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ON TWO-SIDED INTERPOLATION FOR
UPPER TRIANGULAR MATRICES*

DANIEL ALPAY! AND VLADIMIR BOLOTNIKOV#

Abstract. The space of upper triangular matrices with Hilbert—-Schmidt norm can be viewed
as a finite dimensional analogue of the Hardy space Hy of the unit disk when one introduces the
adequate notion of “point” evaluation. A bitangential interpolation problem in this setting is studied.
The description of all solution in terms of Beurling-Lax representation is given.
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1. Introduction. In this paper we pursue our study of bitangential interpolation
in analogues of the Hardy space of the unit disk Hy. To start with we recall the
classical setting which has been considered in [8].

Let HY"** denote the Hilbert space of m x k-matrix valued functions of the form

o0 o0
H(z) =Y H;z/, Y TrHjH; < oo,
j=0 j=0

endowed with the L7*** inner product
1 2m it it oo
(1) (H, G)pmxe = (H, G)ygpxr = %/0 TrG(e)* H(e')dt = Z%TrG;Hj.
]:

The H;”Xk—functions are analytic in the open unit disk ) and have boundary values
almost everywhere on the unit circle T. The space Hy*** is a Hilbert module (see,
e.g, [18] and Section 2 of [1]) with respect to the Hermitian matrix-valued forms

27
@) (H, G} yrer = — / H(e")G (e dt
2 27T 0
and
1 27 . .
3) H, Glymer = —/ G(ei)* H(eit)dt
2 27r 0

and has the reproducing kernel property with the kernels

A Ly, A I
k) (2) T and k5 (2) T
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in the sense that
(4) H(w)A* = {H, Akﬁ}H;nxk and  A*H(w) = [H, klA] g

for every choice of a point w € I and of a m x k matrix A. Note that the latter
relations express Cauchy’s formula for H**-functions. In [8] we considered a general
bitangential Nudelman type problem for Hg”Xk functions with norm constraints. The
multivariable analogue of the problem referred to in the previous paragraph in the
setting of the polydisk was considered in [4].

It is well known (see [10], [11], [12], [15]) that there are deep analogies between
analytic functions and upper (or lower) triangular matrices. In [2] we looked at the
analogue of the problem referred to in the previous paragraph, for double infinite
upper triangular matrices. In this paper we focus on the case of finite matrices. In
fact, one could try to obtain the case of finite matrices from our previous paper [2]
using time varying coefficient spaces in the spirit of [13, Section 12] or [14]. This
does not seem to us natural, since the problem considered here is finite dimensional;
furthermore, the approach presented in this paper is purely algebraic and much more
explicit.

Other situations are also possible, such as the case of lower triangular integral
Hilbert Schmidt operators (the continuous time varying case analogue of [2]). This
was carried out in [3].

Consider X™** the set of all m x k matrices which is a Hilbert space with respect
to the inner product

(5) (H, G)=TrG*H  (H,G € x™*¥),

which is the analogue of (1).
A matrix H = [hl]]ijk is called diagonal if h;; = 0 for ¢ # j. It is called

,m
upper (lower) triangular if h;; = 0 for i > j (i < j, respectively). The symbols D™**
U™k and £L™*F will be used for the spaces of diagonal, upper triangular and lower
triangular m x k matrices, respectively.

Let Z,, denote the m x m shift matrix defined by

01 0 0
0 1
1

and let Z; be the k x k shift matrix defined similarly. We denote by p4., po, p— the
orthogonal projections of X™** onto U™*k 7, Dm>k  7Z* Lm¥k respectively. We
also use the projections of X onto its upper and lower parts, and denote them by

p=po+py and g=po+p_,
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respectively. The space X™*F is a Hilbert module with respect to Hermitian matrix-
valued forms

{H, G} mne = po(HG®) and [H, Glymxe = po(G*H)

which are the analogues of (2) and (3).

For a fixed H € U{™** these forms make sense for & x k and m x m matrices G,
respectively, and define two different “evaluation” maps for upper triangular matrices
by

(7) FNW) =po ((ln = W2;)7 F) and FAV) =po (F (I - ZV) 7).

where F' € U™**k and W and V are diagonal m x m and k x k matrices, which usually
play the role of points in the nonstationary setting. The transformations F(W) and
F#(V) are noncommutative analogues of the point evaluation (4). We also define

FYW,V) = po ((In = WZ3) ™ F (I = Z;V) ™ Z7)

REMARK 1.1. It follows from the definition (6) of Z,, that for every choice of
W € D™*™ the matrix I,,, — W Z7, is lower triangular with all diagonal entries equal
to 1. In particular, det (I, — W Z} ) = 1 and the matrix is invertible. From the same
reason the matrix I, — Z;'V is invertible for every choice of V € DF**.

Note that if m = k, then for any F' € U/™** there exist uniquely defined diagonal
matrices F[; and Fy;; which satisfy

Fj =220y, Fyy=Fp2zy
and are such that
m—1 k—1 ]
F=> Zi,F; and F=Y F;7.
j= 7=0

The latter “polynomial” representations allows us to express evaluations (7) as

m—1 k—1
®)  FNW)=) (WZ,YZLF; and Fo(V) =Y FuZi(ZiV)y.
j=0 j=0

These formulas appear in [7]. If m > k (m < k), the first (the second) formula in (8)
is true. In general, for m < k (m > k) the first (the second) formula in (8) is not
valid, and for this reason we shall use formulas (7).

The maps (8) have been introduced in [5] and [6] for bounded upper triangular
operators in infinite dimensional Hilbert spaces. For more on this setting and on the
related interpolation problems for uper triangular contractions, see [9], [13], [16], [17].

