ON THE SPECTRAL RADII OF QUASI-TREE GRAPHS AND QUASI-UNICYCLIC GRAPHS WITH K PENDANT VERTICES*

XIANYA GENG ${ }^{\dagger}$ AND SHUCHAO LI^{\dagger}

Abstract

A connected graph $G=(V, E)$ is called a quasi-tree graph if there exists a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a tree. A connected graph $G=(V, E)$ is called a quasi-unicyclic graph if there exists a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a unicyclic graph. Set $\mathscr{T}(n, k):=\{G: G$ is a n-vertex quasi-tree graph with k pendant vertices $\}$, and $\mathscr{T}\left(n, d_{0}, k\right):=\{G: G \in \mathscr{T}(n, k)$ and there is a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a tree and $\left.d_{G}\left(u_{0}\right)=d_{0}\right\}$. Similarly, set $\mathscr{U}(n, k):=\{G: G$ is a n-vertex quasi-unicyclic graph with k pendant vertices $\}$, and $\mathscr{U}\left(n, d_{0}, k\right):=\{G: G \in \mathscr{U}(n, k)$ and there is a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a unicyclic graph and $\left.d_{G}\left(u_{0}\right)=d_{0}\right\}$. In this paper, the maximal spectral radii of all graphs in the sets $\mathscr{T}(n, k), \mathscr{T}\left(n, d_{0}, k\right), \mathscr{U}(n, k)$, and $\mathscr{U}\left(n, d_{0}, k\right)$, are determined. The corresponding extremal graphs are also characterized.

Key words. Quasi-tree graph, Quasi-unicyclic graph, Eigenvalues, Pendant vertex, Spectral radius.

AMS subject classifications. 05C50.

1. Introduction. All graphs considered in this paper are finite, undirected and simple. Let $G=(V, E)$ be a graph with n vertices and let $A(G)$ be its adjacency matrix. Since $A(G)$ is symmetric, its eigenvalues are real. Without loss of generality, we can write them as $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ and call them the eigenvalues of G. The characteristic polynomial of G is just $\operatorname{det}(\lambda I-A(G))$, and is denoted by $\phi(G ; \lambda)$. The largest eigenvalue $\lambda_{1}(G)$ is called the spectral radius of G, denoted by $\rho(G)$. If G is connected, then $A(G)$ is irreducible and by the Perron-Frobenius theory of non-negative matrices, $\rho(G)$ has multiplicity one and there exists a unique positive unit eigenvector corresponding to $\rho(G)$. We shall refer to such an eigenvector as the Perron vector of G.

A connected graph $G=(V, E)$ is called a quasi-tree graph, if there exists a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a tree. The concept of quasi-tree graph was first

[^0]introduced in $[18,19]$. A connected graph $G=(V, E)$ is called a quasi-unicyclic graph, if there exists a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a unicyclic graph. The concept of quasi-unicyclic graph was first introduced in [9]. For convenience, set $\mathscr{T}(n, k):=\{G: G$ is a n-vertex quasi-tree graph with k pendant vertices $\}$, and $\mathscr{T}\left(n, d_{0}, k\right):=\left\{G: G \in \mathscr{T}(n, k)\right.$ and there is a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a tree and $\left.d_{G}\left(u_{0}\right)=d_{0}\right\}$. Similarly, set $\mathscr{U}(n, k):=\{G: G$ is a n-vertex quasi-unicyclic graph with k pendant vertices $\}$, and $\mathscr{U}\left(n, d_{0}, k\right):=\{G: G \in \mathscr{U}(n, k)$ and there is a vertex $u_{0} \in V(G)$ such that $G-u_{0}$ is a unicyclic graph and $\left.d_{G}\left(u_{0}\right)=d_{0}\right\}$.

The investigation of the spectral radius of graphs is an important topic in the theory of graph spectra. For results on the spectral radius of graphs, one may refer to $[1,2,3,4,5,6,8,11,12,13,14,15,16,17,18,19,21,23,24]$ and the references therein.

Wu, Xiao and Hong [22] determined the spectral radius of trees on k pendant vertices. Guo, Gutman and Petrović [11, 20] determined the graphs with the largest spectral radius among all the unicyclic and bicyclic graphs with n vertices and k pendant vertices. The present authors determined the graph with maximum spectral radius among n-vertex tricyclic graphs with k pendant vertices; see [7]. In light of the information available for the spectral radii of trees and unicyclic graphs, it is natural to consider other classes of graphs, and the quasi-tree graphs (respectively, quasi-unicyclic graphs) are a reasonable starting point for such an investigation.

In this article, we determine the maximal spectral radii of all graphs in the set $\mathscr{T}(n, k), \mathscr{T}\left(n, d_{0}, k\right), \mathscr{U}(n, k)$, and $\mathscr{U}\left(n, d_{0}, k\right)$ respectively. The corresponding extremal graphs are also characterized.
2. Preliminaries. Denote the cycle, the path, and the star on n vertices by C_{n}, P_{n}, and $K_{1, n-1}$ respectively. Let $G-x$ or $G-x y$ denote the graph that arises from G by deleting the vertex $x \in V(G)$ or the edge $x y \in E(G)$. Similarly, $G+x y$ is a graph that arises from G by inserting an edge $x y \notin E(G)$, where $x, y \in V(G)$. A pendant vertex of G is a vertex of degree 1 . The k paths $P_{l_{1}}, P_{l_{2}}, \ldots, P_{l_{k}}$ are said to have almost equal lengths if $l_{1}, l_{2}, \ldots, l_{k}$ satisfy $\left|l_{i}-l_{j}\right| \leq 1$ for $1 \leq i, j \leq k$. For $v \in V(G)$, $d_{G}(v)$ denotes the degree of vertex v and $N_{G}(v)$ denotes the set of all neighbors of vertex v in G.

