

ON THE SPECTRAL RADII OF QUASI-TREE GRAPHS AND QUASI-UNICYCLIC GRAPHS WITH *K* PENDANT VERTICES*

XIANYA GENG[†] AND SHUCHAO LI[†]

Abstract. A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex $u_0 \in V(G)$ such that $G - u_0$ is a tree. A connected graph G = (V, E) is called a quasi-unicyclic graph if there exists a vertex $u_0 \in V(G)$ such that $G - u_0$ is a unicyclic graph. Set $\mathscr{T}(n, k) := \{G : G \text{ is a } n\text{-vertex quasi-tree graph with } k \text{ pendant vertices} \}$, and $\mathscr{T}(n, d_0, k) := \{G : G \in \mathscr{T}(n, k) \text{ and there is a vertex quasi-tree graph with } k \text{ pendant vertices} \}$, and $\mathscr{T}(n, d_0, k) := \{G : G \in \mathscr{T}(n, k) \text{ and there is a vertex quasi-unicyclic graph with } k \text{ pendant vertices} \}$, and $\mathscr{U}(n, d_0, k) := \{G : G \in \mathscr{T}(n, k) \text{ and there is a vertex quasi-unicyclic graph with } k \text{ pendant vertices} \}$, and $\mathscr{U}(n, d_0, k) := \{G : G \in \mathscr{U}(n, k) \text{ and there is a vertex quasi-unicyclic graph with } k \text{ pendant vertices} \}$, and $\mathscr{U}(n, d_0, k) := \{G : G \in \mathscr{U}(n, k) \text{ and there is a vertex } u_0 \in V(G) \text{ such that } G - u_0 \text{ is a unicyclic graph and } d_G(u_0) = d_0\}$. In this paper, the maximal spectral radii of all graphs in the sets $\mathscr{T}(n, k)$, $\mathscr{T}(n, d_0, k)$, $\mathscr{U}(n, k)$, and $\mathscr{U}(n, d_0, k)$, are determined. The corresponding extremal graphs are also characterized.

Key words. Quasi-tree graph, Quasi-unicyclic graph, Eigenvalues, Pendant vertex, Spectral radius.

AMS subject classifications. 05C50.

1. Introduction. All graphs considered in this paper are finite, undirected and simple. Let G = (V, E) be a graph with n vertices and let A(G) be its adjacency matrix. Since A(G) is symmetric, its eigenvalues are real. Without loss of generality, we can write them as $\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G)$ and call them the eigenvalues of G. The characteristic polynomial of G is just det $(\lambda I - A(G))$, and is denoted by $\phi(G; \lambda)$. The largest eigenvalue $\lambda_1(G)$ is called the *spectral radius* of G, denoted by $\rho(G)$. If G is connected, then A(G) is irreducible and by the Perron-Frobenius theory of non-negative matrices, $\rho(G)$ has multiplicity one and there exists a unique positive unit eigenvector corresponding to $\rho(G)$. We shall refer to such an eigenvector as the *Perron vector* of G.

A connected graph G = (V, E) is called a *quasi-tree graph*, if there exists a vertex $u_0 \in V(G)$ such that $G - u_0$ is a tree. The concept of quasi-tree graph was first

^{*}Received by the editors July 12, 2008. Accepted for publication July 9, 2010. Handling Editor: Bryan L. Shader.

[†]Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China. This work is financially supported by self-determined research funds of CCNU (CCNU09Y01005, CCNU09Y01018) from the colleges' basic research and operation of MOE. (S. Li's email: lscmath@mail.ccnu.edu.cn).

introduced in [18, 19]. A connected graph G = (V, E) is called a *quasi-unicyclic* graph, if there exists a vertex $u_0 \in V(G)$ such that $G - u_0$ is a unicyclic graph. The concept of quasi-unicyclic graph was first introduced in [9]. For convenience, set $\mathscr{T}(n,k) := \{G : G \text{ is a } n\text{-vertex quasi-tree graph with } k \text{ pendant vertices}\}$, and $\mathscr{T}(n,d_0,k) := \{G : G \in \mathscr{T}(n,k) \text{ and there is a vertex } u_0 \in V(G) \text{ such that } G - u_0 \text{ is a tree and } d_G(u_0) = d_0\}$. Similarly, set $\mathscr{U}(n,k) := \{G : G \in \mathscr{U}(n,k) \text{ and there is a vertex quasi-unicyclic graph with } k \text{ pendant vertices}\}$, and $\mathscr{U}(n,d_0,k) := \{G : G \in \mathscr{U}(n,k) \text{ and there is a vertex } u_0 \in V(G) \text{ such that } G - u_0 \text{ is a tree and } d_G(u_0) = d_0\}$.

The investigation of the spectral radius of graphs is an important topic in the theory of graph spectra. For results on the spectral radius of graphs, one may refer to [1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24] and the references therein.

Wu, Xiao and Hong [22] determined the spectral radius of trees on k pendant vertices. Guo, Gutman and Petrović [11, 20] determined the graphs with the largest spectral radius among all the unicyclic and bicyclic graphs with n vertices and k pendant vertices. The present authors determined the graph with maximum spectral radius among n-vertex tricyclic graphs with k pendant vertices; see [7]. In light of the information available for the spectral radii of trees and unicyclic graphs, it is natural to consider other classes of graphs, and the quasi-tree graphs (respectively, quasi-unicyclic graphs) are a reasonable starting point for such an investigation.

