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RELATION BETWEEN THE ROW LEFT RANK OF A QUATERNION UNIT GAIN

GRAPH AND THE RANK OF ITS UNDERLYING GRAPH∗

QIANNAN ZHOU† AND YONG LU†

Abstract. Let Φ = (G,U(Q), ϕ) be a quaternion unit gain graph (or U(Q)-gain graph), where G is the underlying graph of

Φ, U(Q) = {z ∈ Q : |z| = 1} is the circle group, and ϕ :
−→
E → U(Q) is the gain function such that ϕ(eij) = ϕ(eji)

−1 = ϕ(eji).

Let A(Φ) be the adjacency matrix of Φ and r(Φ) be the row left rank of Φ. In this paper, we prove that −2c(G) ≤ r(Φ)−r(G) ≤
2c(G), where r(G) and c(G) are the rank and the dimension of cycle space of G, respectively. All corresponding extremal graphs

are characterized. The results will generalize the corresponding results of signed graphs (Lu et al. [20] and Wang [33]), mixed

graphs (Chen et al. [7]), and complex unit gain graphs (Lu et al. [21]).
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1. Introduction. In this paper, we consider only the graphs without multiedges and loops. Let G =

(V (G), E(G)) be a simple graph, where V (G) and E(G) are the vertex set and the edge set of G, respectively.

Let V (G) = {v1, v2, . . . , vn}, the adjacency matrix A(G) of G is the symmetric n × n matrix with entries

aij = 1 if vi is adjacent to vj and aij = 0 otherwise. Whenever vivj ∈ E, let eij denote the ordered pair

(vi, vj). Thus, eij and eji are considered to be distinct. Let
−→
E denote the set of {eij , eji : vivj ∈ E}. The

rank (resp., nullity) of G is the rank (resp., nullity) of A(G), denoted by r(G) (resp., η(G)).

Collatz et al. [10] first proposed to characterize all graphs of order n with r(G) < n. Until today, this

problem is still unsolved. In the past decade, lots of research work have been done on bounding the nullities

(or ranks) of graphs with given order in terms of various graph parameters (and identifying the extremal

graphs) such as: the matching number (see [11, 17, 24, 27, 28, 32]); the number of pendant vertices (see

[4, 6, 25, 30]); the maximum degree (see [9, 29, 31, 34, 39]); and the girth (see [5, 40]), etc.

Let R and C be the fields of the real numbers and complex numbers, respectively. Let Q be a four-

dimensional vector space over R with an ordered basis, denoted by 1, i, j, and k. A real quaternion, simply

called quaternion, is a vector q = x0 + x1i+ x2j + x3k ∈ Q, where x0, x1, x2, x3 are real numbers and i, j, k

satisfy the following conditions:

i2 = j2 = k2 = −1;

ij = −ji = k, jk = −kj = i, ki = −ik = j.

If a, b are any real numbers, while u,v are any two of i, j, k, then (au)(bv) = (ab)(uv).

From [38], we know that if x, y, and z are three different quaternions, then (xy)−1 = y−1x−1 and

(xy)z = x(yz). (Note that xy 6= yx, in general)
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Let q = x0 +x1i+x2j+x3k ∈ Q. The conjugate q̄ (or q∗) of q is q̄ = x0−x1i−x2j−x3k. The modulus

of q is |q| =
√
qq̄ =

√
x2

0 + x2
1 + x2

2 + x2
3. If q 6= 0, then the inverse of q is q−1 = q̄

|q|2 . The real part of q is

Re(q) = x0. The imaginary part of q is Im(q) = x1i+ x2j + x3k. The row left (right) rank of a quaternion

matrix A ∈ Qm×n is the maximum number of rows of A that are left (right) linearly independent. The

column left (right) rank of a quaternion matrix A ∈ Qm×n is the maximum number of columns of A that

are left (right) linearly independent. The rank of a quaternion matrix A ∈ Qm×n is defined to be the row

left rank of A. For a quaternion matrix A = (hst)m×n, the conjugate transpose of A is A∗ = (hts)n×m.

Belardo et al. [1] studied the spectra of quaternion unit gain graphs. They defined the adjacency,

Laplacian, and incidence matrices for a quaternion unit gain graph and study their properties. A gain

graph is a graph with the additional structure that each orientation of an edge is given a group element,

called a gain, which is the inverse of the group element assigned to the opposite orientation. Denote by

Φ = (G,U(Q), ϕ) (or Gϕ for short) a quaternion unit gain graph (or U(Q)-gain graph), where G is the

underlying graph of Φ, U(Q) = {q ∈ Q : |q| = 1} is the circle group, and ϕ :
−→
E → U(Q) is the gain function

such that ϕ(eij) = ϕ(eji)
−1 = ϕ(eji). For convenience, ϕ(eij) is also written as ϕvivj for vivj ∈ E(Φ).

The adjacency matrix of Gϕ is the Hermitian matrix A(Gϕ) = (hij)n×n, where hij = ϕ(eij) = ϕvivj if

vivj ∈ E(Φ), and hij = 0 otherwise. The row left rank r(Gϕ) of A(Gϕ) is called the rank of Gϕ.

Recently, people have turned to extend the research of the rank (or nullity) of simple graphs to signed

graphs (see [13, 20, 23, 33, 35]) and complex unit gain graphs (see [12, 14, 15, 18, 19, 21, 22, 26, 36, 37]).

