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Abstract. Let M =
(

A B
C D

)

be a 2 × 2 block matrix, where ABC = 0 and either DC = 0 or

BD = 0. This paper gives the explicit representations of MD in terms of A,B, C,D,AD , (BC)D

and DD .

Key words. Block matrix, Drazin inverse, Index.

AMS subject classifications. 15A09, 65F20.

1. Introduction.

Let A be a complex square matrix. The Drazin inverse (see [1]) of A is the matrix

AD satisfying

Al+1AD = Al, ADAAD = AD, AAD = ADA for all integers l ≥ k, (1.1)

where k = Ind(A) is the index of A, the smallest nonnegative integer such that

rank(Ak) = rank(Ak+1). Note that the definition of the Drazin inverse is equivalent

to the existence a nonnegative integer l′ such that

Al′+1AD = Al′ , ADAAD = AD, AAD = ADA.

Applications of the Drazin inverse to singular differential equations and singular

difference equations, to Markov chains and iterative methods, to structured matrices,

and to perturbation bounds for the relative eigenvalue problem can be found in [1, 2,

3, 4, 5, 6, 7].

In 1977, Meyer (see [8]) gave the formula of the Drazin inverse of complex block

matrix (A B
0 C ), with A and C being square. Then in 1979, Campbell and Meyer

proposed an open problem (see [1]) to find an explicit representation of the Drazin

inverse of block matrix (A B
C D ), with A and D being square, in terms of A, B, C and
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D. Because of the difficulty of this problem, there are some results under some special

conditions (see [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]).

It is known that AD is existent and unique (see [1, 2]). Throughout this paper,

Aπ = I − AAD, s(i) and i%2 denote the projection on the kernel of Ak along the

range of Ak, the integer part of i/2 and the remainder of i divided by 2, respectively,

where I is the identity matrix, and we assume that
∑k

i=j = 0 if k < j and A0 = I for

any square matrix A. Here we state a result given in [10, Theorem 2.1] which will be

used to prove our main results:

Let A and B be complex square matrices of the same size, Ind(A) = iA, Ind(B) =

iB. If AB = 0, then

(A+B)D =

k
∑

i=0

BπBi
(

AD
)i+1

+

k
∑

i=0

(

BD
)i+1

AiAπ, (1.2)

where max{Ind(A), Ind(B)} ≤ k ≤ Ind(A) + Ind(B). By the definition of the

Drazin inverse, we have AπAj = AjAπ = 0, if j ≥ Ind(A), so (1.2) is equivalent to

[11, Corollary2.12]:

(A+B)D =

iB−1
∑

i=0

BπBi
(

AD
)i+1

+

iA−1
∑

i=0

(

BD
)i+1

AiAπ. (1.3)

Let M = (A B
C D ) be a 2× 2 block matrix, where ABC = 0 and either DC = 0 or

BD = 0. In this paper, we mainly give the explicit representations of MD in terms

of A,B,C,D,AD , (BC)D and DD. The results about the representation of (A B
C D )

D

under special conditions below are all corollaries of the main results of this paper: in

[8, Theorem3.2], C = 0; in [13, Theorem5.3], BC = BD = DC = 0.

2. Main results.

Theorem 2.1. Let M =

(

A B

C 0

)

be a complex block matrix, with A and 0

being square, Ind(A) = iA, Ind(BC) = iBC. If ABC = 0, then

(

MD
)l

=

(

U(l) V (l)B

CU(l + 1) CV (l + 1)B

)

, (2.1)
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for all integers l ≥ 1,where

U(l) =X(AD)l−1 −

s(l−1)
∑

k=1

(

(BC)D
)k

(AD)l−2k

+
(

(BC)D
)s(l−1)

Y AAl%2 +
(

(BC)D
)s(l+1)

Al%2Aπ,

V (l) =X(AD)l −

s(l−1)
∑

k=1

(

(BC)D
)k

(AD)l+1−2k

+
(

(BC)D
)s(l−1)

Y Al%2 + (−1)l+1
(

(BC)D
)s(l+1)

(Aπ)l%2(AD)(l+1)%2,

X =

iBC−1
∑

i=0

(BC)π(BC)i(AD)2i+1,

Y =

s(iA)
∑

i=1

((BC)D)i+1AπA2i−1.