Let G^{\prime} be a subgraph of G with $v \in V\left(G^{\prime}\right)$. We denote by T the connected component containing v in the graph obtained from G by deleting the neighbors of v
in G^{\prime}. If T is a tree, we call T a pendant tree of G. Then v is called the root of T, or the root-vertex of G. Throughout this paper, we assume that T does not include the root.

In this section, we list some known results which will be needed in this paper.
Lemma 2.1 ([17, 22]). Let G be a connected graph and $\rho(G)$ be the spectral radius of $A(G)$. Let u, v be two vertices of G. Suppose $v_{1}, v_{2}, \ldots, v_{s} \in N_{G}(v) \backslash N_{G}(u)(1 \leq s \leq$ $\left.d_{G}(v)\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $A(G)$, where x_{i} corresponds to $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges vv v_{i} and inserting the edges $u v_{i}(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\rho(G)<\rho\left(G^{*}\right)$.

Lemma 2.2 ([12]). Let $G, G^{\prime}, G^{\prime \prime}$ be three mutually disjoint connected graphs. Suppose that u, v are two vertices of G, u^{\prime} is a vertex of G^{\prime} and $u^{\prime \prime}$ is a vertex of $G^{\prime \prime}$. Let G_{1} be the graph obtained from $G, G^{\prime}, G^{\prime \prime}$ by identifying, respectively, u with u^{\prime} and v with $u^{\prime \prime}$. Let G_{2} be the graph obtained from $G, G^{\prime}, G^{\prime \prime}$ by identifying vertices $u, u^{\prime}, u^{\prime \prime}$. Let G_{3} be the graph obtained from $G, G^{\prime}, G^{\prime \prime}$ by identifying vertices $v, u^{\prime}, u^{\prime \prime}$. Then either $\rho\left(G_{1}\right)<\rho\left(G_{2}\right)$ or $\rho\left(G_{1}\right)<\rho\left(G_{3}\right)$.

Let G be a connected graph, and $u v \in E(G)$. The graph $G_{u, v}$ is obtained from G by subdividing the edge $u v$, i.e., inserting a new vertex w and edges $w u, w v$ in $G-u v$. Hoffman and Smith define an internal path of G as a walk $v_{0} v_{1} \ldots v_{s}(s \geq 1)$ such that the vertices $v_{0}, v_{1}, \ldots, v_{s}$ are distinct, $d_{G}\left(v_{0}\right)>2, d_{G}\left(v_{s}\right)>2$, and $d_{G}\left(v_{i}\right)=2$, whenever $0<i<s$. And s is called the length of the internal path. An internal path is closed if $v_{0}=v_{s}$.

Let W_{n} be the tree on n vertices obtained from a path P_{n-4} (of length $n-5$) by attaching two new pendant edges to each end vertex of P_{n-4}, respectively. In [15], Hoffman and Smith obtained the following result:

Lemma 2.3 ([15]). Let uv be an edge of the connected graph G on n vertices.
(i) If uv does not belong to an internal path of G, and $G \neq C_{n}$, then $\rho\left(G_{u, v}\right)>\rho(G)$;
(ii) If uv belongs to an internal path of G, and $G \neq W_{n}$, then $\rho\left(G_{u, v}\right)<\rho(G)$.

Lemma 2.4. Let G_{1} and G_{2} be two graphs.
(i) ([16])If G_{2} is a proper spanning subgraph of a connected graph G_{1}. Then $\phi\left(G_{2} ; \lambda\right)$ $>\phi\left(G_{1} ; \lambda\right)$ for $\lambda \geq \rho\left(G_{1}\right)$;
(ii) $([4,5])$ If $\phi\left(G_{2} ; \lambda\right)>\phi\left(G_{1} ; \lambda\right)$ for $\lambda \geq \rho\left(G_{2}\right)$, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$;
(iii) ([15])If G_{2} is a proper subgraph of a connected graph G_{1}, then $\rho\left(G_{2}\right)<\rho\left(G_{1}\right)$.

Lemma $2.5([10,16])$. Let v be a vertex in a non-trivial connected graph G and suppose that two paths of lengths $k, m(k \geq m \geq 1)$ are attached to G by their end vertices at v to form $G_{k, m}^{*}$. Then $\rho\left(G_{k, m}^{*}\right)>\rho\left(G_{k+1, m-1}^{*}\right)$.