Now we present the analogue of the classical Lagrange interpolation problem,
which is posed below in terms of the “point” evaluations (7).
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PROBLEM 1.2. Given matrices

WjEDlszj, ijDljxm, njE'DZka (j=1,...,n)
Vi € Drixri (; € Drixm, v; € Drixk (i=1,...,0

and T'j; € D4>% | find all H € U™* such that
©) (CH) W) =nf,  (Hw)(V) =G and (&H) (W, V) =Ty

forj=1,....nandi=1,...,¢.

The paper consists of seven sections. To set the problem precisely we first need
some notations and definitions. The general problem (which includes Problem 1.2 as
a particular case) is stated in the second section. The description of all its solutions
(formula (31)) is presented in the third section. The proof relies on the analysis of
two special cases, namely right sided and left sided interpolation problems, which are
considered in details respectively in Sections 4 and 5. The general two sided problem
is studied in Section 6. The last section deals with the structure of the minimal norm
solution.

2. Formulation of the problems and preliminary remarks. In this section
we introduce the bitangential interpolation problem to be studied, and which includes
Problem 1.2 as a particular case. Given two sets of positive integers {¢;} and {r;},
let

(10) NR =71+ ...+ 7, np =40 +...+ 4,
let Z,, and Z;, be the shift matrices defined via (6) and let
Z, =diag (Zy,,...,2Zr,) € C"**"® and  Z. = diag (Zs,,...,Zs,) € C"7"E,

The relations

[a—
—

Zol = 252.) =0, Z*Z.D=DZ*Z,,

(I = Zc22) 2 =0, ZZEF = FZ Z¢,

(I = Z;Ze)(I = Z;D)~ = (I = Z3Zz), and
(I = ZZE(I = ZeF) = (I = 2. Zp),

—
)

)
)
)
)

which hold for every choice of block diagonal matrices D € D"E*"E and F' € DL *n"L |
will be useful.

In the class U™** we consider the interpolation problem whose data set is an
ordered collection

(15) Q:{CJN C,, Aﬂ'; AC: B+> B*: F}
of seven matrices

C+ c Dman, C_ c Dkan, B+ c Dman, B_ c DanL’
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A, € D"RXMR AL € DMEXML T e DPRXNL

REMARK 2.1. By abuse of notation, by A, € D"r*"k and A € D"L*"L we
mean that A- and A, are ng X ng and ny X ny, matrices with diagonal block entries

(A¢);; €D (i,j=1,...,8) and (Ag); €D"X" (i,j=1,...,1).

Similarly, by C; € D™*"® we mean that C; is a block row and every m X r; block
is diagonal (in other words, we reserve the symbols n; and ng to indicate block
decomposition of the underlying matrices). We shall refer to such matrices as to
block diagonal. The same convention holds with & and L instead of D for block
upper triangular and for block lower triangular matrices. The other notations (such
as D™Xnr or PEXnL) should be clear.

We say that the data (15) is admissible if

(16) Span {Ran ((A;Z,,)j C’i) ,7=0,...,ng — 1} =C"®,
(17) Span {Ran ((Agzg)j Bj;) L i=0,....n1 — 1} -,
(18) r=rz.z:,

and the Sylvester equality holds
(19) ALZirZy —TAr =B-C_. — B (.

We denote by IP the following two—sided interpolation problem.
PROBLEM 2.2. Given an admissible data set ), find all H € U™** such that

(20) o {HC, (I- Z;A,T)_l} = Cy,
(21) Po {H*BJ'_ (I — ZcAc)_l} = B_’
(22) P (1 - A:2;) ' BiHC (1- 2407 Z;} =T,

where in the first equation, py is the orthogonal projection of X™*™E onto D™*"E  in
the second equation py denotes the orthogonal projection of X**"t onto D¥*"L  and
finally, in the third equation,

Py =po1 @ --- ® pos

and po; is the orthogonal projection of X% >t onto D>t

Note that by Remark 1.1 and in view of the block structure of A, A¢, Z, and
Z¢, the matrices I — ZX A, and I — Z: A, are invertible.

REMARK 2.3. Conditions (20) and (21) generalize the Nevanlinna-Pick condi-
tions (9) and coincide with the last ones for the special choice of

B+:(§13---7§n)7 B—:(nla---ann)a C—‘r:(clv'--:Cf): C—:(Vla---ayf)a
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Wy 0 Vi 0 P - Tig
A = l, Ay = l, F:[ : : ]
0 wr 0 Ve R BRI )

n

The next lemma shows that conditions (20) and (21) contain more information
about a solution H of the interpolation problem.
LEMMA 2.4. Let H belong to U™ * and satisfy (20), (21). Then

(23) q {HC, (I- Z;A,,)’l} =y (I-2Z:A,) 7"
and
(24) p{H'B.(I-ZA) '} =B (I-ZcA) .

nr—1

Proof. For every ¥ € X™*"#_ it holds that q¥ = Z (po¥Zi) Z:  and
therefore, =
25) ¢ {Hc_ (I - Z;;Aﬂ)‘l} - nil (po {Hc_ (I—Z5A)"" Z,{}) 7.
j=0

The first term on the right hand side of the equality
j—1
(I—Z:A:) ' Z1 = (Z:An) Z1+ (I - Z:As) ' (Z:A) Z1
=0

is strictly block upper triangular, and thus, for every upper triangular H,
o {HC, (I-2ZA.)"" zg;} ~ {Hc, (I—Z:A)"" (Z5A,) zg;} .
Since the operator (Z:A)’ ZI is block diagonal, it follows from (20) that
o {Hc, (I-Z:Az) (22 A) zg;} - (po {Hc, (I Z;;A,,)’l}) x
X (23 Ax)’ 2]
= Cy(ZrA:) Z3.
Since A, is block diagonal,
(ZiAR) Z1Z¥ = (Z:A:Y ,  j=0,1,...
Making use of the three last equalities we deduce (23) from (25):

nr—1

o {HC_(1-Z;:A0) "} = Yy (z3A,) 2377
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Taking advantage of the relation

nr—1

P {H*B+ (I - ZCAC)*} > (pg {H*BJr (I — ZeAo) ™ Zgj}) Zi,
=0

it can be checked in much the same way that (21) implies (24). O

COROLLARY 2.5. Conditions (20) and (21) are equivalent to (23) and (24) re-
spectively.