Proof. We prove G =

(

U(1) V (1)B

CU(2) CV (2)B

)

= MD by the definition of the

Drazin inverse.

First, we prove MG = GM holds.

Let

MG =

(

AU(1) +BCU(2) AV (1)B +BCV (2)B

CU(1) CV (1)B

)

and

GM =

(

U(1)A+ V (1)BC U(1)B

CU(2)A+ CV (2)BC CU(2)B

)

.

From ABC = 0, we have ADBC = (AD)2ABC = 0, similarly we have A(BC)D =

0 and AD(BC)D = 0. Further we have AX = AAD, AY = 0, XAAD = X ,

Y BC = 0, AU(1) = A(X + Y A2 + (BC)DAAπ) = AAD, V (1)BC = (XAD +

Y A+ (BC)DAπ)BC = BC(BC)D , AV (1) = A(XAD + Y A+ (BC)DAπ) = AD and

V (2)BC = (X(AD)2 + Y − (BC)DAD)BC = 0. Using these equalities, we get
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AU(1) +BCU(2) =AAD +BCXAD +BCY A+BC(BC)DAπ

=

iBC−1
∑

i=1

(BC)π(BC)i(AD)2i +BCY A+AAD +BC(BC)DAπ

=XA+BCY A+BC(BC)D,

U(1)A+ V (1)BC =XA+ Y A3 + (BC)DA2Aπ +BC(BC)D

=XA+

s(iA)
∑

i=1

((BC)D)iAπA2i +BC(BC)D

=XA+BCY A+BC(BC)D.

AV (1)B +BCV (2)B =ADB +BCX(AD)2B +BCY B −BC(BC)DADB

=(BC)πADB +

iBC−1
∑

i=1

(BC)π(BC)i(AD)2i+1B +BCY B

=

iBC−1
∑

i=0

(BC)π(BC)i(AD)2i+1B +BCY B

=XB +BCY B,

U(1)B =XB + Y A2B + (BC)DAAπB

=XB +

s(iA)
∑

i=2

((BC)D)iAπA2i−1B + (BC)DAAπB

=XB +

s(iA)
∑

i=1

((BC)D)iAπA2i−1B

=XB +BCY B.

From XAAD = X , V (2)BC = 0 and V (1) = U(2), we get

CU(1) = CX + CY A2 + C(BC)DAAπ = CU(2)A+ CV (2)BC

and

CV (1)B = CU(2)B = CXADB + CY AB + C(BC)DAπB.

Thus MG = GM .

Second, we prove (GM)G = G holds.
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We have got AU(1) = AAD, XAAD = X and AV (1) = AD before. It is easy

to get Y AD = 0, BC(BC)DU(1) = BC(BC)D(X + Y A2 + (BC)DAAπ) = Y A2 +

(BC)DAAπ , XBC = 0, Y BC = 0, XU(1) = X(X + Y A2 + (BC)DAAπ) = XAD,

BC(BC)DV (1) = Y A+(BC)DAπ, XV (1) = X(XAD+Y A+(BC)DAπ) = X(AD)2

and BC(BC)DV (2) = BC(BC)D(X(AD)2+Y −(BC)DAD) = Y −(BC)DAD. Using

these equalities we can get

(GM)G =

(

XA+BCY A+BC(BC)D XB +BCY B

CX + CY A2 + C(BC)DAAπ CXADB + CY AB + C(BC)DAπB

)

(

U(1) V (1)B

CU(2) CV (2)B

)

=

(

X + Y A2 + (BC)DAAπ
(

XAD + BC(BC)DV (1)
)

B

C
(

XAD +BC(BC)DU(2)
)

C
(

X(AD)2 +BC(BC)DV (2)
)

B

)

=

(

U(1) V (1)B

CU(2) CV (2)B

)

=G.

Last, we prove there exists a nonnegative integers l′ such that M l′+1G = M l′ .

It is easy to get

(

A B

C 0

)l′

=











s(l′)
∑

i=0

(BC)iAl′−2i
s(l′−1)
∑

i=0

(BC)iAl′−1−2iB

s(l′+1)−1
∑

i=0

C(BC)iAl′−1−2i
s(l′)−1
∑

i=0

C(BC)iAl′−2−2iB











, (2.2)

for all positive integers l′.