Cavaleri et al. [3] introduce a switching operation to obtain pairs of G-cospectral gain graphs. They also

define a Godsil–McKay switching for the right spectrum of quaternion unit gain graphs. Note that quaternion

unit gain graphs will generalize simple graphs (ϕ(
−→
E ) ⊂ {1}), signed graphs (ϕ(

−→
E ) ⊂ {1,−1}), mixed graphs

(ϕ(
−→
E ) ⊂ {1, i,−i}), and complex unit gain graphs (ϕ(

−→
E ) ⊂ {T ∈ C : |T | = 1}). Hence, this paper is a work

in this direction.

Let G be a graph. Denoted by c(G) = |E(G)|− |V (G)|+ω(G), the dimension of cycle space of G, where

ω(G) is the number of connected components of G. A connected graph G is called unicyclic if c(G) = 1. Let

G be a graph with pairwise vertex-disjoint cycles, and let C(G) denote the set of cycles in G. By compressing

each cycle O of G into a vertex tO, we obtain an acyclic graph TG (see Fig. 1) from G. More definitely, the

vertex set V (T (G)) is taken to be U ∪CG, where U consists of all vertices of G that do not lie on any cycle

and CG consists of vertex tO that is obtained by compressing a cycle O, that is, CG = {tO : O ∈ C(G)}.
Two vertices in U are adjacent in TG if and only if they are adjacent in G; a vertex u ∈ U is adjacent to a

vertex tO ∈ CG if and only if u is adjacent (in G) to a vertex in the cycle O; Vertices tO1 , tO2 are adjacent

in TG if and only if there exists an edge in G joining a vertex of O1 ∈ C(G) to a vertex of O2 ∈ C(G). It is

clear that TG is always acyclic. Observe the graph TG − CG (obtained from TG by deleting vertices in CG
and the incident edges) is the same as the graph obtained from G by deleting the vertices of all cycles and

the incident edges, and the resultant graph is denoted by [TG] (see Fig. 1).

Lu et al. [20] and Wang [33] obtained the relationship between the rank of a signed graph and the

rank of its underlying graph, respectively. Chen et al. [7] studied the relationship between the H-rank of a

mixed graph and the rank of its underlying graph. Lu et al. [21] generalized the corresponding results on

the complex unit gain graph. Motivated by these results, in this paper, we obtain the relationship between

the row left rank of a quaternion unit gain graph Gϕ and the rank of its underlying graph: r(G)− 2c(G) ≤
r(Gϕ) ≤ r(G) + 2c(G). Moreover, all corresponding extremal graphs are characterized.
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Fig. 1. Examples.

The rest of this paper is organized as follows. In Section 2, we give some known lemmas and results. In

Section 3, we characterize the relations between the row left rank of a quaternion unit gain graph and the

rank of its underlying graph.

2. Preliminaries. The degree of x ∈ V (G) is the number of vertices adjacent to x in G, denoted by

dG(x). A vertex of degree 1 in G is called pendant vertex (see v in Fig. 1). The neighbor of a pendant

vertex in G is quasi-pendant vertex (see u in Fig. 1). Denote by Pn and Cn a path and a cycle of order n,

respectively.

Let G be a graph, S ⊆ V (G) and S 6= ∅. Denote by G − S the induced subgraph obtained from G by

deleting each vertex in S and its incident edges. For convenience, if S = {x}, we write G − x instead of

G−{x}. For a subgraph H of G, denote by G−H, the subgraph obtained from G by deleting all vertices of

H and all incident edges. We use H + x to denote the subgraph of G induced by the vertex set V (H)∪{x}.
A subgraph Cp of G is called a pendant cycle if Cp (see Cp in Fig. 1) is a cycle, which has a unique vertex

of degree 3 in G and all other vertices of degree 2 in G.

Now, we list some known results for use later on.

Lemma 1. ([8]) Let Pn be a path. Then r(Pn) = n− 1 if n is odd and r(Pn) = n if n is even.

Lemma 2. ([33]) Let Cn be a cycle. Then r(Cn) = n− 2 if n ≡ 0 (mod 4) and r(Cn) = n otherwise.

Lemma 3. ([2]) If v is a vertex of a graph G, then r(G)− 2 ≤ r(G− v) ≤ r(G).

Lemma 4. ([33]) Let G be a graph with x ∈ V (G). Then

(a) c(G) = c(G− x) if x lies outside any cycle of G;

(b) c(G− x) ≤ c(G)− 1 if x lies on a cycle of G;

(c) c(G− x) ≤ c(G)− 2 if x is a common vertex of distinct cycles of G.

Lemma 5. ([20]) Let G be a graph containing a pendant vertex x with the unique neighbor y. Then

r(G) = r(G− {x, y}) + 2.

For a quaternion q, we have that

q = x0 + x1i+ x2j + x3k = (x0 + x1i) + (x2 + x3i)j = γ1 + γ2j.
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So, every quaternion q is uniquely represented by a pair of complex numbers (γ1, γ2). By this fact, a

quaternion matrix A can be uniquely written as A = A1 +A2j, where A1, A2 ∈ Cn×n. The complex adjoint

matrix of A is the matrix:

f(A) = f(A1 +A2j) =

(
A1 A2

−Ā2 Ā1

)
∈ C2n×2n.

Lemma 6. ([38]) The rank of a quaternion matrix A is r if and only if the rank of its complex adjoint

matrix f(A) is 2r.

Lemma 7. ([16]) The row left rank of a quaternion matrix A equals the column right rank of A. The

row right rank of a quaternion matrix A equals the column left rank of A.