Indeed, applying po to both sides of (23) and (24) we obtain (20), (21). The rest
follows from Lemma 2.4.

Sometimes it will be convenient to use conditions (20) and (21) in the following
“adjoint” forms

(26) Py {(1 = A32) "' C*H*} =€} and Py {(I - A7) BiH} = B".

REMARK 2.6. Conditions (20), (21) are equivalent to conditions (26).
k—1

Proof. Taking H € U™** in the form H = ZHJ-Z,{ with H; € D™** we get

=0

k—1
p {HC (1= Z;40)7 ) =S B,Z]C (Z;A:),
=0
- |
P {(1 Az CiH*} =N (Arz) ¢z H.
=0

Comparing right hand sides in two last equalities we conclude that
(vo {HO-(1-2;407'}) =R {13207 c2m)

and therefore, (20) is equivalent to the first condition in (26). The equivalence of (21)
and the second condition in (26) is checked in much the same way. O

REMARK 2.7. The Sylvester identity (19) follows from (20)—(22) and is therefore,
a necessary condition for the problem IP to be solvable.

Proof. First we note the equality

(27) Py (ZM (I - Z:Zx)) =0,
which holds for every M € X™7*"L_ Indeed, taking M in the form

nr—1 nr—1
M=% ZIMj+ Y Mu,_14:2i with M, € D"n<me,
Jj=0 i=1

we get

nr—1 nr—2
ZEM (I Z:Z:) = 28 Z3M; (I - Z:2,) + ( 3 ZZJMJ) Zo (I — Z22,)
i=0

=0
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and come to (27), since the first term on the right hand side in the latter equality is
strictly block lower triangular and the second term is equal to zero due to (12).

Let H belong to U™** and satisfy (20)-(22) (or equivalently, (22) and (26)).
Upon applying (27) to

M=(I-A:z;) ' BLHCO_ (I-Z:A:) ™",

taking into account that the matrix A¢ is block diagonal and making use of the
equality

Z:(PoX)Zr = PyZ;X Zr,

which holds for every X € X"LX"L we get

ALZiTZ, = AZ} (PO {(I - Agzg)
= B (Agzg (1-a:7)
= P (Agzg (1 azz)

— AP, (Zg (I - Agzg)

= P { ((I - Agzg)_l - I) BIHC (I - Z;;A,T)_l}

1

BLHC_(I—Z:A;) ! Z;}) Z.
-1

BtHC_ (I —Z:A,)™" Z;Z,r>
-1

BYHC (I - Z;Aﬁ)1>

1
BLHO_ (I - Z:A,) ™ (I - z;zn)

Furthermore,
—1
Td, = P, { (I - Agzg) BXHC_ (I — Z:A,) ™" Z;;A,T}

- B {(I - Agzg)

and since B} and C_ are block diagonal, it follows from (26) that

'BrHC. ((I —ZFA)T - I)}

A:ZTZ, —TA, = By {(I — A7) B;Hc_} —- P {Bj‘rHC_ (I - Z,’;A,r)_l}
= (Pg {(I — Az B;H}) C_-BiPR {HC, (I- Z;A,T)*l}
=B*C - B.Cy,

and this completes the proof. O

It will be shown in Section 6 that the problem IP always has a solution. Let us
denote by IP, the problem IP to which has been added the norm constraint
(28) (H, H)xmo. © Tr (H*H) <
for some preassigned number v > 0. Because of the Hilbert space structure, we will
see that there exists a unique solution Hp,;, of the problem IP with minimal norm.
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The value ||Hmin||las (as well as Hpyi, itself) depends only on the problem data (15)
and the condition v > ||Hmin||us is necessary and sufficient for the problem IP. to
be solvable. The explicit formula for Hpy;, and a description of all solutions of the
problem IP. will be given in Section 6.

We denote by IPg(YRr) the right—sided problem (20) (i.e., when conditions (21)
and (22) are not in force) to which has been added the “matrix norm” constraint

(29) {H, H} ™ po(HH*) < Tpy
for some preassigned nonnegative matrix Y € D™*™.

Similarly, we denote by IP (Y1) the left-sided problem (21) to which has been
added the matrix “norm” constraint

(30) [H, H % po(H*H) < Yy,
for some preassigned nonnegative matrix Yy € DF*k,

It turns out that the constraints (29) and (30) do not suit the left—sided condition
(21) and the right-sided condition (20) respectively. That is why we consider a two—
sided problem only under the constraint (28) which on account of

(H, Hy=Tr {H, H} =Tr [H, H]
suits to left conditions as well as to right ones.

3. Statement of the main result and first formulas. The main result of
the paper is now stated:
THEOREM 3.1. The set of all solutions of Problem IP is given by

(31) H = Hpyin + ®Lh®R

where Hypin € U™*F is the minimal Hilbert-Schmidt norm solution, O € Yk+nr)xk
and Op € U*"H1L) are two partial isometries with upper triangular block entries,
built from the interpolation data and h is a free parameter from UY(mTne)x(k+nr),

In this section we construct explicitly ©7, and Og (see formulas (43) and (42)),
while the formula for H;, will be given in Section 7. We begin with preliminary
lemmas.