In this article, we determine the maximal spectral radii of all graphs in the set $\mathscr{T}(n,k), \ \mathscr{T}(n,d_0,k), \ \mathscr{U}(n,k), \text{ and } \ \mathscr{U}(n,d_0,k)$ respectively. The corresponding extremal graphs are also characterized.

2. Preliminaries. Denote the cycle, the path, and the star on n vertices by C_n , P_n , and $K_{1,n-1}$ respectively. Let G-x or G-xy denote the graph that arises from G by deleting the vertex $x \in V(G)$ or the edge $xy \in E(G)$. Similarly, G + xy is a graph that arises from G by inserting an edge $xy \notin E(G)$, where $x, y \in V(G)$. A pendant vertex of G is a vertex of degree 1. The k paths $P_{l_1}, P_{l_2}, \ldots, P_{l_k}$ are said to have almost equal lengths if l_1, l_2, \ldots, l_k satisfy $|l_i - l_j| \leq 1$ for $1 \leq i, j \leq k$. For $v \in V(G)$, $d_G(v)$ denotes the degree of vertex v and $N_G(v)$ denotes the set of all neighbors of vertex v in G.

Let G' be a subgraph of G with $v \in V(G')$. We denote by T the connected component containing v in the graph obtained from G by deleting the neighbors of v

in G'. If T is a tree, we call T a pendant tree of G. Then v is called the root of T, or the root-vertex of G. Throughout this paper, we assume that T does not include the root.

In this section, we list some known results which will be needed in this paper.

LEMMA 2.1 ([17, 22]). Let G be a connected graph and $\rho(G)$ be the spectral radius of A(G). Let u, v be two vertices of G. Suppose $v_1, v_2, \ldots, v_s \in N_G(v) \setminus N_G(u) (1 \le s \le d_G(v))$ and $\mathbf{x} = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of A(G), where x_i corresponds to $v_i(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges vv_i and inserting the edges $uv_i (1 \le i \le s)$. If $x_u \ge x_v$, then $\rho(G) < \rho(G^*)$.

LEMMA 2.2 ([12]). Let G, G', G'' be three mutually disjoint connected graphs. Suppose that u, v are two vertices of G, u' is a vertex of G' and u'' is a vertex of G''. Let G_1 be the graph obtained from G, G', G'' by identifying, respectively, u with u'and v with u''. Let G_2 be the graph obtained from G, G', G'' by identifying vertices u, u', u''. Let G_3 be the graph obtained from G, G', G'' by identifying vertices v, u', u''. Then either $\rho(G_1) < \rho(G_2)$ or $\rho(G_1) < \rho(G_3)$.

Let G be a connected graph, and $uv \in E(G)$. The graph $G_{u,v}$ is obtained from G by subdividing the edge uv, i.e., inserting a new vertex w and edges wu, wv in G-uv. Hoffman and Smith define an *internal path* of G as a walk $v_0v_1 \dots v_s$ ($s \ge 1$) such that the vertices v_0, v_1, \dots, v_s are distinct, $d_G(v_0) > 2$, $d_G(v_s) > 2$, and $d_G(v_i) = 2$, whenever 0 < i < s. And s is called the length of the internal path. An internal path is closed if $v_0 = v_s$.

Let W_n be the tree on n vertices obtained from a path P_{n-4} (of length n-5) by attaching two new pendant edges to each end vertex of P_{n-4} , respectively. In [15], Hoffman and Smith obtained the following result:

LEMMA 2.3 ([15]). Let uv be an edge of the connected graph G on n vertices.

- (i) If uv does not belong to an internal path of G, and $G \neq C_n$, then $\rho(G_{u,v}) > \rho(G)$;
- (ii) If uv belongs to an internal path of G, and $G \neq W_n$, then $\rho(G_{u,v}) < \rho(G)$.

LEMMA 2.4. Let G_1 and G_2 be two graphs.

- (i) ([16]) If G_2 is a proper spanning subgraph of a connected graph G_1 . Then $\phi(G_2; \lambda)$ > $\phi(G_1; \lambda)$ for $\lambda \ge \rho(G_1)$;
- (ii) ([4, 5]) If $\phi(G_2; \lambda) > \phi(G_1; \lambda)$ for $\lambda \ge \rho(G_2)$, then $\rho(G_1) > \rho(G_2)$;

(iii) ([15]) If G_2 is a proper subgraph of a connected graph G_1 , then $\rho(G_2) < \rho(G_1)$.

LEMMA 2.5 ([10, 16]). Let v be a vertex in a non-trivial connected graph G and suppose that two paths of lengths k, $m (k \ge m \ge 1)$ are attached to G by their end vertices at v to form $G_{k,m}^*$. Then $\rho(G_{k,m}^*) > \rho(G_{k+1,m-1}^*)$.

REMARK 2.6. If the *m* vertices of a graph *G* can be partitioned into *k* disjoint paths of almost equal lengths, then a simple arithmetic argument shows that either k|m and all the paths have m/k vertices, or $k \nmid m$ and then the paths have length $\lfloor m/k \rfloor$ or $\lfloor m/k \rfloor + 1$ and there are $m - k \cdot \lfloor \frac{m}{k} \rfloor$ paths of the latter length.