Note that quaternions do not satisfy the commutative law of multiplication, the row left rank of a

quaternion matrix is not necessarily equal to the row right rank. Let A1 be the adjacency matrix of a

quaternion unit gain graph with underlying graph C4, where

A1 =


0 1 −j 0

1 0 0 i

j 0 0 k

0 −i −k 0

 .

The row left rank of A1 is equal to 4, the row right rank of A1 is equal to 2.

Lemma 8. ([38]) Let A ∈Mm×n(Q), B ∈Mn×s(Q) be two quaternion matrices. Then (AB)∗ = B∗A∗.

We call a square quaternion matrix A ∈Mn(Q) invertible if AB = BA = I for some B ∈Mn(Q).

Lemma 9. ([38]) Let A,B be two quaternion matrices. If AB = I, then BA = I.

Lemma 10. ([38]) For any invertible quaternion matrices P and Q of suitable sizes, the quaternion

matrices A and PAQ have the same rank.

Since quaternions do not satisfy the commutative law of multiplication, when calculating the row left

(right) rank of a quaternion matrix by elementary row operations, we can only multiply a nonzero quaternion

on the left (right) side of a row and add it to other rows. Similarly, when calculating the column left (right)

rank of a quaternion matrix by elementary column operations, we can only multiply a nonzero quaternion

on the left (right) side of a column and add it to other columns. An example is as follows. Let

A
′

=

(
1 i

−i 1

)
.

Then the row left, the row right, the column left, and the column right ranks of A
′

are equal to 1. Consider

now the matrix A obtained by multiply j on the left side of 2-th row of A
′

and add it to 1-th row of A
′
.

That is,

A =

(
1− ji j + i

−i 1

)
.
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The row left rank

r(A) = r

(
1− ji+ (j + i)i j + i− (j + i)

−i 1

)
= r

(
0 0

−i 1

)
= 1.

The row right rank

r(A) = r

(
1− ji+ i(j + i) j + i− (j + i)

−i 1

)
= r

(
2ij 0

−i 1

)
= 2.

The column left rank

r(A) = r

(
1− ji+ i(j + i) j + i

−i+ i 1

)
= r

(
2ij j + i

0 1

)
= 2.

The column right rank

r(A) = r

(
1− ji+ (j + i)i j + i

−i+ i 1

)
= r

(
0 j + i

0 1

)
= 1.

From above examples, we can know that when we multiply a nonzero quaternion on the left side of a

row and add it to other rows of a quaternion matrix A, and the row left rank of A maintains unchanged;

however, the row right rank of A may be various. Combining with this fact and Lemma 10, in this paper,

when we calculate the row left rank of a quaternion matrix by elementary row (or column) operations, we

only multiply a nonzero quaternion on the left side of a row and add it to other rows (or right side of a

column and add it to other columns).

For a U(Q)-gain cycle, we list the following definition and lemmas.

Definition 11. ([1]) Let Cϕn be a U(Q)-gain cycle with vertices v1, v2, . . . , vn in turn. For any vertex

vk ∈ V (Cn), 1 ≤ k ≤ n, we define

ϕ(
−→
Cn(vk)) = ϕ(vkvk+1 · · · vnv1 · · · vk)

= ϕ(vkvk+1)ϕ(vk+1vk+2) · · ·ϕ(vnv1) · · ·ϕ(vk−1vk).

Lemma 12. ([1]) Let Cϕn be a U(Q)-gain cycle with vertices v1, v2, . . . , vn in turn. Then Re(ϕ(
−→
Cn(vi))) =

Re(ϕ(
−→
Cn(vj))), i 6= j.

By fundamental matrix theory, we can derive the following lemma.

Lemma 13. (a) Let Gϕ = Gϕ1 ∪ G
ϕ
2 ∪ · · · ∪ G

ϕ
t , where Gϕ1 , G

ϕ
2 , . . . , G

ϕ
t are connected components of a

U(Q)-gain graph Gϕ. Then r(Gϕ) = Σti=1r(G
ϕ
i ).

(b) Let Gϕ be a U(Q)-gain graph with n vertices. Then r(Gϕ) = 0 if and only if Gϕ is a graph without

edges.

3. Relation between the row left rank of Gϕ and the rank of its underlying graph. In this

section, we will obtain some bounds for the row left rank of a quaternion unit gain graph in terms of the

rank of its underlying graph.
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For a complex matrix M , if M1 is a complex matrix obtained by deleting a row (or a column) of M , then

we have that r(M)− 1 ≤ r(M1) ≤ r(M). By this fact and Lemma 6, we can obtain the following lemma.

Lemma 14. Let Gϕ be a U(Q)-gain graph and v is a vertex of G. Then r(Gϕ)−2 ≤ r(Gϕ−v) ≤ r(Gϕ).

Similar to Lemma 5, for a U(Q)-gain graph, we have the following lemma.

Lemma 15. Let Gϕ be a U(Q)-gain graph. If x is a pendant vertex of G and y is its unique neighbor in

G, then r(Gϕ) = r(Gϕ − {x, y}) + 2.

Proof. We label all vertices of G in return by x1, x2, . . . , xn with x1 = x, x2 = y. Let hij = ϕ(eij), 1 ≤
i, j ≤ n and A(Gϕ) be the adjacency matrix of Gϕ. Then,

A(Gϕ) =


0 h12 0 · · · 0

h21 0 h23 · · · h2n

0 h32 0 · · · h3n

...
...

...
. . .

...

0 hn2 hn3 · · · 0

 .