LEMMA 3.2. The Stein equations

(32) IPR - A;Z,TIPRZ;A,T - C’iC_ and IPL - AZZEIPLZCAC - BiB-i-

are uniquely solvable, and that their solutions are the block diagonal matrices given
by

3

Pr= Y (A Z,)C*C_(ZA,) € D"r*"r

<.
Il
=}

3
i

Py =) (A;Z;)YBiBy(Z:Ac) € Dmv*me,

<
Il
=}



ELA

40 Daniel Alpay and Vladimir Bolotnikov

Conditions (16) and (17) are necessary and sufficient that the operators Pr and Py,
are boundedly invertible.

The proof is straightforward and will be omitted.

LEMMA 3.3. Let IPg and IPL are solutions of the Stein equations (32). Then the
matrices

(33) Qr=C_(I—-Z:A:) " (I—-Z:Z)PR I — Z;Zx) (I — AL Zr) " C,

- " 1 N 1 N
(34) TR _ ZTI'OZﬂ' g :| _ ZﬁPéZﬂAﬂ ]Pli%l (A:.Zﬁ]PIZ{Z;, Ci) ,
— * — ) * * 7x\— 1 %
(35) Qp =By (I—ZA) ™ (I ZZOWPLH T - Ze28) (T — AL7;) ™' B,
- 1 T
YA 0 P2 — * r7% i *
69 TL=| ] - chpéfcflc Pyt (ACZCJP;ZC, B+)

are orthogonal projections.
Proof. The matrices defined in (33)—(36) are evidently selfadjoint. To show that
Qg is a projection, we start with the equality

(I—A:Z)" " C*C_(I—Z:A,)"' =
(37) =Pr(I - Z*A) " + (I — A% Z,) " A2 Z, Py,

which is an immediate consequence of the first equation in (32). It follows from (33)
that

(38) Qr=C_ (I-Z;A) "' LI - ArZ,)" C_,
where, on account of (37),
L=(I-Z )P (I — Z:Z,) {]PR (I—Z:A) " 4 (I — A2z A;Z,T]PR}
X(I = Z:Z PR (I — Z:Zy).

Taking advantage of (12) (with D = IP;') and of (11) and (13) (with D = A,)
successively, we get

L=(-2"2,)Pg {]PR (I—Z:A) "+ (I - A2 Zy) ! A;Z,T]PR} P - Z:7Z,)
= (1= Z;2) {1 = Z;A0) 7 PR + PR (1= A3 22) ™ A5 2} (1 = 23 2,)
= (I - Z; Za)Pg (I = Z3 Zx),

which together with (38) leads to Q% = Qg. To show that Tg is a projection, we
first note that

1
Z L7 A,

(39) Pyt (43 2,P57;, C7) P! = Pyl
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Indeed, making use of (32), we transform the left hand side as
A Z PR 2 2 PLZE A + C O =g — A Z,PE(I — Z5 Z)PLZE A,
and obtain (39), since in view of (11),
(40) ZPE( — Z:Zy) = Zu(I — Z2Z5)P2 = 0.
The equality T2 = Tx follows easily from (39) and relations

Z,PLZ* A,
C

Z,PLZ*A,
C

(Zﬂ—Z;)2 — Zﬂ—Z;, |: Z7rZﬂ- 0 :|

0 Iy,

which are consequences of (12). Equalities Q% = Qr and T? = T, are verified quite
similarly with the help of (11)—(14) and

(I—A:Z;) ' BiBy (I—ZA) ™ =P (I - ZcA) ™ +
(41) + (1 - Azz:) ™ ArzzPy

which in turn, follows immediately from the second equation in (32). O
LEMMA 3.4. The matrices O € CFR)>*k 4ng @, € CP*™HL) defined by

0 }Jr Z,P% (I — Z2A,)

(42) Or = o

-1 * —1 *
I Py (I—AZ)"

and
(43) ©r=[0, In]+Bs(I-ZcA) "By ((I-4:2) P; 2, -B})

respectively, are block upper triangular and satisfy

(44) OrOr = I — Qg, OrO% = Tk,
and
(45) 001 =1, —Qr, 010 =Ty,

where Qr, Tr, Qr and Ty, are the orthogonal projections defined in (33)—(36).

Proof. The upper triangular structure of © g and 0Of follows immediately from
their definitions (42) and (43). The upper triangular structure here is meant in the
sense of Remark 2.1: according to partitions (10), O and ©f are (t + 1) x ¢ and
s X (s + 1) block matrices, respectively, and each block entry is an upper triangular
matrix in a usual sense. The verification of (44) and (45) is quite straightforward: by
(42),

(46) OROr =1 —C_ (I - Z:A,) " PRIMIPR! (I — AXZ,) " C*,
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where
M =Py (I — Z*A,) +
(I = A5 Z) PR — (I — A Z) P2 Z, P2 (I — Z5Ay) — CEC.
In view of (32),
M = (I — A% Z,)Py(I — Z:Z)P2 (I — Z: A,)
Taking advantage of the first two relations in (12) (with D = ]Pzé{% we come to
M = (I - Z;Zx)Pr(I — Z3 Zx),

which being substituted into (46) leads to the first equality in (44). Furthermore, on
account of (42),

0rO} = {8 0 ] " { L }(I—Z;AM}P; (- a2z whzz, 7]

+| ZePRU ~Z34x) | pt(1— 4 2,)7 (0, C*)
4| ZePRU = Z3Ax) | ot (1 Arz,) " CrO_ (I - Z:A.) "
(47) <Pt [(1 = 452y) P3ZE, —cr].