3. Spectral radius of quasi-tree graphs with k pendant vertices. In this section, we shall determine the spectral radii of graphs in $\mathscr{T}(n, d_0, k)$ and $\mathscr{T}(n, k)$, respectively. Note that for the set $\mathscr{T}(n, d_0, k)$, when $d_0 = 1$, $\mathscr{T}(n, 1, k)$ is just the set of all n-vertex trees with k pendant vertices. In [22] the maximal spectral radius of all the graphs in the set $\mathscr{T}(n, 1, k)$ is determined. So, we consider the case of $d_0 \ge 2$ in what follows.

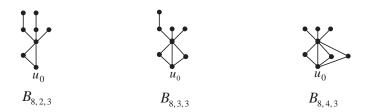


Figure 1. Graphs $B_{8,2,3}, B_{8,3,3}, B_{8,4,3}$.

Let $B_{n,d_0,k}$ be an *n*-vertex graph obtained from K_{1,d_0-1} and an isolated vertex u_0 by inserting all edges between K_{1,d_0-1} and u_0 , and attaching k paths with almost equal lengths to the center of K_{1,d_0-1} . For example, graphs $B_{8,2,3}$, $B_{8,3,3}$, $B_{8,4,3}$ are depicted in Figure 1. Note that for any $G \in \mathscr{T}(n, d_0, k)$, we have $k + d_0 \leq n - 1$.

THEOREM 3.1. Let $G \in \mathscr{T}(n, d_0, k)$ with $d_0 \ge 2, k > 0$. Then

$$\rho(G) \le \rho(B_{n,d_0,k})$$

and the equality holds if and only if $G \cong B_{n,d_0,k}$.

Proof. Choose $G \in \mathscr{T}(n, d_0, k)$ such that $\rho(G)$ is as large as possible. Let $V(G) = \{u_0, u_1, u_2, \ldots, u_{n-1}\}$ and $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T$ be the Perron vector of

A(G), where x_i corresponds to the vertex u_i for $0 \le i \le n-1$. Assume that $G' := G - u_0$ is a tree. Choose a vertex $u_1 \in V(G')$ such that $d_{G'}(u_1)$ is as large as possible.

Note that G has pendant vertices, hence by Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_2 , of G.

First, we establish the following sequence of facts.

FACT 1. Each vertex u of T has degree $d(u) \leq 2$.

Proof. Suppose to the contrary that there exists one vertex u_i of T such that $d(u_i) > 2$. Denote $N(u_i) = \{z_1, z_2, \ldots, z_t\}$ and $N(u_2) = \{w_1, w_2, \ldots, w_s\}$. Assume that z_1, w_3 belong to the path joining u_i and u_2 , and that w_1, w_2 belong to some cycle in G. Let

$$G^* = \begin{cases} G - \{u_i z_3, \dots, u_i z_t\} + \{u_2 z_3, \dots, u_2 z_t\}, & \text{if } x_2 \ge x_i, \\ G - \{u_2 w_1, u_2 w_4, \dots, u_2 w_s\} + \{u_i w_1, u_i w_4, \dots, u_i w_s\}, & \text{if } x_2 < x_i. \end{cases}$$

Then $G^* \in \mathscr{T}(n, d_0, k)$. By Lemma 2.1, we have $\rho(G^*) > \rho(G)$, a contradiction. Thus G is a graph with k paths attached to u_2 .

FACT 2. k paths attached to u_2 have almost equal lengths.

Proof. Denote the k paths attached to u_2 by $P_{l_1}, P_{l_2}, \ldots, P_{l_k}$, then we will show that $|l_i - l_j| \leq 1$ for $1 \leq i, j \leq k$. If there exist two paths, say P_{l_1} and P_{l_2} , such that $|l_1 - l_2| \geq 2$, denote $P_{l_1} = u_2 v_1 v_2 \ldots v_{l_1}$ and $P_{l_2} = u_2 w_1 w_2 \ldots w_{l_2}$. Let

$$G^* = G - \{v_{l_1-1}v_{l_1}\} + \{w_{l_2}v_{l_1}\}.$$

Then $G^* \in \mathscr{T}(n, d_0, k)$. By Lemma 2.5, we have $\rho(G^*) > \rho(G)$, a contradiction. Thus k paths attached to u_2 have almost equal lengths. \square

By Facts 1 and 2, G is a graph with k paths with almost equal lengths attached to u_2 of G.

FACT 3. $u_1 = u_2$.

Proof. Suppose that $u_1 \neq u_2$. Since G' is a tree, there is an unique path P_m $(m \geq 2)$ connecting u_1 and u_2 in G'. By the choice of $u_1, d_{G'}(u_1) \geq d_{G'}(u_2) \geq k+2$, there is a vertex $u_3 \in d_{G'}(u_1)$ such that $u_3 \notin P_m$. Let $v_1 \in N_{G'}(u_2)$ and $v_1 \in V(T)$. Set

$$G^* = \begin{cases} G - u_2 v_1 + u_1 v_1, & \text{if } x_1 \ge x_2, \\ G - u_1 u_3 + u_2 u_3, & \text{if } x_1 < x_2. \end{cases}$$

Then $G^* \in \mathscr{T}(n, d_0, k)$. By Lemma 2.1, we have $\rho(G^*) > \rho(G)$, a contradiction. Hence $u_1 = u_2$.