We use elementary row and column operations on A(Gϕ), then

r(Gϕ) = r


0 h12 0 · · · 0

h21 0 0 · · · 0

0 0 0 · · · h3n

...
...

...
. . .

...

0 0 hn3 · · · 0

 = 2 + r(Gϕ − {x, y}).

This completes the proof.

The gain of a path Pn = e12e23 . . . e(n−1)n is ϕ(Pn) = ϕ(e12)ϕ(e23) . . . ϕ(e(n−1)n).

Suppose θ : V → U(Q) is a switching function. Switching the U(Q)-gain graph Gϕ by θ means forming

a new quaternion unit gain graph Gϕ
θ

, whose underlying graph is the same as Gϕ, but whose gain function

is defined on an edge uv by ϕθ(uv) = θ(u)−1ϕ(uv)θ(v). Two quaternion unit gain graphs Gϕ1 and Gϕ2

are called switching equivalent, denoted by Gϕ1 ↔ Gϕ2 , if there exists a switching function θ such that

Gϕ2 = Gϕ
θ
1 . Note that two switching equivalent quaternion unit gain graphs have the same rank.

Lemma 16. Let Tϕ be a U(Q)-gain tree of order n. Then A(Tϕ) and A(T ) have the same rank.

Proof. We shall verify that Tϕ and T are switching equivalent. Let x be a vertex of Tϕ. We will define

a switching function θ satisfying θ(x) = 1, θ(y) = ϕ(Pxy)−1 for any vertex y of Tϕ, where Pxy is the path

from x to y. Let z1, z2 be any two adjacent vertices in Tϕ, without loss of generality, assume that z1, z2 on

the path Pxy satisfy d(x, z1) = d(x, z2)− 1, then

ϕθ(ez1z2) = θ(z1)−1ϕ(ez1z2)θ(z2)

= ϕ(Pxz1)ϕ(ez1z2)ϕ(Pxz2)−1

= ϕ(exy1)ϕ(ey1y2) . . . ϕ(eymz1)ϕ(ez1z2)(ϕ(exy1)ϕ(ey1y2) . . . ϕ(eymz1)

ϕ(ez1z2))−1

= 1.
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So, A(T ) = Q−1A(Tϕ)Q, where

Q =


θ(z1)

θ(z2)
. . .

θ(zn)

 .

By Lemma 10, A(Tϕ) and A(T ) have the same rank.

Let Cϕn (n ≥ 3) be a quaternion unit gain cycle and V (G) = {v1, v2, . . . , vn}. By Lemma 9, ϕv1v2ϕv2v3 · · ·
ϕvn−1vnϕvnv1 = c if and only if

ϕvlvl+1
ϕvl+1vl+2

· · ·ϕvn−1vn · · ·ϕvl−1vl = c,

where c is constant. By this fact and Lemma 12, we have the following definition.

Definition 17. Let Cϕn (n ≥ 3) be a quaternion unit gain cycle, denote by

ϕ(Cϕn ) = ϕv1v2ϕv2v3 · · ·ϕvn−1vnϕvnv1 .

Then Cϕn is said to be:


Type 1, if ϕ(Cϕn ) = (−1)n/2 and n is even;

Type 2, if ϕ(Cϕn ) 6= (−1)n/2 and n is even;

Type 3, if Re
(
(−1)(n−1)/2ϕ(Cϕn )

)
6= 0 and n is odd;

Type 4, if Re
(
(−1)(n−1)/2ϕ(Cϕn )

)
= 0 and n is odd.

Lemma 18. Let Cϕn be a U(Q)-gain cycle. Then

r(Cϕn ) =


n− 2, if Cϕn is of Type 1;

n, if Cϕn is of Type 2 or 3;

n− 1, if Cϕn is of Type 4.

Proof. Let {u1, u2, . . . , un} be the vertex set of Cϕn and eukuk+1
∈ E(Cn)(1 ≤ k ≤ n−1), eu1un ∈ E(Cn).

Let hk = ϕ(eukuk+1
)(1 ≤ k ≤ n− 1) and hn = ϕ(eunu1). Then

A(Cϕn ) =



0 h1 0 0 · · · 0 h̄n
h̄1 0 h2 0 0

0 h̄2 0 h3 0
... 0

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 h̄n−2 0 hn−1

hn 0 0 · · · 0 h̄n−1 0


.
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Now we discuss two cases.

Case 1. n is even.

By the elementary row and column operations,

r(Cϕn ) = r



0 h1 0 0 · · · 0 h̄n
h̄1 0 0 0 0

0 0 0 h3 −h̄2h̄1h̄n
... 0

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 h̄n−2 0 hn−1

hn 0 −hnh1h2 · · · 0 h̄n−1 0



= r



0 h1 0 0 · · · 0 0

h̄1 0 0 0 0

0 0 0 h3 −h̄2h̄1h̄n
... 0

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 h̄n−2 0 hn−1

0 0 −hnh1h2 · · · 0 h̄n−1 0



= 2 + r



0 h3 0 0 · · · 0 −h̄2h̄1h̄n
h̄3 0 h4 0 0

0 h̄4 0 h5 0
... 0

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 h̄n−2 0 hn−1

−hnh1h2 0 0 · · · 0 h̄n−1 0


= 2+

r



0 h3 0 0 · · · 0 0

h̄3 0 0 0 0

0 0 0 h5 (−1)2h̄4h̄3h̄2h̄1h̄n
... 0

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 h̄n−2 0 hn−1

0 0 (−1)2hnh1h2h3h4 · · · 0 h̄n−1 0


= · · ·

= n− 2 + r

(
0 a

ā 0

)
,
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where a = hn−1 + (−1)
n−2
2 h̄n−2h̄n−3 . . . h̄2h̄1h̄n.