Substituting (37) into the third term on the right hand side of (47) and taking into
account (34), we get

ORO% = { 0 0 >+ Z. P (I — Z: Ay)

1
01 Py (22, 0)

ZTI' * 1 * *
[ . ]JPR (- Az 2 ®hz;, —C ]
1
Z:Pp, (IC Zede) |t [ - A3 20 P27, —C7 ]
[ Z:Z: 0] | ZPRZEA. | ot (4e g s o
_ { ST } i? Py, (AWZ,T]PRZW, C_),

which proves the second equality in (44). The equalities (45) are verified in much the
same way with help of (43) and (41). O

REMARK 3.5. The matrices Or and O defined via (42) and (43) admit the
representations

Z. P2 (I —A2Z,)" ¢

(48) Or =Tgr
I

)

(49) 01 = (B (- ZcAg) ' P12, 1) Ty
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Proof. In view of (34) and (48),

Z P2 (I—AZ,)" ¢

T
R I

Z. P2 (I—A2Z,)"' C*
I

1

_ P (A;ZW]PI%Z;ZW]P;Z (I—AZ) "+ I) o

ZP27"A,
C

By (40), Z,P32* Z, = Z,IP% and therefore,

_1 B
Tp | ZPr* (I~ A3 2) 10:]
I
_| PRt -z e | | ZaPRZiAn |- arz ) o
Ik C_ R THT —
1
k‘ - —

which proves (48). The representation (49) is verified in much the same way with
help of (36) and (43). O

4. Right-sided problem. In this section we describe all H € Y™** satisfying
condition (20). We first exhibit a particular solution, which will be shown in the
sequel to be of the minimal Hilbert—Schmidt norm.

LEMMA 4.1. Let Hp be the block upper triangular matriz given by

(50) Hrp=C, PRt (I - A*Z,) ' C*.
Then Hpg satisfies the condition (20) and

(51) {Hg, Hp} = C P3'Cx, (Hgr, Hg) = Tr C.PR'Cr.

Proof. In view of (37),

HrC (I—Z:As) ' =C PR (I — AfZy) 1 C*C (I — ZFAs)

(52) =C(I-Z:A) "+ C PR (I - AL Z,) " AL Z, PR,
and since
(53) CiWPR' (I - A2 Z) AL Z,Pr e U™ Z,,

condition (23) (which is equivalent to (20) by Corollary 2.5) follows from (52). Fur-
thermore, multiplying (52) by ]Pj;ile‘r on the right we get

(54) HgHyp=Cy (I — ZiA) PRI+ CLIPR! (I — AL Zy) ™ ALZ,C.
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By (53), the second term on the right hand side of (54) is strictly block upper trian-
gular while the first one is upper triangular and thus,

{Hr, He} ™ po(HrHp) = po {C+ (1 - 2:4,) 7' PRICL} = CLPRICE,

which proves the first equality in (51). The second equality is an immediate conse-
quence of the first one. O
Note that every H € U™*F satisfying the condition (20) is of the form

(55) H=Hr+ V9
where U is an element from U/™** such that

(56) o {\pc_ (I - Z;Aﬁ)’l} = 0.

LEMMA 4.2. The matriz ¥ belongs to U™ * and satisfies (56) if and only if it
admits a representation

(57) ¥ = HOpg

where O is given by (42) and H € Ym>(k+nr).
Proof. Let H be in Y™*(*+7r)™ and let ¥ be of the form (57). Since O is block
upper triangular, ¥ € Y™**. Furthermore, in view of (42) and (37),

OrC_ (I —Z:A:) !

-([2]+

:[ 0 }(I—Z*An)1

Z, P2 (I — Z: A,)
—C._

PRt (1 — A Z) ™ 0j> C_(I—2Z:A)""

T

Z, P2 (I — Z:A,)

™

-C_

((I _ZrA) VPR (I - ANZy) ! A;Z,r]PR)

Z,P2 (I — 75 Ay)

_|_
-C_

1
Z%Piz PR (I - ALZ,) " A2 Z,Pp.

It is easily seen from the last equality that the matrix @ gC_ (I — Z;*rA,,)_1 is strictly
block upper triangular and therefore

po {wC_(1- 2347} = {HORC_ (1 - Z:4) '} =0

for every element H € (/(k+nr)xm.
Conversely, let ¥ belongs to U™** and satisfy (56). By Corollary 2.5,

(58) q {\I/C, (I - Z;A,T)*l} -0
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which means that the matrix WC_ (I — Z*A,)"" is strictly block upper triangular
and therefore

VO_ (I - Z*A)" (I -2 7Z,) = 0.

It follows from the last relation and from (33) that ¥Qg = 0, which together with
the first equality in (44) implies that

U040k =T (I - Qp) =

The latter equality means that ¥ admits a representation (57) with H= YOr.
It remains to note that by (42),

A=9{0 1)+C (I- 240 " Py (I - 4;2) P3Z", ~c*)}

which implies, in view of (58), that H is block upper triangular: H € Ym*(*+nr) 0
Using (55) and Lemma 4.2 we obtain the following result.
THEOREM 4.3. All H € U™** which satisfy (20) are parametrized by the formula

(59) H:HR+ﬁ@R

where Hy, and O are given by (50) and (42), respectively and H is a free parameter
from Y (ktnr),

Now we can describe the set of all solutions of the problem IPg(Yg).

LEMMA 4.4. The representation (59) is orthogonal: for every H € Y™ (F+nr)

(60) {HOg, Hp} =0 and (HOg, Hg) =0.

1
Proof. It follows from (36) that TR{ Z""Ipéz‘ltA"" ] = 0. Making use of this
equality together with (37), (48) and (50) we obtain

Ontly = Tr | Z7Pr" =42 C* 01— g2y T wgic

I,
o [ 2Pt {PrZi A (1 - Z240) 7" + (1 - 4527 PR} PR Oy
= 1R
I C_ (I-2Z:A,) '"PRle
B 1
5 % * 7 -1 *

_1 " 1 "
=Tg Z“IPR2 (I _OAﬂZﬁ) C+ ] .