REMARK 2.6. If the m vertices of a graph G can be partitioned into k disjoint paths of almost equal lengths, then a simple arithmetic argument shows that either $k \mid m$ and all the paths have m / k vertices, or $k \nmid m$ and then the paths have length $\lfloor m / k\rfloor$ or $\lfloor m / k\rfloor+1$ and there are $m-k \cdot\left\lfloor\frac{m}{k}\right\rfloor$ paths of the latter length.
3. Spectral radius of quasi-tree graphs with k pendant vertices. In this section, we shall determine the spectral radii of graphs in $\mathscr{T}\left(n, d_{0}, k\right)$ and $\mathscr{T}(n, k)$, respectively. Note that for the set $\mathscr{T}\left(n, d_{0}, k\right)$, when $d_{0}=1, \mathscr{T}(n, 1, k)$ is just the set of all n-vertex trees with k pendant vertices. In [22] the maximal spectral radius of all the graphs in the set $\mathscr{T}(n, 1, k)$ is determined. So, we consider the case of $d_{0} \geq 2$ in what follows.

$B_{8,3}$

$B_{8,4}$

Figure 1. Graphs $B_{8,2,3}, B_{8,3,3}, B_{8,4,3}$.

Let $B_{n, d_{0}, k}$ be an n-vertex graph obtained from $K_{1, d_{0}-1}$ and an isolated vertex u_{0} by inserting all edges between $K_{1, d_{0}-1}$ and u_{0}, and attaching k paths with almost equal lengths to the center of $K_{1, d_{0}-1}$. For example, graphs $B_{8,2,3}, B_{8,3,3}, B_{8,4,3}$ are depicted in Figure 1. Note that for any $G \in \mathscr{T}\left(n, d_{0}, k\right)$, we have $k+d_{0} \leq n-1$.

Theorem 3.1. Let $G \in \mathscr{T}\left(n, d_{0}, k\right)$ with $d_{0} \geq 2, k>0$. Then

$$
\rho(G) \leq \rho\left(B_{n, d_{0}, k}\right)
$$

and the equality holds if and only if $G \cong B_{n, d_{0}, k}$.
Proof. Choose $G \in \mathscr{T}\left(n, d_{0}, k\right)$ such that $\rho(G)$ is as large as possible. Let $V(G)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ and $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ be the Perron vector of
$A(G)$, where x_{i} corresponds to the vertex u_{i} for $0 \leq i \leq n-1$. Assume that $G^{\prime}:=$ $G-u_{0}$ is a tree. Choose a vertex $u_{1} \in V\left(G^{\prime}\right)$ such that $d_{G^{\prime}}\left(u_{1}\right)$ is as large as possible.

Note that G has pendant vertices, hence by Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_{2}, of G.

First, we establish the following sequence of facts.
FACT 1. Each vertex u of T has degree $d(u) \leq 2$.
Proof. Suppose to the contrary that there exists one vertex u_{i} of T such that $d\left(u_{i}\right)>2$. Denote $N\left(u_{i}\right)=\left\{z_{1}, z_{2}, \ldots, z_{t}\right\}$ and $N\left(u_{2}\right)=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$. Assume that z_{1}, w_{3} belong to the path joining u_{i} and u_{2}, and that w_{1}, w_{2} belong to some cycle in G. Let

$$
G^{*}= \begin{cases}G-\left\{u_{i} z_{3}, \ldots, u_{i} z_{t}\right\}+\left\{u_{2} z_{3}, \ldots, u_{2} z_{t}\right\}, & \text { if } x_{2} \geq x_{i} \\ G-\left\{u_{2} w_{1}, u_{2} w_{4}, \ldots, u_{2} w_{s}\right\}+\left\{u_{i} w_{1}, u_{i} w_{4}, \ldots, u_{i} w_{s}\right\}, & \text { if } x_{2}<x_{i}\end{cases}
$$

Then $G^{*} \in \mathscr{T}\left(n, d_{0}, k\right)$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Thus G is a graph with k paths attached to u_{2}.

FACT 2. k paths attached to u_{2} have almost equal lengths.
Proof. Denote the k paths attached to u_{2} by $P_{l_{1}}, P_{l_{2}}, \ldots, P_{l_{k}}$, then we will show that $\left|l_{i}-l_{j}\right| \leq 1$ for $1 \leq i, j \leq k$. If there exist two paths, say $P_{l_{1}}$ and $P_{l_{2}}$, such that $\left|l_{1}-l_{2}\right| \geq 2$, denote $P_{l_{1}}=u_{2} v_{1} v_{2} \ldots v_{l_{1}}$ and $P_{l_{2}}=u_{2} w_{1} w_{2} \ldots w_{l_{2}}$. Let

$$
G^{*}=G-\left\{v_{l_{1}-1} v_{l_{1}}\right\}+\left\{w_{l_{2}} v_{l_{1}}\right\} .
$$

Then $G^{*} \in \mathscr{T}\left(n, d_{0}, k\right)$. By Lemma 2.5, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Thus k paths attached to u_{2} have almost equal lengths.

By Facts 1 and 2, G is a graph with k paths with almost equal lengths attached to u_{2} of G.