If a = 0, then

hn−1 + (−1)
n−2
2 h̄n−2h̄n−3 . . . h̄2h̄1h̄n = 0.

Since quaternion does not satisfy commutative law of multiplication, then we multiply both left sides of

the equation by h1h2 . . . hn−3hn−2, the equation is equivalent to

h1h2 . . . hn−2hn−1 + (−1)
n−2
2 h̄n = 0.

We multiply both right sides of the equation by hn, then the equation is equivalent to

h1h2 . . . hn−2hn−1hn = (−1)
n
2 .

That is, ϕ(Cϕn ) = (−1)
n
2 , then we have that r(Cϕn ) = n−2. Similarly, a 6= 0 is equivalent to ϕ(Cϕn ) 6= (−1)

n
2 ,

then we have that r(Cϕn ) = n.

Case 2. n is odd.

Using the same method as Case 1, we have

r(Cϕn ) = n− 3 + r

 0 hn−2 b0
h̄n−2 0 hn−1

b̄0 h̄n−1 0


= n− 3 + r

 0 hn−2 0

h̄n−2 0 0

0 0 b


= n− 1 + r(b),

where

b0 = (−1)
n−3
2 h̄n−3h̄n−4 . . . h̄2h̄1h̄n,

and

b = (−1)
n−1
2 h̄n−1h̄n−2 . . . h̄2h̄1h̄n + (−1)

n−1
2 hnh1h2 . . . hn−2hn−1.

By Lemmas 8 and 12,

(hnh1h2 . . . hn−2hn−1)∗

= h̄n−1h̄n−2 . . . h̄2h̄1h̄n, Re(ϕ(Cn)) = Re(ϕ(hnh1h2 . . . hn−2hn−1)).

So,

b = 2Re((−1)
n−1
2 hnh1h2 . . . hn−1) = 2Re((−1)

n−1
2 ϕ(Cn)).

If b = 0, that is Re((−1)
n−1
2 ϕ(Cn)) = 0, then r(Cϕn ) = n− 1.

If b 6= 0, that is Re((−1)
n−1
2 ϕ(Cn)) 6= 0, then r(Cϕn ) = n− 1 + 1 = n.

Now, we will characterize the relationship between the row left rank of a quaternion unit gain graph and

the rank of its underlying graph.
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Theorem 19. Let Gϕ be a U(Q)-gain graph. Then

r(G)− 2c(G) ≤ r(Gϕ) ≤ r(G) + 2c(G).

Proof. We get the inequalities by induction on c(G). If c(G) = 0, then Gϕ is a U(Q)-gain acyclic graph,

r(Gϕ) = r(G) holds by Lemmas 13 and 16. Now we assume that the results hold for each U(Q)-gain graph

whose dimension of cycle space is less than c(G). Let u be a vertex on some cycle of Gϕ. By Lemma 4, we

have

c(G− u) ≤ c(G)− 1.

Then by induction hypothesis,

r(G− u)− 2c(G− u) ≤ r(Gϕ − u) ≤ r(G− u) + 2c(G− u).

By Lemmas 3 and 14, we have

r(Gϕ − u) ≤ r(Gϕ) ≤ r(Gϕ − u) + 2, r(G− u) ≤ r(G) ≤ r(G− u) + 2.

So

r(Gϕ) ≥ r(Gϕ − u) ≥ r(G− u)− 2c(G− u) ≥ r(G)− 2− 2(c(G)− 1) = r(G)− 2c(G),

and

r(Gϕ) ≤ r(Gϕ − u) + 2 ≤ r(G− u) + 2c(G− u) + 2 ≤ r(G) + 2(c(G)− 1) + 2 = r(G) + 2c(G).

This completes the proof.

For convenience, we call a U(Q)-gain graph Gϕ lower-optimal (resp., upper-optimal) if Gϕ attains the

lower bound (resp., upper bound) in Theorem 19.

Lemma 20. Let Gϕ be a U(Q)-gain graph and let u be a vertex on some cycle of Gϕ.

(a) If Gϕ is lower-optimal, then r(Gϕ) = r(Gϕ − u), r(Gϕ − u) = r(G − u) − 2c(G − u), r(G − u) =

r(G)− 2, c(G) = c(G− u) + 1.

(b) If Gϕ is upper-optimal, then r(Gϕ) = r(Gϕ − u) + 2, r(Gϕ − u) = r(G − u) + 2c(G − u), r(G − u) =

r(G), c(G) = c(G− u) + 1.

(c) If Gϕ is lower-optimal (or upper-optimal), then u lies on just one cycle of G and u is not a quasi-pendant

vertex in G.

Proof. By the proof of Theorem 19, we can obtain the (a) and (b). For (c), when Gϕ is lower-optimal.

If u lies on at least two cycles of Gϕ, by Lemma 4(c),

c(G− u) ≤ c(G)− 2,

which contradicts c(G) = c(G− u) + 1 in (a). If u is a quasi-pendant vertex of Gϕ, then by Lemma 15,

r(Gϕ − u) = r(Gϕ)− 2,

which contradicts r(Gϕ − u) = r(Gϕ) in (a).
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When Gϕ is upper-optimal. If u lies on at least two cycles of Gϕ, by Lemma 4(c),

c(G− u) ≤ c(G)− 2,

which contradicts c(G) = c(G− u) + 1 in (b). If u is a quasi-pendant vertex of G, then by Lemma 5,

r(G) = r(G− u) + 2,

which contradicts r(G− u) = r(G) in (b). So we obtain the (c) of this lemma.