It is readily seen from (34) that the projection Tg is block diagonal. Then it follows
from the last equatlon that OrHy, is strlctly block upper triangular. Thus, for ev-
ery upper triangular H the matrix HO rHE is strictly block upper triangular and



ELA

46 Daniel Alpay and Vladimir Bolotnikov
therefore,
{ﬁl@R, HR} = 1o (?I@RH;;) -0
which in turn, implies
(I/‘\I@R, HR> =Tr (I/‘\I@RH;_}) =0
and finishes the proof of the lemma. O
THEOREM 4.5. All solutions H of the problem IP r(Tg) are parametrized by the
formula (59) the parameter H varies in U E+nr) and is subject to

(61) {ﬁTR, fITR} <Yr-C,PLCY,

where Tg is the orthogonal projection defined in (36).
Proof. In view of (44),

{?I@R, H@R} = o (ﬁl@Re)};H*) — (?ITR?I*) - {?ITR, ?ITR}

which together with (51), (59) and (60) leads to

(H, H} = {HR+H@R, HR+ﬁ@R} (Hp, Hg) + {?I@R, H@R}

CiPR'Cr + {ﬁTR, ﬁTR} ;

and thus, the matrix H of the form (59) satisfies (29) if and only if the corresponding
parameter H satisfies (61). O

5. Left-sided problem. In this section we describe all H € U™** satisfying
the condition (21).
LeEMMA 5.1. Let Hy, be the block upper triangular matrix given by

(62) Hp =By (I —ZA) ' PIB”.
Then Hj, satisfies the condition (21) and
(63) [Hy, H )= B P;'B*, (Hp, H) = Tt B_.IP,'B*.
Proof. Making use of (62) and (41) we get
* —1 —1 — % ) —1 * r7%
(64) HyBy (I — ZcAc)™ = B_ (I - ZcAe)™ + B_IPp (I - Apz8) ™  Azz:Py,

and since the second term on the right hand side in the latter equality is strictly block
lower triangular, the condition (21) follows from (64). Furthermore, multiplying (64)
by ]PZlBi from the right we get

HiHy =B_ (I - ZcA) " P 'B: + BLP; ' (I - AtZ}) ' ALZ!Br,
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which implies
[H, Hi) = po (HHz) = po { B (I~ ZeA) ™ P B* } = B} B,

and in particular the second equality in (63) is in force. O

It will be shown that Hj has minimal Hilbert-Schmidt norm among all Z/™**—
solutions of the problem IP. The rest is similar to considerations from the previous
section: every H € U™** satisfying the condition (21) is of the form

(65) H=H;,+ 9
where ¥ is an element from 4/™** such that
(66) po {W B (- 247"} =0,

LEMMA 5.2. The matriz ¥ belongs to U™** and satisfies (66) if and only if it
admits a representation

(67) U =0,H

where Oy is given by (43) and H € Y(m+ne)xk,
Proof. Let H be in Y(+72)%k and let ¥ be of the form (67). Since O is block
upper triangular, ¥ € Y™**. Furthermore, in view of (43) and (41),
O3B (I - ZcAo) !
1
_ [ 0 } L | ZEPE (- ZeA)
Ik —B+
1
25} (1 - 2 A
-B,

—1
P! (I - Agzg) Bj;) By (I— ZeAo)™

1
*TP 2 1
= | %P+ P (1-A4pzg)  ALZEP,

Therefore, the matrix O3 By (I — Z¢A¢) ™" is strictly block lower triangular and thus,
o {xIJ*B+ (I - ZCAC)_I} = po {I?[*@;B+ (I - ZCAC)_l} =0

for every block upper triangular H € y/(m+nz)xk,
Conversely, let ¥ belongs to U™** and satisfy (66). By Corollary 2.5,

P {‘I’*B+ (I - ZcAc)fl} =0

and thus, the operator ¥*B, (I — ZCAC)_1 is strictly block lower triangular. There-
fore

By (1= ZcAq) " (I =278 =0
and now it follows from (35) that ¥*Qy, = 0. In view of (45),
U*0,07 =U*(1 -Qr) = ¥*.
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Taking adjoints in the last equality we conclude that ¥ admits a representation (67)
with H := 03 ¥, which belongs to //(PTme) <k by (43). O

Using (65) and Lemma 5.2 we obtain the following result.

THEOREM 5.3. All H € U™** which satisfy (21) are parameterized by the formula

(68) H=H;+0.H

where Hy, and ©y, are given by (62) and (43) respectively and Hisa parameter from
Z/{(ernL)Xk'

Now we describe the set of all solutions of the problem IP,(Y}).

LEMMA 5.4. The representation (68) is orthogonal: for every H € Ulm+ne)xk

(69) ©OLH, H]=0 and (O,H, H.) =0.