FACT 3. $u_{1}=u_{2}$.
Proof. Suppose that $u_{1} \neq u_{2}$. Since G^{\prime} is a tree, there is an unique path $P_{m}(m \geq$ 2) connecting u_{1} and u_{2} in G^{\prime}. By the choice of $u_{1}, d_{G^{\prime}}\left(u_{1}\right) \geq d_{G^{\prime}}\left(u_{2}\right) \geq k+2$, there is a vertex $u_{3} \in d_{G^{\prime}}\left(u_{1}\right)$ such that $u_{3} \notin P_{m}$. Let $v_{1} \in N_{G^{\prime}}\left(u_{2}\right)$ and $v_{1} \in V(T)$. Set

$$
G^{*}= \begin{cases}G-u_{2} v_{1}+u_{1} v_{1}, & \text { if } x_{1} \geq x_{2} \\ G-u_{1} u_{3}+u_{2} u_{3}, & \text { if } x_{1}<x_{2}\end{cases}
$$

Then $G^{*} \in \mathscr{T}\left(n, d_{0}, k\right)$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Hence $u_{1}=u_{2}$.

FACT 4. u_{1} is adjacent to each vertex of $G^{\prime}-T$.
Proof. We first show that there does not exist an internal path of $G-T$ with length greater than 1 unless the path lies on a cycle of length 3. Otherwise, if there is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3 , then let $w_{1} w_{2} \ldots w_{l}$ be such an internal path, and assume that v_{m} is a pendant vertex in T. Let

$$
G^{*}=G-w_{1} w_{2}-w_{2} w_{3}+w_{1} w_{3}+v_{m} w_{2} .
$$

Then $G^{*} \in \mathscr{T}\left(n, d_{0}, k\right)$ with $\rho(G)<\rho\left(G^{*}\right)$ by Lemmas 2.3(ii) and 2.4(iii), a contradiction. Hence, there does not exist an internal path of $G-T$ with length greater than 1 unless the path lies on a cycle of length 3 .

Next we suppose that $u_{1} u_{i} \notin E(G)$ for some $u_{i} \in V\left(G^{\prime}\right) \backslash V(T)$. Since G^{\prime} is a tree, there is an unique path connecting u_{1} and u_{i} in G^{\prime}. Let u_{1}, u_{4}, u_{5} be the first three vertices on the path connecting u_{1} and u_{i} in G^{\prime} (possibly $u_{5}=u_{i}$), then $u_{1} u_{4}, u_{4} u_{5} \in E(G)$ and $u_{1} u_{5} \notin E(G)$. Assume that v_{1} is in both $N_{G^{\prime}}\left(u_{1}\right)$ and $V(T)$.

If $x_{1} \geq x_{4}$, let $G^{*}=G-u_{4} u_{5}+u_{1} u_{5}$; if $x_{1}<x_{4}$, let $G^{*}=G-u_{1} v_{1}+u_{4} v_{1}$. In either case, $G^{*} \in \mathscr{T}\left(n, d_{0}, k\right)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $u_{1} u_{i} \in E(G)$ for all $u_{i} \in V\left(G^{\prime}\right) \backslash V(T)$.

By Fact 4, we have $N_{G}\left(u_{0}\right) \subseteq N_{G}\left(u_{1}\right)$, and since there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3. So we can obtain $u_{0} u_{1} \in E(G)$. As $G \in \mathscr{T}\left(n, d_{0}, k\right)$, u_{0} must be adjacent to each vertex of $V\left(G^{\prime}\right) \backslash V(T)$. Together with Remark 2.6, we obtain $G \cong B_{n, d_{0}, k}$.

This completes the proof of Theorem 3.1.
For the set of graphs $\mathscr{T}(n, k)$, when $k=n-1, \mathscr{T}(n, n-1)=\left\{K_{n, n-1}\right\}$ and when $k=n-2, \mathscr{T}(n, n-2)=\left\{H_{t}: H_{t}\right.$ is obtained from an edge $v_{1} v_{2}$ by appending t (resp. $n-2-t$) pendant edges to v_{1} (resp. v_{2}), where $\left.0<t<n-2\right\}$. By Lemma $2.2, H_{1}$ is the unique graph in $\mathscr{T}(n, n-2)$ with maximal spectral radius. Hence, we need only consider the case of $1 \leq k \leq n-3$.

Let $C_{n, k},(1 \leq k \leq n-3)$ be a graph obtained from $K_{1, n-2}$ and an isolated vertex u_{0} by inserting edges to connecting u_{0} with the center of $K_{1, n-2}$ and $n-k-2$

Figure 2. Graphs $C_{6,1}, C_{6,2}$ and $C_{6,3}$.
pendant vertices of $K_{1, n-2}$. For example, graphs $C_{6,1}, C_{6,2}$ and $C_{6,3}$ are depicted in Figure 2.

Theorem 3.2. Let $G \in \mathscr{T}(n, k)$ with $1 \leq k \leq n-3$. Then

$$
\rho(G) \leq \rho\left(C_{n, k}\right)
$$

and the equality holds if and only if $G \cong C_{n, k}$.
Proof. Choose $G \in \mathscr{T}(n, k)$ such that $\rho(G)$ is as large as possible. Let $V(G)=$ $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ and $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ be the Perron vector of $A(G)$, where x_{i} corresponds to the vertex $u_{i}(0 \leq i \leq n-1)$. Assume $G-u_{0}$ is a tree. Denote $G_{0}=G-u_{0}$.