FACT 4. u_1 is adjacent to each vertex of G' - T.

Proof. We first show that there does not exist an internal path of G - T with length greater than 1 unless the path lies on a cycle of length 3. Otherwise, if there is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3, then let $w_1w_2...w_l$ be such an internal path, and assume that v_m is a pendant vertex in T. Let

$$G^* = G - w_1 w_2 - w_2 w_3 + w_1 w_3 + v_m w_2.$$

Then $G^* \in \mathscr{T}(n, d_0, k)$ with $\rho(G) < \rho(G^*)$ by Lemmas 2.3(ii) and 2.4(iii), a contradiction. Hence, there does not exist an internal path of G - T with length greater than 1 unless the path lies on a cycle of length 3.

Next we suppose that $u_1u_i \notin E(G)$ for some $u_i \in V(G') \setminus V(T)$. Since G' is a tree, there is an unique path connecting u_1 and u_i in G'. Let u_1, u_4, u_5 be the first three vertices on the path connecting u_1 and u_i in G' (possibly $u_5 = u_i$), then $u_1u_4, u_4u_5 \in E(G)$ and $u_1u_5 \notin E(G)$. Assume that v_1 is in both $N_{G'}(u_1)$ and V(T).

If $x_1 \ge x_4$, let $G^* = G - u_4u_5 + u_1u_5$; if $x_1 < x_4$, let $G^* = G - u_1v_1 + u_4v_1$. In either case, $G^* \in \mathscr{T}(n, d_0, k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, $u_1u_i \in E(G)$ for all $u_i \in V(G') \setminus V(T)$. \Box

By Fact 4, we have $N_G(u_0) \subseteq N_G(u_1)$, and since there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. So we can obtain $u_0u_1 \in E(G)$. As $G \in \mathscr{T}(n, d_0, k)$, u_0 must be adjacent to each vertex of $V(G') \setminus V(T)$. Together with Remark 2.6, we obtain $G \cong B_{n,d_0,k}$.

This completes the proof of Theorem 3.1. \Box

For the set of graphs $\mathscr{T}(n, k)$, when k = n - 1, $\mathscr{T}(n, n - 1) = \{K_{n,n-1}\}$ and when k = n - 2, $\mathscr{T}(n, n - 2) = \{H_t : H_t \text{ is obtained from an edge } v_1v_2 \text{ by appending } t \text{ (resp. } n - 2 - t) \text{ pendant edges to } v_1 \text{ (resp. } v_2), \text{ where } 0 < t < n - 2\}.$ By Lemma 2.2, H_1 is the unique graph in $\mathscr{T}(n, n - 2)$ with maximal spectral radius. Hence, we need only consider the case of $1 \le k \le n - 3$.

Let $C_{n,k}$, $(1 \le k \le n-3)$ be a graph obtained from $K_{1,n-2}$ and an isolated vertex u_0 by inserting edges to connecting u_0 with the center of $K_{1,n-2}$ and n-k-2

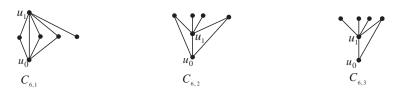


Figure 2. Graphs $C_{6,1}, C_{6,2}$ and $C_{6,3}$.

pendant vertices of $K_{1,n-2}$. For example, graphs $C_{6,1}, C_{6,2}$ and $C_{6,3}$ are depicted in Figure 2.

THEOREM 3.2. Let $G \in \mathscr{T}(n,k)$ with $1 \le k \le n-3$. Then

$$\rho(G) \le \rho(C_{n,k})$$

and the equality holds if and only if $G \cong C_{n,k}$.

Proof. Choose $G \in \mathscr{T}(n,k)$ such that $\rho(G)$ is as large as possible. Let $V(G) = \{u_0, u_1, \ldots, u_{n-1}\}$ and $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T$ be the Perron vector of A(G), where x_i corresponds to the vertex u_i $(0 \le i \le n-1)$. Assume $G - u_0$ is a tree. Denote $G_0 = G - u_0$.

Note that G has pendant vertices, hence in view of Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_1 , of G. Similar to the proof of Facts 1 and 2 in Theorem 3.1, we obtain that G is a graph having k paths with almost equal lengths attached to u_1 . We establish the following sequence of facts.

FACT 1. The pendant tree T contained in G is a star.

Proof. As T is a tree obtained by attaching k paths with almost equal lengths to the vertex u_1 . Then it is sufficient to show that the length of each path is 1. Suppose to the contrary that $v_1v_2...v_t$ where $v_1 = u_1$ is such a path of length t - 1 > 1. Let

$$G' = G - v_1 v_2 - v_2 v_3 + v_1 v_3 + u_0 v_2 + u_1 v_2.$$

Then $G' \in \mathscr{T}(n,k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G) < \rho(G')$, a contradiction. Hence the length of each path is 1. So we have T is a star. \Box

FACT 2. u_1 is adjacent to each vertex of $G_0 - T$.

Proof. We first show that there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, assume

that $w_1w_2...w_l$ is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3. Let

$$G' = G - w_1 w_2 - w_2 w_3 + w_1 w_3 + u_0 w_2 + u_1 w_2.$$

Then $G' \in \mathscr{T}(n,k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G) < \rho(G')$, a contradiction. Hence, there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3.