Proof. Tt follows from (36) that (AZZE]P%ZC, B_T_) T, = 0. Taking advantage
of the last equality together with (41), (49) and (62) we get

-1 1

H;©p= B_P}' (I—Agzg) B: (B+ (I—ZcAd) ' P2 2, Im) T,
—1

= B (1-4:2;) (4zePize, BY) Ty

_1
+B_(I - Z:A) ' P 2 Z¢ (I, 0) T,

1

= B- (I_ ZCAC)_I P, =7 (InL7 O)TL

which shows (since the projection Ty is block diagonal) that Hj ©p is strictly block

upper triangular. Therefore, for every block upper triangular H the matrix H; © LH
is also strictly block upper triangular and hence,

OLH, Hy] = po (HiOLH) = 0.
In particular,
(OrH, Hy)=Tr (H;OH) =0,

which ends the proof. O
THEOREM 5.5. All solutions H of the problem IP, (Y1) are parameterized by
the formula (68) the parameter H varies in U™ t"0)*k and is subject to

(70) [TLH, TLH] <T,-B_P;'B".
Proof. In view of (44),
[eLfl, @Lfl] — o (ﬁ*@z@Lﬁ) — o (fI*TLfI) - [TLfI, TLI?[}
which together with (63), (68) and (69) leads to

(H, H] = [Hy+OLH, H +0,H| = [Hy, H)+ 0,8, 0,1]
= B P;'B"+|T,H, T, H|
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and thus, the matrix H of the form (68) satisfies (30) if and only if the corresponding
parameter H satisfies (70). O

6. Solutions of the two—sided problem. Using the results from the two pre-
vious sections we now describe the set of all solutions of problems IP and IP,. By
Theorem 4.3 all operators H € U™** satisfying the condition (20) are given by the
formula (59). It is possible to restrict the set of parameters Hin (59) in such way
that the operator H of the form (59) would satisfy also (21) and (22). We begin with
the following auxiliary result; for the proof see [2, Lemma 6.1].

LEMMA 6.1. For every choice of matrices ® € U™ ** and U € Y"=*™ it holds
that

P {(1-azp) " ew} = p {(1 - Az25) ™" L}

—1
where L € D" s defined by L = P, {(I - A:7;) <I>}

LEMMA 6.2. A matriz H of the form (59) belongs to U™** and satisfies condi-
tions (21), (22) if and only if the corresponding parameter H belongs to U™*(k+nr)
and satisfies the condition

(71) po {TH*By (1= ZcA) ™} = B-

where B_ € Draxne s defined by

~

_1
(72) B -1y | ZPRZT

B_

Proof. Let H be of the form (59). Multiplying (59) by ©% on the right and using
(44) we get

HTp = (H — Hg) O%.
Making use of (48), we rewrite the last equality as
(73) HTp=H(C (I-2Z;A;)" P77, 1) Tr
- (C+ (I— Z:A.) " PR 27, 0) Th.

Since Tg is block diagonal, the second term on the right hand side in (73) is strictly
block lower triangular and therefore,

Py {(1- A7) ' By (C4 (1= Z;40) ' PP Z;, 0) Ta} =0,
Then it follows from (73) that
Py (I-A:z;) ' BiHTR =
(74) =Py (I- A12) ' BLH (C (I - Z;A7) ' PR* 25, 1) T



ELA

50 Daniel Alpay and Vladimir Bolotnikov

Suppose that H satisfies (22) and the second equality from (26) (which is equivalent
—1 _1
to (21) by Remark 2.6). Then, as IPp> Z* = Z*Z, P> Z*%, it follows from (74) that

Py {(1-4:z;) " By AT}
- [PO {(I —A:7;) ' BLH (C_ (I— 75 A" 222, P2 7%, Ik) }] Tr
= (rz.P;* 7;, B*) T

Taking adjoints in the last equality, using Remark 2.6 and (72), we get (71):

~

2P 2T | _ 5
5 _.

po {TRH*By (1= ZA) ™'} = Tg

Conversely, let H satisfy (71) and let H be of the form (59). Then

(75) R {(1-A:2) " BiH} =P {(1- A7) B (Hp+ HOg)}.
Applying Lemma 6.1 to & = Bj‘rfl and ¥ = Op and taking into account (71) we
obtain

(76) Py {(1-A:z) " BiOR} =Ry {(1 - 4:2;) ' BzOR} .

It follows from (42), (48) and (72), that

ZPRE (I— Az~ e

B*0p = (Fzﬁlpjz;;, Bi) Tp .
k

ZPRE (I — A Z) " ¢

= (rz.p;*z;, B") .
k

ZPR? (I — AzZ) " C*

— (Pdr + BC ) P! (432, P57;, C7) .
k

(77) =B +{T(Zs — A;) = B*C_} PRt (I — AL Z,) ' C*.
Furthermore, in view of (50),
BiHp =BiC,Py' (I - ALZ,) ' C*

which being added to (77) leads, on account of (19), to

BiHgp+B*Op =

= B* +{['(Zy — A;) = BC_ + B1.C, Y PR (1 — A*Z,) " C=

=B* +{TZ, — AL Z;TZ } PRt (I - A2 Z,) " C*

(718) =B+ (I - A Z})TZ PR} (I - ALZ,) " C*.
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Substituting (76) into (75) and using (78) we obtain
P {(1-4:2;) " Bym | = R {(1- A:2) 7 (BiHR + B20R) }
— P, {([ — A7) B+ BT Z PR (1 — A2 Z,) 7" Cj} .

Since the matrix FZ,F]P]_%1 (I - Aj;Z,T)_1 C* s strictly block upper triangular,
the second term on the right hand side in the last equality equals to zero and thus,

po{(1-az) " By =pr {(1- 4:25) 7 By} = B*

which is equivalent to (21), by Remark 2.6.
The verification of (22) is done in much the same way: in view of (59),

P { (I - Agzg)_l BIHC (I - Z:Ag) "t Z;;}
™ -y { (I - Ag_zg)fl B: (HR + ﬁl@R) C_(I—2Z:A;)7" Z;;} .