Note that G has pendant vertices, hence in view of Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_{1}, of G. Similar to the proof of Facts 1 and 2 in Theorem 3.1, we obtain that G is a graph having k paths with almost equal lengths attached to u_{1}. We establish the following sequence of facts.

Fact 1. The pendant tree T contained in G is a star.
Proof. As T is a tree obtained by attaching k paths with almost equal lengths to the vertex u_{1}. Then it is sufficient to show that the length of each path is 1 . Suppose to the contrary that $v_{1} v_{2} \ldots v_{t}$ where $v_{1}=u_{1}$ is such a path of length $t-1>1$. Let

$$
G^{\prime}=G-v_{1} v_{2}-v_{2} v_{3}+v_{1} v_{3}+u_{0} v_{2}+u_{1} v_{2}
$$

Then $G^{\prime} \in \mathscr{T}(n, k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G)<\rho\left(G^{\prime}\right)$, a contradiction. Hence the length of each path is 1 . So we have T is a star.

FACT 2. u_{1} is adjacent to each vertex of $G_{0}-T$.
Proof. We first show that there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, assume
that $w_{1} w_{2} \ldots w_{l}$ is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3 . Let

$$
G^{\prime}=G-w_{1} w_{2}-w_{2} w_{3}+w_{1} w_{3}+u_{0} w_{2}+u_{1} w_{2}
$$

Then $G^{\prime} \in \mathscr{T}(n, k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G)<\rho\left(G^{\prime}\right)$, a contradiction. Hence, there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3 .

Now suppose that $u_{1} u_{i} \notin E(G)$ for some $u_{i} \in V\left(G_{0}\right) \backslash V(T)$. Since G_{0} is a tree, there is an unique path connecting u_{1} and u_{i} in G_{0}. Let u_{1}, u_{4}, u_{5} be the first three vertices on the path connecting u_{1} and u_{i} in G_{0} (possibly $u_{5}=u_{i}$), then $u_{1} u_{4}, u_{4} u_{5} \in E(G)$ and $u_{1} u_{5} \notin E(G)$. Denote $v_{1} \in N_{G_{0}}\left(u_{1}\right)$, and $v_{1} \in V(T)$.

If $x_{1} \geq x_{4}$, let $G^{*}=G-u_{4} u_{5}+u_{1} u_{5}$; if $x_{1}<x_{4}$, let $G^{*}=G-u_{1} v_{1}+u_{4} v_{1}$. Then in either case, $G^{*} \in \mathscr{T}(n, k)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $u_{1} u_{i} \in E(G)$ for all $u_{i} \in V\left(G_{0}\right) \backslash V(T)$.

By Fact 2, we have $N_{G}\left(u_{0}\right) \subseteq N_{G}\left(u_{1}\right)$, and since there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3 . So we can obtain $u_{0} u_{1} \in E(G)$. As $G \in \mathscr{T}(n, k)$, u_{0} must be adjacent to each vertex of $V\left(G_{0}\right) \backslash V(T)$, together with Remark 2.6 , we obtain $G \cong C_{n, k}$.

This completes the proof of Theorem 3.2.
4. Spectral radius of quasi-unicyclic graphs with k pendant vertices.

In this section, we determine the spectral radii of graphs in $\mathscr{U}\left(n, d_{0}, k\right)$ and $\mathscr{U}(n, k)$, respectively. Note that $\mathscr{U}(n, 1, k)$ is just the set of all n-vertex unicyclic graphs with k pendant vertices. In [11] the maximal spectral radius of all the graphs in the set $\mathscr{U}(n, 1, k)$ is determined. So, we consider the case of $d_{0} \geq 2$ in what follows. Note that for any n-vertex quasi-unicyclic graph with k pendant vertices, we have $k \leq n-4$ when $d_{0}=2,3$, and $k+d_{0} \leq n-1$ when $d_{0}>3$.

In order to formulate our results, we need to define some quasi-unicyclic graphs as follows. Graphs $U_{1}, U_{2}, U_{3}, U_{4}$ and U_{5} are depicted in Figure 3, where the order of U_{3} (respectively, U_{4}, U_{5}) is $d_{0}+1$ (respectively, $d_{0}+2, d_{0}+3$).

Let $U_{n, 2, k}^{1}$ (respectively, $U_{n, 2, k}^{2}$) be an n-vertex graph obtained from U_{1} (respectively, U_{2}) by attaching k paths with almost equal lengths to the vertex u in U_{1} (respectively, U_{2}). For $d_{0} \geq 3$, let $U_{n, d_{0}, k}^{1}$ (respectively, $U_{n, d_{0}, k}^{2}, U_{n, d_{0}, k}^{3}$) be an n-vertex

Figure 3. Graphs $U_{1}, U_{2}, U_{3}, U_{4}$ and U_{5}.
graph obtained from U_{3} (respectively, U_{4}, U_{5}) by attaching k paths with almost equal lengths to the vertex u in U_{3} (respectively, U_{4}, U_{5}). For example, $U_{9,2,2}^{1}, U_{9,3,2}^{1}, U_{9,3,2}^{2}$, $U_{9,3,2}^{3}, U_{9,4,2}^{1}, U_{9,4,2}^{2}$ and $U_{9,4,2}^{3}$ are depicted in Figure 4.