Here we only prove that there exists an l′ such that (M l′+1G)11 = (M l′)11,

since the proofs of (M l′+1G)12 = (M l′)12, (M
l′+1G)21 = (M l′)21 and (M l′+1G)22 =

(M l′)22 are similar.

From AU(1) = AAD and ABC = 0, we have

(M l′+1G)11 =

s(l′+1)
∑

i=0

(BC)iAl′+1−2iU(1) +

s(l′)
∑

i=0

(BC)iAl′−2iBCU(2)

=

s(l′+1)−1
∑

i=0

(BC)iAl′+1−2iAD + (BC)s(l
′+1)Al′+1−2s(l′+1)U(1)

+
1 + (−1)l

′

2
(BC)s(l

′)Al′−2s(l′)BCU(2).
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If l′ is odd, we can prove (M l′+1G)11 = (M l′)11 holds when l′ ≥ 2s(iA)+2iBC+1;

if l′ is even, we can prove (M l′+1G)11 = (M l′)11 holds when l′ ≥ 2s(iA) + 2iBC . So

(M l′+1G)11 = (M l′)11 holds for all l′ ≥ 2s(iA)+ 2iBC . Without loss of generality, we

prove the case l′ = 2s(iA) + 2iBC + 1:

(M l′+1G)11 =

(l′−1)/2
∑

i=0

(BC)iAl′+1−2iAD + (BC)(l
′+1)/2U(1)

=

(l′−1)/2
∑

i=0

(BC)iAl′+1−2iAD +

iBC−1
∑

i=0

(BC)π(BC)i+(l′+1)/2(AD)2i+1

+

s(iA)
∑

i=1

(BC)(l
′+1)/2((BC)D)i+1AπA2i+1 + (BC)(l

′+1)/2(BC)DAAπ

=

(l′−1)/2
∑

i=0

(BC)iAl′+1−2iAD + 0 +

s(iA)
∑

i=0

(BC)(l
′
−1)/2−iAπA2i+1

=

(l′−1)/2
∑

i=0

(BC)iAl′+1−2iAD +

(l′−1)/2
∑

i=(l′−1)/2−s(iA)

(BC)iAπAl′−2i

=

(l′−3)/2−s(iA)
∑

i=0

(BC)iAl′+1−2iAD

+

(l′−1)/2
∑

i=(l′−1)/2−s(iA)

(BC)i
(

AπAl′−2i +Al′+1−2iAD
)

=

(l′−3)/2−s(iA)
∑

i=0

(BC)iAl′−2i +

(l′−1)/2
∑

i=(l′−1)/2−s(iA)

(BC)iAl′−2i

=

(l′−1)/2
∑

i=0

(BC)iAl′−2i.

Thus G = MD.

Now we prove (2.1) holds by induction. We have proved G = MD, that is to

say, (2.1) is true for l = 1. Assume (2.1) is true for l = j ≥ 1, now we check it for
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l = j + 1, that is to say, we prove

(

U(1) V (1)B

CU(2) CV (2)B

)(

U(j) V (j)B

CU(j + 1) CV (j + 1)B

)

=

(

U(1)U(j) + V (1)BCU(j + 1) (U(1)V (j) + V (1)BCV (j + 1))B

C (U(2)U(j) + V (2)BCU(j + 1)) C (U(2)V (j) + V (2)BCV (j + 1))B

)

=

(

U(j + 1) V (j + 1)B

CU(j + 2) CV (j + 2)B

)

.

From X2 = XAD, X(BC)D = 0, Y A2X = 0, AX = AAD, AπAD = 0,

(BC)DX = 0 and V (1)BC = BC(BC)D , we get

U(1)U(j) + V (1)BCU(j + 1) = X(AD)j +BC(BC)DU(j + 1) = U(j + 1),

U(1)V (j) + V (1)BCV (j + 1) = X(AD)j+1 +BC(BC)DV (j + 1) = V (j + 1).