Now suppose that $u_1u_i \notin E(G)$ for some $u_i \in V(G_0) \setminus V(T)$. Since G_0 is a tree, there is an unique path connecting u_1 and u_i in G_0 . Let u_1, u_4, u_5 be the first three vertices on the path connecting u_1 and u_i in G_0 (possibly $u_5 = u_i$), then $u_1u_4, u_4u_5 \in E(G)$ and $u_1u_5 \notin E(G)$. Denote $v_1 \in N_{G_0}(u_1)$, and $v_1 \in V(T)$.

If $x_1 \ge x_4$, let $G^* = G - u_4 u_5 + u_1 u_5$; if $x_1 < x_4$, let $G^* = G - u_1 v_1 + u_4 v_1$. Then in either case, $G^* \in \mathscr{T}(n,k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, $u_1 u_i \in E(G)$ for all $u_i \in V(G_0) \setminus V(T)$. \square

By Fact 2, we have $N_G(u_0) \subseteq N_G(u_1)$, and since there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. So we can obtain $u_0u_1 \in E(G)$. As $G \in \mathscr{T}(n,k)$, u_0 must be adjacent to each vertex of $V(G_0) \setminus V(T)$, together with Remark 2.6, we obtain $G \cong C_{n,k}$.

This completes the proof of Theorem 3.2. \square

4. Spectral radius of quasi-unicyclic graphs with k pendant vertices. In this section, we determine the spectral radii of graphs in $\mathscr{U}(n, d_0, k)$ and $\mathscr{U}(n, k)$, respectively. Note that $\mathscr{U}(n, 1, k)$ is just the set of all *n*-vertex unicyclic graphs with k pendant vertices. In [11] the maximal spectral radius of all the graphs in the set $\mathscr{U}(n, 1, k)$ is determined. So, we consider the case of $d_0 \ge 2$ in what follows. Note that for any *n*-vertex quasi-unicyclic graph with k pendant vertices, we have $k \le n-4$ when $d_0 = 2, 3$, and $k + d_0 \le n - 1$ when $d_0 > 3$.

In order to formulate our results, we need to define some quasi-unicyclic graphs as follows. Graphs U_1, U_2, U_3, U_4 and U_5 are depicted in Figure 3, where the order of U_3 (respectively, U_4, U_5) is $d_0 + 1$ (respectively, $d_0 + 2$, $d_0 + 3$).

Let $U_{n,2,k}^1$ (respectively, $U_{n,2,k}^2$) be an *n*-vertex graph obtained from U_1 (respectively, U_2) by attaching k paths with almost equal lengths to the vertex u in U_1 (respectively, U_2). For $d_0 \geq 3$, let $U_{n,d_0,k}^1$ (respectively, $U_{n,d_0,k}^2, U_{n,d_0,k}^3$) be an *n*-vertex

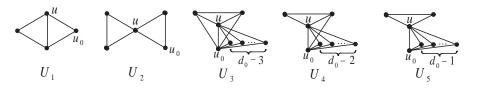


Figure 3. Graphs U_1 , U_2 , U_3 , U_4 and U_5 .

graph obtained from U_3 (respectively, U_4, U_5) by attaching k paths with almost equal lengths to the vertex u in U_3 (respectively, U_4, U_5). For example, $U_{9,2,2}^1, U_{9,3,2}^1, U_{9,3,2}^2, U_{9,3,2}^2, U_{9,3,2}^3, U_{9,3,2}^1, U_{9,4,2}^1, U_{9,4,2}^2$ and $U_{9,4,2}^3$ are depicted in Figure 4.

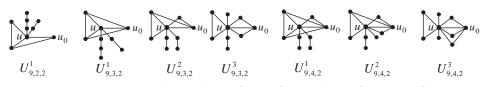


Figure 4. Graphs $U_{9,2,2}^1$, $U_{9,3,2}^1$, $U_{9,3,2}^2$, $U_{9,3,2}^3$, $U_{9,4,2}^1$, $U_{9,4,2}^2$ and $U_{9,4,2}^3$.

THEOREM 4.1. Let $G \in \mathscr{U}(n, d_0, k), k > 0$. Then

(i) if $d_0 = 2$, then

$$\rho(G) \le \rho(U_{n,2,k}^1)$$

and equality holds if and only if $G \cong U^1_{n,2,k}$.

(ii) if $d_0 \geq 3$, then

$$\rho(G) \leq \{\rho(U_{n,d_0,k}^1), \rho(U_{n,d_0,k}^2), \rho(U_{n,d_0,k}^3)\}$$

and equality holds if and only if $G \cong U^1_{n,d_0,k}$ or, $G \cong U^2_{n,d_0,k}$ or, $G \cong U^3_{n,d_0,k}$

Proof. Choose $G \in \mathscr{U}(n, d_0, k)$ such that $\rho(G)$ is as large as possible. Let $V(G) = \{u_0, u_1, u_2, \ldots, u_{n-1}\}$ and $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T$ be the Perron vector of A(G), where x_i corresponds to the vertex u_i , $(0 \le i \le n-1)$. Assume $G - u_0$ is a unicyclic graph. Denote $G' = G - u_0$. Choose a vertex $u_1 \in V(G')$ such that $d_{G'}(u_1)$ is as large as possible.