Figure 4. Graphs $U_{9,2,2}^{1}, U_{9,3,2}^{1}, U_{9,3,2}^{2}, U_{9,3,2}^{3}, U_{9,4,2}^{1}, U_{9,4,2}^{2}$ and $U_{9,4,2}^{3}$.

Theorem 4.1. Let $G \in \mathscr{U}\left(n, d_{0}, k\right), k>0$. Then
(i) if $d_{0}=2$, then

$$
\rho(G) \leq \rho\left(U_{n, 2, k}^{1}\right)
$$

and equality holds if and only if $G \cong U_{n, 2, k}^{1}$.
(ii) if $d_{0} \geq 3$, then

$$
\rho(G) \leq\left\{\rho\left(U_{n, d_{0}, k}^{1}\right), \rho\left(U_{n, d_{0}, k}^{2}\right), \rho\left(U_{n, d_{0}, k}^{3}\right)\right\}
$$

and equality holds if and only if $G \cong U_{n, d_{0}, k}^{1}$ or, $G \cong U_{n, d_{0}, k}^{2}$ or, $G \cong U_{n, d_{0}, k}^{3}$.
Proof. Choose $G \in \mathscr{U}\left(n, d_{0}, k\right)$ such that $\rho(G)$ is as large as possible. Let $V(G)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ and $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ be the Perron vector of $A(G)$, where x_{i} corresponds to the vertex $u_{i},(0 \leq i \leq n-1)$. Assume $G-u_{0}$ is a unicyclic graph. Denote $G^{\prime}=G-u_{0}$. Choose a vertex $u_{1} \in V\left(G^{\prime}\right)$ such that $d_{G^{\prime}}\left(u_{1}\right)$ is as large as possible.

Note that G has pendant vertices, hence by Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_{2}, of G. Similar to the proof of Facts 1 and 2 in Theorem 3.1, G is a graph having k paths with almost equal lengths attached to u_{2}. We establish the following sequence of facts.

FACT 1. The cycle contained in G^{\prime} is C_{3}.
Proof. We first show that there does not exists an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, if there is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3 , then let $w_{1} w_{2} \ldots w_{l}$ be such an internal path, and assume that v_{m} is a pendant vertex in T. Let

$$
G^{*}=G-w_{1} w_{2}-w_{2} w_{3}+w_{1} w_{3}+v_{m} w_{2}
$$

Then $G^{*} \in \mathscr{U}\left(n, d_{0}, k\right)$ with $\rho(G)<\rho\left(G^{*}\right)$ by Lemmas 2.3(ii) and 2.4(iii), a contradiction. Hence, there does not exist an internal path of G with length greater than 1 unless the paths lies on a cycle of length 3 . And then we suppose that this cycle contained in G^{\prime} is $C_{m}(m>3)$. We may assume $u_{2} u_{3} \in E\left(C_{m}\right)$. Since $m>3$, there is at least a vertex $u_{4} \in N\left(u_{2}\right) \backslash N\left(u_{3}\right)$, and there is at least a vertex $u_{5} \in N\left(u_{3}\right) \backslash N\left(u_{2}\right)$. Let

$$
G^{*}= \begin{cases}G-u_{3} u_{5}+u_{2} u_{5}, & \text { if } x_{2} \geq x_{3}, \\ G-u_{2} u_{4}+u_{3} u_{4}, & \text { if } x_{2}<x_{3} .\end{cases}
$$

Then, $G^{*} \in \mathscr{U}\left(n, d_{0}, k\right)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $m=3$.

Fact 2. The vertex u_{1} is in $V\left(C_{3}\right)$.
Proof. Suppose that $u_{1} \notin V\left(C_{3}\right)$ and set $V\left(C_{3}\right):=\left\{u_{3}, u_{4}, u_{5}\right\}$. Since G^{\prime} is a connected graph, there is a unique path $P_{k}(k \geq 2)$ connecting u_{1} with C_{3} in G^{\prime}. We may assume that $u_{3} \in P_{k}$. By the choice of $u_{1}, d_{G^{\prime}}\left(u_{1}\right) \geq d_{G^{\prime}}\left(u_{3}\right) \geq 3$, there is a vertex $u_{6} \in N\left(u_{1}\right)$ such that $u_{6} \notin P_{k}$.

If $x_{1} \geq x_{3}$, let $G^{*}=G-u_{3} u_{4}+u_{1} u_{4}$; if $x_{1}<x_{3}$, let $G^{*}=G-u_{1} u_{6}+u_{3} u_{6}$. Then in either case, $G^{*} \in \mathscr{U}\left(n, d_{0}, k\right)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $u_{1} \in V\left(C_{3}\right)$. \square

