matrix of order 9 has an oval shape and its
numerical radius is

w(K9) =
9

4

√
10 + 2

√
5.

The vertical and horizontal tangent lines of W (K9) are

x = ±9

4

√
10 + 2

√
5 and y = ±1

2

√
85

2
+

3

2

√
541.

The set W (K9) is contained in the elliptical disc bounded by the ellipse defined by

x2

81
8 (5 +

√
5)

+
y2

1
8 (85 + 3

√
541)

= 1.

In Figure 4, the boundary generating curves of W (K9) are presented. In Figure 5, we can see the oval
boundary of W (K9), as well the elliptical disc approximating W (K9).
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Figure 4. Boundary generating curves
of W (K9).
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Figure 5. Elliptical disc approximating
W (K9).

4. Final comments. Concerning the numerical range of the Kac–Sylvester matrix of order 2m, m ≥ 4,
by numerical calculations for some examples of even order, we can see that it is the convex hull of two
nonelliptical ovals, those defined by the numerical ranges of the matrices

Rem ±mEmm =



0 1

2m− 1 0 2

2m− 2
. . . . . .
. . . 0 m− 1

m+ 1 ±m


.

As previously observed, the boundary of W (K2m), m ≥ 2, has a pair of horizontal flat portions. In fact,
since =(Rem ±mEmm) = =(Rem), for m ≥ 2 we can see that =(K2m) is unitarily similar to the direct sum of
two copies of

=(Rem) = i



0 m− 1

1−m 0 m− 2

2−m
. . . . . .
. . . 0 1

−1 0


,

which has simple eigenvalues by [4, Corollary 7]. Thus, if m ≥ 2, a closer inspection of the behavior of the
matrix <(K2m) = mTm on the 2-dimensional eigenspace of =(K2m) associated to the maximum eigenvalue
λ of =(Rem) and the symmetry of W (K2m) with respect to the x-axis, stated in Proposition 2.6, lead to the
two flat portions on the lines y = ±λ.

In particular, when n = 8 and m = 4, by Theorem 3.1, the setW (K8) is the convex hull ofW (Re4+4E44)

and W (Re4 − 4E44). The Kippenhahn polynomials of Re4 ± 4E44 are given by

z4 ∓ 4xz3 − (48x2 + 14y2)z2 ± (27x3 + 52xy2)z + 28x4 + 160x2y2 + 32y4,

which are irreducible quartic polynomials. Then, using arguments of the proofs presented in the previous
sections, we may conclude thatW (K8) is the convex hull of two nonelliptical oval curves, as shown is Figure 6.
These oval curves are, as in Theorem 3.4 for the order 6, symmetrically positioned with respect to the y-axis.
Now, after simple computations derived from the eigenvalues of =(Re4), and the corresponding eigenvectors
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associated to its maximum and minimum eigenvalues, we can see that the flat portions of the boundary of
W (K8) are defined by

(12) − 1 + 3

√
10

10
≤ x ≤ 1− 3

√
10

10
and y = ±

√
7 + 2

√
10.

We easily see that the vertical tangent lines of W (K8) are x = ±w(K8), with

w(K8) = 8 cos
π

9
≈ 7.51754.
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Figure 6. Boundary generating curves of W (K8).

We conjecture that this behavior is the same for any even order n, but the computations involved are
much more intricate for n ≥ 10. In fact, observe that the Kippenhahn polynomials of Rem ± mEmm are
irreducible quintic polynomials if m = 5 or irreducible polynomials of higher degree for greater values of m.

For instance, for the order 20, we have the boundary generating curves ofW (K20) presented in Figure 7.
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Figure 7. Boundary generating curves of W (K20).
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For Kac–Sylvester matrices of order 2m+ 1, m ≥ 5, by experimental numerical computations performed
with Mathematica or MatLab, we can observe that the nonelliptical oval shape of the numerical range
persists. For instance, for the order 21, we have the boundary generating curves shown in Figure 8.
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Figure 8. Boundary generating curves of W (K21).

We also conjecture that this type of oval-shaped numerical range holds for Kac–Sylvester matrices of
any odd order n ≥ 11. Finally, it is interesting to notice that although not having numerical range ellipticity,
we still have quasi-ellipticity for odd sizes.
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