Note that G has pendant vertices, hence by Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_2 , of G. Similar to the proof of Facts 1 and 2 in Theorem 3.1, G is a graph having k paths with almost equal lengths attached to u_2 . We establish the following sequence of facts.

FACT 1. The cycle contained in G' is C_3 .

Proof. We first show that there does not exists an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, if there is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3, then let $w_1w_2...w_l$ be such an internal path, and assume that v_m is a pendant vertex in T. Let

$$G^* = G - w_1 w_2 - w_2 w_3 + w_1 w_3 + v_m w_2.$$

Then $G^* \in \mathscr{U}(n, d_0, k)$ with $\rho(G) < \rho(G^*)$ by Lemmas 2.3(ii) and 2.4(iii), a contradiction. Hence, there does not exist an internal path of G with length greater than 1 unless the paths lies on a cycle of length 3. And then we suppose that this cycle contained in G' is $C_m(m > 3)$. We may assume $u_2u_3 \in E(C_m)$. Since m > 3, there is at least a vertex $u_4 \in N(u_2) \setminus N(u_3)$, and there is at least a vertex $u_5 \in N(u_3) \setminus N(u_2)$. Let

$$G^* = \begin{cases} G - u_3 u_5 + u_2 u_5, & \text{if } x_2 \ge x_3, \\ G - u_2 u_4 + u_3 u_4, & \text{if } x_2 < x_3. \end{cases}$$

Then, $G^* \in \mathscr{U}(n, d_0, k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, m = 3. \Box

FACT 2. The vertex u_1 is in $V(C_3)$.

Proof. Suppose that $u_1 \notin V(C_3)$ and set $V(C_3) := \{u_3, u_4, u_5\}$. Since G' is a connected graph, there is a unique path $P_k(k \ge 2)$ connecting u_1 with C_3 in G'. We may assume that $u_3 \in P_k$. By the choice of $u_1, d_{G'}(u_1) \ge d_{G'}(u_3) \ge 3$, there is a vertex $u_6 \in N(u_1)$ such that $u_6 \notin P_k$.

If $x_1 \ge x_3$, let $G^* = G - u_3 u_4 + u_1 u_4$; if $x_1 < x_3$, let $G^* = G - u_1 u_6 + u_3 u_6$. Then in either case, $G^* \in \mathscr{U}(n, d_0, k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, $u_1 \in V(C_3)$. \square

By Fact 2, we may assume $V(C_3) = \{u_1, u_3, u_4\}.$

FACT 3. $u_1 = u_2$.

Proof. Suppose that $u_1 \neq u_2$. Since G' is a connected graph, there is a unique path P_m $(m \geq 2)$ connecting u_1 and u_2 in G'. By the choice of u_1 , $d_{G'}(u_1) \geq d_{G'}(u_2) \geq k+2$, there is a vertex $u_5 \in N_{G'}(u_1)$ and $u_5 \notin P_m$. Assume that $v_1 \in N_{G'}(u_2)$ and

 $v_1 \in V(T)$. If $u_2 \in V(C_3) \setminus \{u_1\}$, let

$$G^* = \begin{cases} G - u_2 v_1 + u_1 v_1, & \text{if } x_1 \ge x_2, \\ G - u_1 u_5 + u_2 u_5, & \text{if } x_1 < x_2. \end{cases}$$

If $u_2 \in V(G') \setminus V(C_3)$, let

$$G^* = \begin{cases} G - u_2 v_1 + u_1 v_1, & \text{if } x_1 \ge x_2, \\ G - u_1 u_3 + u_2 u_3, & \text{if } x_1 < x_2. \end{cases}$$

Then in either case $G^* \in \mathscr{U}(n, d_0, k)$. By Lemma 2.1, we have $\rho(G^*) > \rho(G)$, a contradiction. Hence $u_1 = u_2$. \square

Thus we assume that $V(C_3) = \{u_1, u_2, u_3\}.$

FACT 4. The vertex u_1 is adjacent to each vertex of $V(G') \setminus V(T)$.

Proof. From Fact 1 we know that there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. And then we suppose that $u_1u_i \notin E(G)$ for some $u_i \in V(G') \setminus V(T)$. Since G' is a unicyclic graph, there is a unique path connecting u_1 and u_i in G'. Let u_1, u_4, u_5 be the first three vertices on the path connecting u_1 and u_i in G' (possibly $u_5 = u_i$), then $u_1u_4, u_4u_5 \in E(G)$ and $u_1u_5 \notin E(G)$. Denote $v_1 \in N_{G'}(u_1)$, and $v_1 \in V(T)$.

If $x_1 \ge x_4$, let $G^* = G - u_4 u_5 + u_1 u_5$; if $x_1 < x_4$, let $G^* = G - u_1 v_1 + u_4 v_1$. Then in either case, $G^* \in \mathscr{U}(n, d_0, k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, $u_1 u_i \in E(G)$ for all $u_i \in V(G') \setminus V(T)$. \square

FACT 5. $u_0u_1 \in E(G)$.

Proof. Suppose that $u_0u_1 \notin E(G)$. Since $d_G(u_0) \geq 1$, we may assume, without loss of generality, that $u_iu_0 \in E(G)$, where $u_i \in V(G') \setminus \{u_1\}$. Assume there is a vertex $u_4 \in V(T)$.