From ADX = (AD)2, AD(BC)D = 0, Y AX = 0, A(BC)D = 0, AπX = X −AD,

V (2)BC = 0, (BC)DX = 0 and s(j − 1) + 1 = s(j + 1), we get

U(2)U(j) + V (2)BCU(j + 1) = U(2)U(j)

=X(AD)j+1 − (BC)D(AD)j −

s(j−1)
∑

k=1

((BC)D)k+1(AD)j−2k

+ ((BC)D)s(j−1)+1Y AAj%2 + ((BC)D)s(j+1)+1Aj%2Aπ

=X(AD)j+1 −

s(j+1)
∑

k=1

((BC)D)k(AD)j+2−2k

+ ((BC)D)s(j+1)Y AA(j+2)%2 + ((BC)D)s(j+3)A(j+2)%2Aπ

=U(j + 2),

U(2)V (j) + V (2)BCV (j + 1) = U(2)V (j)

=X(AD)j+2 − (BC)D(AD)j+1 −

s(j−1)
∑

k=1

((BC)D)k+1(AD)j+1−2k

+ ((BC)D)s(j−1)+1Y Aj%2 + (−1)j+1((BC)D)s(j+1)+1(Aπ)j%2(AD)(j+1)%2

=X(AD)j+2 −

s(j+1)
∑

k=1

((BC)D)k(AD)j+3−2k

+ ((BC)D)s(j+1)Y A(j+2)%2 + (−1)j+3((BC)D)s(j+3)(Aπ)(j+2)%2(AD)(j+3)%2

=V (j + 2).
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Thus (2.1) is true for l = j + 1.

Now we give our main results.

Theorem 2.2. Let M =

(

A B

C D

)

be a complex block matrix, with A and D be-

ing square, Ind(A) = iA, Ind(BC) = iBC , Ind

(

A B

C 0

)

= iABC and Ind(0⊕D) =

iD(as 0 is not absent). If ABC = 0 and DC = 0, then

MD =

(

U(1) T1

CU(2) T2

)

, (2.3)

where

T1 =− (AD +BCV (2))BDD +

iD−1
∑

i=0

V (i+ 1)BDiDπ

+

iABC−1
∑

i=1

(

(Aπ −BCU(2))R(i)−
(

AD +BCV (2)
)

BS(i)
)

,

T2 =(I − CV (1)B)DD +

iD−1
∑

i=0

CV (i+ 2)BDiDπ

+

iABC−1
∑

i=1

((−CU(1))R(i) + (I − CV (1)B)S(i)),

R(i) =

s(i−1)
∑

k=0

(BC)kAi−1−2kB(DD)i+1,

S(i) =

s(i)−1
∑

k=0

C(BC)kAi−2−2kB(DD)i+1,

U(i), V (i), X, Y are all the same as those in Theorem 2.1, and let
∑k

i=j = 0 if k < j.

Proof. Let

M = E + F,

where

E =

(

0 0

0 D

)

, F =

(

A B

C 0

)

.

Since DC = 0, we have EF = 0, then we can use (1.3) to get
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MD =

iABC−1
∑

i=0

(

A B

C 0

)π (
A B

C 0

)i(
0 0

0 DD

)i+1

+

iD−1
∑

i=0

(

(

A B

C 0

)D
)i+1

(

0 0

0 D

)i (
I 0

0 Dπ

)

.

(2.4)

From ABC = 0, recall that AU(1) = AAD and AV (1) = AD, thus by Theorem

2.1, we have

(

(

A B

C 0

)D
)i+1

=

(

U(i+ 1) V (i+ 1)B

CU(i+ 2) CV (i + 2)B

)

(2.5)

and

(

A B

C 0

)π

=I −

(

A B

C 0

)(

U(1) V (1)B

CU(2) CV (2)B

)

= I −

(

AAD +BCU(2) (AD +BCV (2))B

CU(1) CV (1)B

)

=

(

Aπ −BCU(2) −(AD +BCV (2))B

−CU(1) I − CV (1)B

)

.

(2.6)

After we substitute (2.2), (2.5) and (2.6) into (2.4), we get the representation of

MD as shown in (2.3).