Lemma 21. Let Gϕ be a U(Q)-gain graph which contains a pendant vertex x with its unique neighbor y

and Hϕ = Gϕ − {x, y}. If Gϕ is lower-optimal (upper-optimal), then y does not lie on any cycle of G, and

Hϕ is also lower-optimal (upper-optimal).

Proof. We can obtain that y does not lie on any cycle of G from Lemma 20(c). Since Gϕ is lower-optimal,

by Lemmas 5 and 15,

r(Hϕ) + 2 = r(Gϕ) = r(G)− 2c(G) = r(G− {x, y}) + 2− 2c(G− x− y).

Thus, we have

r(Hϕ) = r(G− {x, y})− 2c(G− {x, y}) = r(H)− 2c(H).

Similarly, if Gϕ is upper-optimal, then Hϕ is also upper-optimal.

For a U(Q)-gain unicyclic graph, we have the following lemma.

Lemma 22. Let Gϕ be a U(Q)-gain unicyclic graph with unique cycle Cϕl .

(a) If Gϕ is lower-optimal, then Cϕl is of Type 1 with l ≡ 2 (mod 4);

(b) If Gϕ is upper-optimal, then Cϕl is of Type 2 with l ≡ 0 (mod 4).

Proof. For (a), if Gϕ contains no pendant vertices, then Gϕ is cycle Cϕl or the union of cycle Cϕl and

some isolated vertices. By Lemmas 2, 13, and 18, the result holds naturally.

If Gϕ contains pendant vertices, by Lemma 21, then we know that the quasi-pendant vertices of Gϕ

do not lie on cycle Cl. Denote by Hϕ the U(Q)-gain unicyclic graph obtained from deleting all pendant

vertices and quasi-pendant vertices of Gϕ. If Hϕ has pendant vertices, then we repeat the above steps (delete

pendant vertices and quasi-pendant vertices). After several steps, we can obtain a U(Q)-gain unicyclic graph

Hϕ
m such that Hϕ

m is cycle Cϕl or the union of cycle Cϕl and some isolated vertices. By Lemma 21, Hϕ
m is

lower-optimal. So by Lemmas 2, 13, and 18, Cϕl is of Type 1 with l ≡ 2 (mod 4). This completes the proof

of (a).

Similarly, we can obtain the (b) of this lemma.

Lemma 23. Let Gϕ be a U(Q)-gain graph obtained by identifying a vertex of a U(Q)-gain cycle Cϕn with

a vertex of a U(Q)-gain graph Gϕ1 of order m(m ≥ 1)(V (Cn) ∩ V (G1) = u) and Gϕ2 = Gϕ1 − u. Then
r(Gϕ) = n− 2 + r(Gϕ1 ), if Cϕn is of Type 1,

r(Gϕ) = n+ r(Gϕ2 ), if Cϕn is of Type 2,

r(Gϕ) = n− 1 + r(Gϕ1 ), if Cϕn is of Type 4,

n− 1 + r(Gϕ2 ) ≤ r(Gϕ) ≤ n+ r(Gϕ1 ), if Cϕn is of Type 3.
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Proof. Let V (Cn) = u1, u2, . . . , un and uiui+1 ∈ E(Cn)(1 ≤ i ≤ n), u1un ∈ E(Cn). Let hi =

ϕ(uiui+1)(1 ≤ i ≤ n−1) and hn = ϕ(unu1). Without loss of generality, we assume that V (Cn)∩V (G1) = un.

Now we discuss the following two cases.

Case 1. When n is even, we have that

A(Gϕn) =



0 h1 0 0 · · · 0 h̄n
h̄1 0 h2 0 0

0 h̄2 0 h3 0 0
... 0

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 h̄n−2 0 hn−1 0 · · · 0

hn 0 0 · · · 0 h̄n−1 0 ϕ(β1) · · · ϕ(βm−1)

0 ϕ(β1)

0
...

... M

0 ϕ(βm−1)



,

where βi ∈ E(G1), i = 1, 2, . . . ,m− 1, M = A(Gϕ2 ).

Observe that hih̄i = 1, then by elementary row and column transformations, we have that

r(Gϕ) = r



A1

. . .

An−2
2

0 a 0 · · · 0

a 0 ϕ(β1) · · · ϕ(βm−1)

0 ϕ(β1)
...

... M

0 ϕ(βm−1)


,

where

Ai =

(
0 h2i−1

h̄2i−1 0

)
, a = hn−1 + (−1)

n−2
2 h̄n−2h̄n−3 · · · h̄1h̄n,

for i = 1, 2, . . . , n−2
2 . Then we can obtain that

(i) If Cϕn is of Type 1, that is

h1h2 · · ·hn = (−1)
n
2 ,

⇐⇒ hn−1 + (−1)
n−2
2 h̄n−2h̄n−3 · · · h̄1h̄n = 0,

then a = 0 and so

r(Gϕ) = n− 2 + r(Gϕ1 ).

(ii) If Cϕn is of Type 2, then a 6= 0 and so

r(Gϕ) = n+ r(Gϕ2 ).
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Case 2. When n is odd, by elementary row and column operations, we have that

r(Gϕ) = r



A1

. . .

An−1
2

a ϕ(β1) · · · ϕ(βm−1)

ϕ(β1)
... M

ϕ(βm−1)


,

where

Ai =

(
0 h2i−1

h̄2i−1 0

)
, a = 2Re((−1)

n−1
2 h1h2 . . . hn),

for i = 1, 2, . . . , n−1
2 .