Applying Lemma 6.1 to & = B_T_ﬁ and ¥ =0rC_ (I — Z;*rA,,)f1 Z%* (which is strictly
block lower triangular) and taking into account (71) we obtain
* * -1 * 7 * —1 *
Py {(1 = A:2¢) ™" BLHORC- (I - Z;45)7" 73}
=P {(1-4:7;) ' BrOnC (I-7;4,)7 73}
which being substituted to (79), leads to
Py { (I - Agzg) BLHC_ (I — ZrAy) Z;}
-1 N =
=P {(I — AEZE) (B_T_HR + Bi@R) C_(I—-2Z:A;) Z;*r} .
Upon substituting (78) into this equality and using (37) we get
% 7\ —1 * * —1 *
Py {(1=A:2) 7 BiHO- (1 - Z2;4,) " 73}
= {(1- AZZE)’l BC (I-2:40)7 22}
+P, {r (I-A*Z)" 00 (I—-Z5A,)~" z;;}

= {(1- A*ZC) 'B

B C_ (- 7:4:)7" 7;}
+P, {FZ,T (I—Z:A) " Z;} + Py {I‘Z,,]P;il (I- A7) A;Z,,]PR} .
Since the matrices

= Agzgf1 B*C_(I—Z:*A) ™" ZF and TZ. PRl (I — A2Z,)" AL Z, Py

™
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are respectively, strictly block lower and block upper triangular, the first and the
third terms on the right hand side in the last equality are equal to zero and by (18),

P {(I —A:77) ' BIHC (I-2Z:A.)7" Z;;} =Py {FZ,T (I—A,Z5)7" Z;;}
—TZ,7* =T.

Therefore H satisfies the condition (22) which ends the proof of the lemma. O
According to Theorem 4.3, all operators H € Y ("rtk)xm which satisfy (71) are
of the form

(80) ﬁ = I‘/fL +Orh
where O, is defined by (43),
(81) Hy =By (I ZcA) ™' P! B:

and h is an arbitrary operator from {(kt7r)x(m+nL) GQince Tg is the projection, it
follows from (72) that

(82) HyTr = Hy.

Substituting (80) into (59) we come to the following theorem.
THEOREM 6.3. All solutions H of the problem IP are parameterized by the
formula

(83) H:HR-FI/{;,@R-F@Lh@R

where Hp, L/T\L, Oy, and O are block upper triangular matrices defined by (50), (81),
(43) and (42) respectively and h is a free parameter from Yk+nr)>*(mtnL)
Note that equation (83) is in fact (31) with

(84) Huin = Hr + H O,
According to Lemma 5.1 and in view of (82),
(H,Tg, H'Tg) = (H,, H)) = Tr B_LIP;'B*

while Lemmas 4.4 and 5.4 ensure that the representation (83) is orthogonal with
respect to the inner product (5). Due to (44) and (45),

(H, H) =(Hg, Hg) + <ﬁLTR, ﬁLTR) + (T hTg, T hTRg)
= Tr C4IPR'CL + Tr B_LP;'B* + (T hTg, TLhTg)

This equality leads to the description of all the solutions to the problem IP. (i.e.,
under the additional norm constraint (28).
THEOREM 6.4. (i) The problem IP. is solvable if and only if

Tr C4IPL'C% + Tr B_IP' B <.
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i1) All solutions of the problem IP., are parameterized by the formula (83) when the
¥
parameter b € YUK+tnrR)X(mtne) 4o gych that

(TLhTr, TohTgR) <v—Tr C4PR'CE — Tr BLIPL'B* =y — || Huin||his-

Theorem 3.1 is clearly a consequence of these two last theorems.

7. The minimal norm solution. It was shown in the previous section that
the minimal norm solution H,,, of the problem IP is given by the formula (84)
and contains as an additive term the minimal norm solution Hg of the right—sided
problem (20). Of course, ||Hmin|/us is not less than ||Hg||lus and their difference is
determined by the supplementary left—sided problem (71). From symmetry arguments
the presence of the minimal norm solution Hj, of the left—sided problem (21) as a term
in the additive representation of H,;, should be expected.

LEMMA 7.1. The matriz Hy;, defined by (84) can be represented as

(85) Hmin = HL + G)L?IR

where Hy, and Oy, are given by (62) and (43) respectively,

(86) Hp=C,Pp' (I - A Z,) ' C*
and where
1
(87) G =71, | %P T |
Cy

Proof. First we note that the second equality in (87) follows immediately from
(36). As a consequence of (87) and (49) we get

—1
2P, T2,
Ct

-1 —1 * rzk *
= Cy + By (I - ZcA) ™ P {(I — AZZ8) T Z, — BLCL )

~ _1
0,0, = (B+ (I—Z:A) " P2 2, Im) T,

Multiplying this equality by ]P]_;i1 (I - Aj;Z,T)_1 C* on the right and taking into
account (50), (86), we obtain
(58) OLHp = Hp+ By (I-ZcA) Py {(1-4:2¢) T2, - BiCy )

xIPRt (I — A Z,)~" O
Furthermore, multiplying the equality (77) by By (I — ZCAC)_I P,' from the left
and taking into account (62), (81), we get

HiOp=Hi+ By (I —ZcA) " P;H{T (Z, — A;) — B2C_)}

89
(89) X Z PRt Z, (I — A% Z,) " C*.
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Subtracting this equality from (88) and using (19), we get
@L?IR —ﬁLG)R = HR - HL

which means that (84) and (85) define the same operator Hpyi,. O
It follows from (84) and (89) that Hpn can be represented as

(90) Huin(2) = Hp + He + Hg
where Hy,, Hg are given by (62), (50) respectively and
Ho =By (I-ZcA) ' P T (Ze — Ar) = BXC_} PRt (I — AL Zx) 7' C*.
The representation (90) is not orthogonal; nevertheless it turns out that
H; | (Hc + Hg) and (Hy, + Hc) L Hg.
Indeed, in view of (88) and (89),
He+Hp=H©p,  Hp+Hc=0.Hg

and the claimed orthogonalities hold by Lemmas 4.4 and 5.4.
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