By Fact 2, we may assume $V\left(C_{3}\right)=\left\{u_{1}, u_{3}, u_{4}\right\}$.
FACT 3. $u_{1}=u_{2}$.
Proof. Suppose that $u_{1} \neq u_{2}$. Since G^{\prime} is a connected graph, there is a unique path $P_{m}(m \geq 2)$ connecting u_{1} and u_{2} in G^{\prime}. By the choice of $u_{1}, d_{G^{\prime}}\left(u_{1}\right) \geq d_{G^{\prime}}\left(u_{2}\right) \geq$ $k+2$, there is a vertex $u_{5} \in N_{G^{\prime}}\left(u_{1}\right)$ and $u_{5} \notin P_{m}$. Assume that $v_{1} \in N_{G^{\prime}}\left(u_{2}\right)$ and
$v_{1} \in V(T)$. If $u_{2} \in V\left(C_{3}\right) \backslash\left\{u_{1}\right\}$, let

$$
G^{*}= \begin{cases}G-u_{2} v_{1}+u_{1} v_{1}, & \text { if } x_{1} \geq x_{2} \\ G-u_{1} u_{5}+u_{2} u_{5}, & \text { if } x_{1}<x_{2}\end{cases}
$$

If $u_{2} \in V\left(G^{\prime}\right) \backslash V\left(C_{3}\right)$, let

$$
G^{*}= \begin{cases}G-u_{2} v_{1}+u_{1} v_{1}, & \text { if } x_{1} \geq x_{2} \\ G-u_{1} u_{3}+u_{2} u_{3}, & \text { if } x_{1}<x_{2}\end{cases}
$$

Then in either case $G^{*} \in \mathscr{U}\left(n, d_{0}, k\right)$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Hence $u_{1}=u_{2}$.

Thus we assume that $V\left(C_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$.
FACT 4. The vertex u_{1} is adjacent to each vertex of $V\left(G^{\prime}\right) \backslash V(T)$.
Proof. ¿From Fact 1 we know that there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3. And then we suppose that $u_{1} u_{i} \notin E(G)$ for some $u_{i} \in V\left(G^{\prime}\right) \backslash V(T)$. Since G^{\prime} is a unicyclic graph, there is a unique path connecting u_{1} and u_{i} in G^{\prime}. Let u_{1}, u_{4}, u_{5} be the first three vertices on the path connecting u_{1} and u_{i} in G^{\prime} (possibly $u_{5}=u_{i}$), then $u_{1} u_{4}, u_{4} u_{5} \in E(G)$ and $u_{1} u_{5} \notin E(G)$. Denote $v_{1} \in N_{G^{\prime}}\left(u_{1}\right)$, and $v_{1} \in V(T)$.

If $x_{1} \geq x_{4}$, let $G^{*}=G-u_{4} u_{5}+u_{1} u_{5}$; if $x_{1}<x_{4}$, let $G^{*}=G-u_{1} v_{1}+u_{4} v_{1}$. Then in either case, $G^{*} \in \mathscr{U}\left(n, d_{0}, k\right)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $u_{1} u_{i} \in E(G)$ for all $u_{i} \in V\left(G^{\prime}\right) \backslash V(T)$.

FACT 5. $u_{0} u_{1} \in E(G)$.
Proof. Suppose that $u_{0} u_{1} \notin E(G)$. Since $d_{G}\left(u_{0}\right) \geq 1$, we may assume, without loss of generality, that $u_{i} u_{0} \in E(G)$, where $u_{i} \in V\left(G^{\prime}\right) \backslash\left\{u_{1}\right\}$. Assume there is a vertex $u_{4} \in V(T)$.

If $u_{i} \in\left\{u_{2}, u_{3}\right\}$, then

$$
G^{*}= \begin{cases}G-u_{0} u_{i}+u_{1} u_{i}, & \text { if } x_{1} \geq x_{i} \\ G-u_{1} u_{4}+u_{i} u_{4}, & \text { if } x_{1}<x_{i}\end{cases}
$$

If $u_{i} \in V\left(G^{\prime}\right) \backslash\left\{u_{2}, u_{3}\right\}$, then

$$
G^{*}= \begin{cases}G-u_{0} u_{i}+u_{1} u_{i}, & \text { if } x_{1} \geq x_{i} \\ G-u_{1} u_{2}+u_{i} u_{2}, & \text { if } x_{1}<x_{i}\end{cases}
$$

Then in either case, $G^{*} \in \mathscr{U}\left(n, d_{0}, k\right)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $u_{0} u_{1} \in E(G)$.

By Facts 1-5 and Remark 2.6, if $d_{0}=2$, we obtain that $G \cong U_{n, 2, k}^{1}$ or $G \cong$ $U_{n, 2, k}^{2}$. We know from [20] that $\rho\left(U_{n, 2, k}^{1}\right)>\rho\left(U_{n, 2, k}^{2}\right)$, therefore, Theorem 4.1(i) holds. Similarly, if $d_{0} \geq 3$, then we obtain that $G \cong U_{n, d_{0}, k}^{1}$ or, $G \cong U_{n, d_{0}, k}^{2}$ or, $G \cong U_{n, d_{0}, k}^{3}$, therefore, Theorem 4.1(ii) holds.

This completes the proof of Theorem 4.1.
To conclude this section, we determine the spectral radius of graphs in $\mathscr{U}(n, k)$. Let $B_{m}(m \geq 3)$ be a graph of order m obtained from C_{3} by attaching $m-3$ pendant vertices to a vertex of C_{3}. For any $G \in \mathscr{U}(n, k)$, we have $k \leq n-3$. When $k=n-3$, $\mathscr{U}(n, n-3)=\left\{B_{n}\right\}$. So we consider only the case of $1 \leq k \leq n-4$ here.