(i) If Cϕn is of Type 4, then a = 0 and so r(Gϕ) = n− 1 + r(Gϕ1 ).

(ii) If Cϕn is of Type 3, then a 6= 0. Let

C =


a ϕ(β1) · · · ϕ(βm−1)

ϕ(β1)
... M

ϕ(βm−1)

 .

Then r(Gϕ2 ) ≤ r(C) ≤ r(Gϕ1 ) + 1. So n− 1 + r(Gϕ2 ) ≤ r(Gϕ) ≤ n+ r(Gϕ1 ).

In order to characterize the lower-optimal and upper-optimal U(Q)-gain graphs, the following two lem-

mas are needed.

Lemma 24. Let Gϕ be a U(Q)-gain graph of order n such that each cycle (if any) Cϕl in Gϕ is of Type

1 with l ≡ 2 (mod 4). If Gϕ is lower-optimal, then the following results hold

(a) r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ);

(b) r(G) = r([TG]) + ΣC∈C(G)r(C).

Proof. Since Gϕ is lower-optimal, by Lemma 20(c), we have that any two cycles of G have no common

vertices. We shall apply induction on the order of Gϕ to prove this lemma. If n = 1, the results hold

naturally. Assume that the results hold for each lower-optimal U(Q)-gain graph of order less than n. If

TG has no edges, that is, G consists of disjoint cycles and some isolated vertices, then the results hold by

Lemma 13. If TG has at least one edge, then we will consider the following cases.

Case 1. Gϕ contains a pendant vertex, say x.

Let y be the unique neighbor vertex of x in G and Gϕ1 = Gϕ−{x, y}. By Lemma 21, Gϕ1 is lower-optimal

and y does not lie on any cycle of Gϕ. By induction hypothesis, we have that

r(Gϕ1 ) = r(TG1
) + ΣC∈C(G1)r(C

ϕ), r(G1) = r([TG1
]) + ΣC∈C(G1)r(C).
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By Lemmas 5 and 15,

r(Gϕ) = r(Gϕ1 ) + 2, r(G) = r(G1) + 2, r(TG) = r(TG1
) + 2, r([TG]) = r([TG1

]) + 2.

Note that C(G) = C(G1). So,

r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ), r(G) = r([TG]) + ΣC∈C(G)r(C).

Case 2. Gϕ contains a pendant cycle, say Cϕl .

Let u ∈ Cl be the unique vertex of degree 3, Hϕ = Gϕ −Cϕl and Kϕ = Hϕ + u. Let v be a vertex of Cl
adjacent to u. By Lemma 23,

r(Gϕ) = l − 2 + r(Kϕ).

By Lemmas 5 and 20(a),

r(G) = r(G− v) + 2 = l + r(K).

Since Gϕ is lower-optimal, that is, r(Gϕ) = r(G)− 2c(G), we have

r(Kϕ) = r(K)− 2(c(G)− 1) = r(K)− 2c(K).

Hence, Kϕ is lower-optimal. By induction hypothesis, we obtain

r(Kϕ) = r(TK) + ΣC∈C(K)r(C
ϕ).

Note that TG ∼= TK , by Lemma 18, r(Cϕl ) = l − 2. So

r(Gϕ) = l − 2 + r(Kϕ) = r(TK) + ΣC∈C(K)r(C
ϕ) + l − 2 = r(TG) + ΣC∈C(G)r(C

ϕ).

We obtain the (a) of this lemma.

For (b), by Lemmas 1, 13, 16, and 20(a),

r(Gϕ) = r(Gϕ − u) = l − 2 + r(Hϕ), r(G) = r(G− u) + 2 = l + r(H).

Since Gϕ is lower-optimal, that is, r(Gϕ) = r(G)− 2c(G), we have

r(Hϕ) = r(H)− 2(c(G)− 1) = r(H)− 2c(H).

Hence, Hϕ is lower-optimal. By induction hypothesis, we obtain

r(H) = r([TH ]) + ΣC∈C(H)r(C).

Note that [TH ] ∼= [TG], by Lemma 2, r(Cl) = l. So

r(G) = l + r(H) = r([TH ]) + ΣC∈C(H)r(C) + l = r([TG]) + ΣC∈C(G)r(C).

We obtain the (b) of this lemma.

Using the same methods as Lemma 24, we can obtain the following lemma.

Lemma 25. Let Gϕ be a U(Q)-gain graph of order n such that each cycle (if any) Cϕl in Gϕ is of Type

2 with l ≡ 0 (mod 4). If Gϕ is upper-optimal, then the following results hold
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(a) r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ);

(b) r(G) = r([TG]) + ΣC∈C(G)r(C).

Now, we will characterize the lower-optimal U(Q)-gain graph.

Theorem 26. Let Gϕ be a U(Q)-gain graph of order n. Then Gϕ is lower-optimal if and only if the

following conditions all hold

(a) any two cycles of Gϕ share no common vertices;

(b) each cycle (if any) Cϕl in Gϕ is of Type 1 with l ≡ 2 (mod 4);

(c) r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ), r(G) = r([TG]) + ΣC∈C(G)r(C) and r(TG) = r([TG]).

Proof. Sufficiency: By condition (b), Lemmas 2 and 18, we have r(Cϕ)− r(C) = −2 for each cycle Cϕ

of Gϕ. By conditions (a) and (c),

r(Gϕ)− r(G) = ΣC∈C(G)(r(C
ϕ)− r(C)) = −2c(G),

that is, Gϕ is lower-optimal.