If $u_i \in \{u_2, u_3\}$, then

$$G^* = \begin{cases} G - u_0 u_i + u_1 u_i, & \text{if } x_1 \ge x_i, \\ G - u_1 u_4 + u_i u_4, & \text{if } x_1 < x_i. \end{cases}$$

If $u_i \in V(G') \setminus \{u_2, u_3\}$, then

$$G^* = \begin{cases} G - u_0 u_i + u_1 u_i, & \text{if } x_1 \ge x_i, \\ G - u_1 u_2 + u_i u_2, & \text{if } x_1 < x_i. \end{cases}$$

Then in either case, $G^* \in \mathscr{U}(n, d_0, k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, $u_0u_1 \in E(G)$. \square

By Facts 1-5 and Remark 2.6, if $d_0 = 2$, we obtain that $G \cong U_{n,2,k}^1$ or $G \cong U_{n,2,k}^2$. We know from [20] that $\rho(U_{n,2,k}^1) > \rho(U_{n,2,k}^2)$, therefore, Theorem 4.1(i) holds. Similarly, if $d_0 \ge 3$, then we obtain that $G \cong U_{n,d_0,k}^1$ or, $G \cong U_{n,d_0,k}^2$ or, $G \cong U_{n,d_0,k}^3$, therefore, Theorem 4.1(ii) holds.

This completes the proof of Theorem 4.1. \Box

To conclude this section, we determine the spectral radius of graphs in $\mathscr{U}(n,k)$. Let $B_m (m \ge 3)$ be a graph of order m obtained from C_3 by attaching m-3 pendant vertices to a vertex of C_3 . For any $G \in \mathscr{U}(n,k)$, we have $k \le n-3$. When k = n-3, $\mathscr{U}(n, n-3) = \{B_n\}$. So we consider only the case of $1 \le k \le n-4$ here.

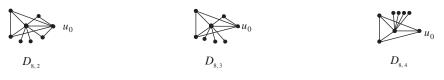


Figure 5. Graphs $D_{8,k}$ for k = 2, 3, 4.

Let $D_{n,k}(1 \le k \le n-4)$ be a graph obtained from B_{n-1} and an isolated vertex u_0 by inserting all edges between u_0 and three non-pendant vertices and n-k-4 pendant vertices of B_{n-1} . For example, graphs $D_{8,2}, D_{8,3}, D_{8,4}$ are depicted in Figure 5. It is easy to see that the graph $D_{n,k}$ defined as above is in $\mathscr{U}(n,k)$.

THEOREM 4.2. Let $G \in \mathscr{U}(n,k)$ with $1 \leq k \leq n-4$. Then

$$\rho(G) \le \rho(D_{n,k})$$

and the equality holds if and only if $G \cong D_{n,k}$.

Proof. Choose $G \in \mathscr{U}(n,k)$ such that $\rho(G)$ is as large as possible. Let $V(G) = \{u_0, u_1, \ldots, u_{n-1}\}$ and $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T$ be the Perron vector of A(G), where x_i corresponds to the vertex u_i $(0 \le i \le n-1)$. Assume $G - u_0$ is a unicyclic graph. Denote $G' = G - u_0$.

Note that G has pendant vertices, hence in view of Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_1 , of G. With a similar method used in the proof of Facts 1 and 2 in Theorem 3.1, we obtain that $G \in \mathscr{U}(n, k)$ and

G has k paths with almost equal lengths attached to u_1 . We establish the following sequence of facts.

FACT 1. The cycle contained in G' is C_3 .

Proof. We first show that there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, if there is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3, and let $w_1w_2...w_lw_1$ be such an internal path. Set

$$G^* = G - w_1 w_2 - w_2 w_3 + w_1 w_3 + u_0 w_2 + u_1 w_2.$$

Then $G^* \in \mathscr{U}(n,k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G) < \rho(G^*)$, a contradiction. So, there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. And then we suppose that this cycle in G' is $C_m (m > 3)$. We may assume $u_2u_3 \in E(C_m)$. Since m > 3, there is at least a vertex $u_4 \in N(u_2) \setminus N(u_3)$, and there is at least one vertex, say u_5 , in $N(u_3) \setminus N(u_2)$. Let

$$G^* = \begin{cases} G - u_3 u_5 + u_2 u_5, & \text{if } x_2 \ge x_3, \\ G - u_2 u_4 + u_3 u_4, & \text{if } x_2 < x_3. \end{cases}$$

Then, $G^* \in \mathscr{U}(n,k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, m = 3.

FACT 2. T is a star.

Proof. It is sufficient to show that the length of each path is 1. Suppose to the contrary that $v_1v_2...v_k$ is such a path, where $v_1 = u_1$ and k > 2. Let

$$G^* = G - v_1 v_2 - v_2 v_3 + v_1 v_3 + u_0 v_2 + u_1 v_2.$$

Then $G^* \in \mathscr{U}(n,k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G) < \rho(G^*)$, a contradiction. Hence the length of each path is 1. So we have T is a star. \Box

FACT 3. u_1 is adjacent to each vertex of $V(G') \setminus V(T)$.