Theorem 2.3. Let M =

(

A B

C D

)

be a complex block matrix, with A and D be-

ing square, Ind(A) = iA, Ind(BC) = iBC , Ind

(

A B

C 0

)

= iABC and Ind(0⊕D) =

iD(as 0 is not absent). If ABC = 0 and BD = 0, then

MD =











(U(1))
t

(

iD−1
∑

i=0

DπDiCU(i + 2) +
iABC
∑

i=1

R(i)−DDCU(1)

)t

(V (1)B)
t

(

iD−1
∑

i=0

DπDiCV (i+ 2)B +
iABC
∑

i=1

S(i) +DD(I − CV (1)B)

)t











t

,

(2.7)
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where

R(i) =

s(i+1)−1
∑

k=0

(DD)i+1C(BC)kAi−1−2kAπ

−
1 + (−1)i+1

2
(DD)i+1C(BC)s(i+1)U(2)−

1 + (−1)i

2
(DD)i+1C(BC)s(i)U(1),

S(i) =

s(i+1)−1
∑

k=0

(DD)i+1C(BC)kAi−1−2kADB

−
1+(−1)i+1

2
(DD)i+1C(BC)s(i+1)V (2)B−

1+(−1)i

2
(DD)i+1C(BC)s(i)V (1)B,

U(i), V (i), X, Y are all the same as those in Theorem 2.1, At is the transpose of

matrix A, and let
∑k

i=j = 0 if k < j.

Proof. Let

M = E + F,

where

E =

(

A B

C 0

)

, F =

(

0 0

0 D

)

.

Since BD = 0, we have EF = 0. Then we can also use (1.3) to get the repre-

sentation of MD. The procedure of obtaining the representation of MD is similar to

that in Theorem 2.2, so we omit it.

Corollary 2.4. Let M =

(

A B

C D

)

be a complex block matrix , with A

and D being square, Ind(A) = iA, Ind(BC) = iBC, Ind

(

A B

C 0

)

= iABC and

Ind(0⊕D) = iD(as 0 is not absent). If ABC = 0, DC = 0 and BD = 0, then

MD =

(

U(1) V (1)B

CU(2) CV (2)B +DD

)

, (2.8)

where U(i), V (i), X, Y are all the same as those in Theorem 2.1, and let
∑k

i=j = 0 if

k < j.

Last, we give an example to illustrate Theorem 2.2.

Example 2.5. Let

M =









1 1 1 1

−1 −1 1 −1

0 0 1 0

−1 −1 1 0









=

(

A B

C D

)

.
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We can partition M as follows:

Case1 : A = 1, B =
(

1 1 1
)

, C =





−1

0

−1



 , D =





−1 1 −1

0 1 0

−1 1 0



 ;

Case2 : A =

(

1 1

−1 −1

)

, B =

(

1 1

1 −1

)

, C =

(

0 0

−1 −1

)

, D =

(

1 0

1 0

)

;

Case3 : A =





1 1 1

−1 −1 1

0 0 1



 , B =





1

−1

0



 , C =
(

−1 −1 1
)

, D = 0.

It is easy to get that only the last two cases satisfy ABC = 0 and DC = 0. Next,

we will use Theorem 2.2 to obtain the representation of MD under the last two cases.

Case2: It is easy to get BC =

(

−1 −1

1 1

)

, (BC)D =

(

0 0

0 0

)

, DD = D =

(

1 0

1 0

)

, AD =

(

0 0

0 0

)

, iA = 2, iBC = 2, iABC = 4 and iD = 1.

Then X = Y =

(

0 0

0 0

)

. U(i) = V (i) =

(

0 0

0 0

)

for all integer i ≥ 1.

R(1) = BDD, R(2) = ABDD, R(3) = BCBDD and R(i) = 0 for all integer i ≥ 4.

S(1) =

(

0 0

0 0

)

, S(2) = CBDD and S(i) =

(

0 0

0 0

)

for all integer i ≥ 3.

Then

MD =









0 0 2 0

0 0 0 0

0 0 1 0

0 0 −1 0









.

Case3: It is easy to get BC =





−1 −1 1

1 1 −1

0 0 0



, (BC)D =





0 0 0

0 0 0

0 0 0



,

DD = 0, AD =





0 0 3

0 0 −1

0 0 1



, iA = 2, iBC = 2, iABC = 3 and iD = 1.

Then X =





0 0 2

0 0 0

0 0 1



, Y =





0 0 0

0 0 0

0 0 0



. R(i) = S(i) =





0

0

0



, U(i) =

X(AD)i−1 and V (i) = X(AD)i for all integer i ≥ 1.
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Then

MD =









0 0 2 0

0 0 0 0

0 0 1 0

0 0 −1 0









.
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