Necessity: Since Gϕ is lower-optimal, by Lemma 20(c), we have that any vertex of the cycles of G lies

on only one cycle, that is, any two cycles of Gϕ share no common vertices. So the condition (a) holds.

If G is an acyclic graph, the condition (b) holds naturally. If c(G) = 1, the condition (b) holds by Lemma

22(a). Now we assume that the condition (b) holds for the U(Q)-gain graph whose dimension of cycle space

is smaller than Gϕ. Let u be a vertex of some cycle C
′

in G. By Lemma 20(a), Gϕ− u is lower-optimal. By

induction hypothesis, each cycle Cϕl of Gϕ − u is of Type 1 with l ≡ 2 (mod 4). Let v be a vertex of some

cycle C
′′

(different from C
′
) in G, by Lemma 20(a), Gϕ− v is lower-optimal. By induction hypothesis, each

cycle Cϕl of Gϕ − v is of Type 1 with l ≡ 2 (mod 4). Combining with the above discussion, we have that

each cycle (if any) Cϕl in Gϕ is of Type 1 with l ≡ 2 (mod 4). So the condition (b) holds.

Let Gϕ be a U(Q)-gain graph such that

r(Gϕ) = r(G)− 2c(G).

By Lemma 24, we have that r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ) and r(G) = r([TG]) + ΣC∈C(G)r(C). So,

r(Gϕ)− r(G) = r(TG)− r([TG]) + ΣC∈C(G)(r(C
ϕ)− r(C)). Combining with the (b), Lemmas 2 and 18, we

have that r(Cϕ)− r(C) = −2 for each cycle Cϕ of Gϕ, then r(Gϕ)− r(G) = r(TG)− r([TG])− 2c(G).

Hence, r(TG) = r([TG]), the condition (c) holds.

Now, we will characterize the upper-optimal U(Q)-gain graph.

Theorem 27. Let Gϕ be a U(Q)-gain graph of order n. Then Gϕ is upper-optimal if and only if the

following conditions all hold

(a) any two cycles of Gϕ share no common vertices;

(b) each cycle (if any) Cϕl in Gϕ is of Type 2 with l ≡ 0 (mod 4);

(c) r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ), r(G) = r([TG]) + ΣC∈C(G)r(C) and r(TG) = r([TG]).
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Proof. Sufficiency: By condition (b), Lemmas 2 and 18, we have r(Cϕ)− r(C) = 2 for each cycle Cϕ

of Gϕ. By conditions (a) and (c),

r(Gϕ)− r(G) = ΣC∈C(G)(r(C
ϕ)− r(C)) = 2c(G),

that is, Gϕ is upper-optimal.

Necessity: Since Gϕ is upper-optimal, by Lemma 20(c), we have that any vertex of the cycles of G lies

on only one cycle, that is, any two cycles of Gϕ share no common vertices. So the condition (a) holds.

If G is an acyclic graph, the condition (b) holds naturally. If c(G) = 1, the condition (b) holds by Lemma

22(b). Now we assume that the condition (b) holds for all U(Q)-gain graph whose dimension of cycle space

is smaller than Gϕ. Let u be a vertex of some cycle C
′

in G. By Lemma 20(b), Gϕ−u is upper-optimal. By

induction hypothesis, each cycle Cϕl of Gϕ − u is of Type 2 with l ≡ 0 (mod 4). Let v be a vertex of some

cycle C
′′

(different from C
′
) in G, by Lemma 20(b), Gϕ− v is upper-optimal. By induction hypothesis, each

cycle Cϕl of Gϕ − v is of Type 2 with l ≡ 0 (mod 4). Combining with the above discussion, we have that

each cycle (if any) Cϕl in Gϕ is of Type 2 with l ≡ 0 (mod 4). So the condition (b) holds.

Let Gϕ be a U(Q)-gain graph such that

r(Gϕ) = r(G) + 2c(G).

By Lemma 25, we have that r(Gϕ) = r(TG) + ΣC∈C(G)r(C
ϕ) and r(G) = r([TG]) + ΣC∈C(G)r(C). So,

r(Gϕ)− r(G) = r(TG)− r([TG]) + ΣC∈C(G)(r(C
ϕ)− r(C)). Combining with the (b), Lemmas 2 and 18, we

have that r(Cϕ)− r(C) = 2 for each cycle Cϕ of Gϕ, then r(Gϕ)− r(G) = r(TG)− r([TG]) + 2c(G).

Hence, r(TG) = r([TG]), the condition (c) holds.

Example 28. • Let G be the underlying graph of a U(Q)-gain graph Gϕ. If the two cycles of Gϕ

are of Type 2, then we have r(Gϕ) = 12, r(G) = 8, c(G) = 2, and r(Gϕ) = r(G) + 2c(G). Hence,

Gϕ is upper-optimal.

• Let G1 be the underlying graph of a U(Q)-gain graph Gϕ1 . If the two cycles of Gϕ1 are of Type 1,

then we have r(Gϕ1 ) = 12, r(G1) = 16, c(G1) = 2, and r(Gϕ1 ) = r(G1) − 2c(G1). Hence, Gϕ1 is

lower-optimal.

Remark 29. By Lemma 7 and the example after this lemma, in future, we will consider the following

problems:

1. The relationship between the row right rank of a quaternion unit gain graph and the rank of its

underlying graph;

2. The relationship between the row left rank and the row right rank of a quaternion unit gain graph.
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