Proof. By Fact 1 (in Theorem 4.2), there does not exist an internal path of G - T with length greater than 1 unless the paths lies on a cycle of length 3. And then we suppose that $u_1u_i \notin E(G)$ for some $u_i \in V(G') \setminus V(T)$. As G is a quasi-unicyclic graph, there is an unique path connecting u_1 and u_i in G'. Let u_1, u_4, u_5 be the

first three vertices on the path connecting u_1 and u_i in G' (possibly $u_5 = u_i$), then $u_1u_4, u_4u_5 \in E(G)$ and $u_1u_5 \notin E(G)$. Denote $v_1 \in N_{G'}(u_1)$, and $v_1 \in V(T)$.

If $x_1 \ge x_4$, let $G^* = G - u_4 u_5 + u_1 u_5$; if $x_1 < x_4$, let $G^* = G - u_1 v_1 + u_4 v_1$. Then in either case, $G^* \in \mathscr{U}(n,k)$, and by Lemma 2.1, $\rho(G) < \rho(G^*)$, a contradiction. Therefore, $u_1 u_i \in E(G)$ for all $u_i \in V(G') \setminus V(T)$. This completes the proof of Fact 3. \square

By Facts 1-3, if we insert an edge e to a connected graph G, then $\rho(G+e) > \rho(G)$ as the adjacent matrix of a connected graph is irreducible. Therefore the proof of Theorem 4.2 is completed. \Box

Acknowledgments. The authors would like to express their sincere gratitude to the referee for a very careful reading of the paper and for all of his or her insightful comments and valuable suggestions, resulting in a number of improvements of this paper.

REFERENCES

- R.A. Brualdi and E.S. Solheid. On the spectral radius of connected graphs. Publ. Inst. Math. (Beograd) (N.S.) 39(53):45–54, 1986.
- [2] A. Chang and F. Tian. On the spectral radius of unicyclic graphs with perfect matching *Linear Algebra Appl.*, 370:237–250, 2003.
- [3] A. Chang, F. Tian and A. Yu. On the index of bicyclic graphs with perfect matchings. *Discrete Math.* 283:51–59, 2004.
- [4] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press Inc., New York, 1980. Third revised ed.: Johann Ambrosius Barth, Heidelberg, 1995.
- [5] D. Cvetković and P. Rowlinson. The largest eigenvalues of a graph: a survey. Linear and Multilinear Algebra, 28:3–33, 1990.
- [6] D. Cvetković and P. Rowlinson. Spectra of unicyclic graphs. Graphs Combin., 3:7–23, 1987.
- [7] X. Geng and S. Li. The spectral radius of tricyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 428:2639–2653, 2008.
- [8] X. Geng, S. Li, and X. Li. On the index of tricyclic graphs with perfect matchings. *Linear Algebra Appl.*, 431:2304–2316, 2009.
- X. Geng, S. Li, and S.K. Simić. On the spectral radius of quasi-k-cyclic graphs. Linear Algebra Appl., DOI: 10.1016/j.laa.2010.06.007, 2010.
- [10] J. Guo and J. Shao. On the spectral radius of trees with fixed diameter. *Linear Algebra Appl.* 413:131–147, 2006.
- [11] S. Guo. The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl. 408:78–85, 2005.
- [12] S. Guo. On the spectral radius of bicyclic graphs with n vertices and diameter d. Linear Algebra Appl. 422:119–132, 2007.
- [13] S. Guo, G.H. Xu, and Y.G. Chen. On the spectral radius of trees with n vertices and diameter d. Adv. Math. (China), 34:683–692, 2005 (Chinese).

- [14] Y. Hong. Bounds on the spectra of unicyclic graphs. J. East China Norm. Univ. Natur. Sci. Ed., 1:31–34, 1986 (Chinese).
- [15] A.J. Hoffman and J.H. Smith. On the spectral radii of topologically equivalent graphs. Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), Academia, Prague, pp. 273–281, 1975.
- [16] Q. Li and K. Feng. On the largest eigenvalue of graphs. Acta Math. Appl. Sinica, 2:167–175, 1979 (Chinese).
- [17] H. Liu, M. Lu, and F. Tian. On the spectral radius of graphs with cut edges. *Linear Algebra Appl.*, 389:139–145, 2004.
- [18] H. Liu and M. Lu. On the spectral radius of quasi-tree graphs. *Linear Algebra Appl.*, 428:2708– 2714, 2008.
- [19] M. Lu and J. Gao, On the Randić index of quasi-tree graphs, J. Math. Chem. 42:297–310, 2007.
- [20] M. Petrović, I. Gutman, and S.G. Guo. On the spectral radius of bicyclic graphs. Bull. Cl. Sci. Math. Nat. Sci. Math., 30:93–99, 2005.
- [21] S.K. Simić. On the largest eigenvalue of bicyclic graphs. Publ. Inst. Math. (Beograd) (N.S.) 46(60):101–106, 1989.
- [22] B. Wu, E. Xiao, and Y. Hong. The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 395:343–349, 2005.
- [23] G.H. Xu. On the spectral radius of trees with perfect matchings. Combinatorics and Graph Theory, World Scientific, Singapore, 1997.
- [24] A. Yu and F. Tian. On the spectral radius of bicyclic graphs. MATCH Commun. Math. Comput. Chem., 52:91–101, 2004.