Figure 5. Graphs $D_{8, k}$ for $k=2,3,4$.

Let $D_{n, k}(1 \leq k \leq n-4)$ be a graph obtained from B_{n-1} and an isolated vertex u_{0} by inserting all edges between u_{0} and three non-pendant vertices and $n-k-4$ pendant vertices of B_{n-1}. For example, graphs $D_{8,2}, D_{8,3}, D_{8,4}$ are depicted in Figure 5. It is easy to see that the graph $D_{n, k}$ defined as above is in $\mathscr{U}(n, k)$.

Theorem 4.2. Let $G \in \mathscr{U}(n, k)$ with $1 \leq k \leq n-4$. Then

$$
\rho(G) \leq \rho\left(D_{n, k}\right)
$$

and the equality holds if and only if $G \cong D_{n, k}$.
Proof. Choose $G \in \mathscr{U}(n, k)$ such that $\rho(G)$ is as large as possible. Let $V(G)=$ $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ and $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ be the Perron vector of $A(G)$, where x_{i} corresponds to the vertex $u_{i}(0 \leq i \leq n-1)$. Assume $G-u_{0}$ is a unicyclic graph. Denote $G^{\prime}=G-u_{0}$.

Note that G has pendant vertices, hence in view of Lemma 2.2, there exists exactly one pendant tree, say T, attached to a vertex, say u_{1}, of G. With a similar method used in the proof of Facts 1 and 2 in Theorem 3.1, we obtain that $G \in \mathscr{U}(n, k)$ and
G has k paths with almost equal lengths attached to u_{1}. We establish the following sequence of facts.

FACT 1. The cycle contained in G^{\prime} is C_{3}.
Proof. We first show that there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, if there is an internal path with length greater than 1 such that this path does not lie on a cycle of length 3 , and let $w_{1} w_{2} \ldots w_{l} w_{1}$ be such an internal path. Set

$$
G^{*}=G-w_{1} w_{2}-w_{2} w_{3}+w_{1} w_{3}+u_{0} w_{2}+u_{1} w_{2}
$$

Then $G^{*} \in \mathscr{U}(n, k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. So, there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3 . And then we suppose that this cycle in G^{\prime} is $C_{m}(m>3)$. We may assume $u_{2} u_{3} \in E\left(C_{m}\right)$. Since $m>3$, there is at least a vertex $u_{4} \in N\left(u_{2}\right) \backslash N\left(u_{3}\right)$, and there is at least one vertex, say u_{5}, in $N\left(u_{3}\right) \backslash N\left(u_{2}\right)$. Let

$$
G^{*}= \begin{cases}G-u_{3} u_{5}+u_{2} u_{5}, & \text { if } x_{2} \geq x_{3} \\ G-u_{2} u_{4}+u_{3} u_{4}, & \text { if } x_{2}<x_{3}\end{cases}
$$

Then, $G^{*} \in \mathscr{U}(n, k)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $m=3$.

FACT 2. T is a star.

Proof. It is sufficient to show that the length of each path is 1 . Suppose to the contrary that $v_{1} v_{2} \ldots v_{k}$ is such a path, where $v_{1}=u_{1}$ and $k>2$. Let

$$
G^{*}=G-v_{1} v_{2}-v_{2} v_{3}+v_{1} v_{3}+u_{0} v_{2}+u_{1} v_{2} .
$$

Then $G^{*} \in \mathscr{U}(n, k)$. By Lemmas 2.3(ii) and 2.4(iii), we have $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Hence the length of each path is 1 . So we have T is a star. \square

FACT 3. u_{1} is adjacent to each vertex of $V\left(G^{\prime}\right) \backslash V(T)$.
Proof. By Fact 1 (in Theorem 4.2), there does not exist an internal path of $G-T$ with length greater than 1 unless the paths lies on a cycle of length 3. And then we suppose that $u_{1} u_{i} \notin E(G)$ for some $u_{i} \in V\left(G^{\prime}\right) \backslash V(T)$. As G is a quasi-unicyclic graph, there is an unique path connecting u_{1} and u_{i} in G^{\prime}. Let u_{1}, u_{4}, u_{5} be the
first three vertices on the path connecting u_{1} and u_{i} in G^{\prime} (possibly $u_{5}=u_{i}$), then $u_{1} u_{4}, u_{4} u_{5} \in E(G)$ and $u_{1} u_{5} \notin E(G)$. Denote $v_{1} \in N_{G^{\prime}}\left(u_{1}\right)$, and $v_{1} \in V(T)$.

If $x_{1} \geq x_{4}$, let $G^{*}=G-u_{4} u_{5}+u_{1} u_{5}$; if $x_{1}<x_{4}$, let $G^{*}=G-u_{1} v_{1}+u_{4} v_{1}$. Then in either case, $G^{*} \in \mathscr{U}(n, k)$, and by Lemma 2.1, $\rho(G)<\rho\left(G^{*}\right)$, a contradiction. Therefore, $u_{1} u_{i} \in E(G)$ for all $u_{i} \in V\left(G^{\prime}\right) \backslash V(T)$. This completes the proof of Fact 3. \square

By Facts 1-3, if we insert an edge e to a connected graph G, then $\rho(G+e)>\rho(G)$ as the adjacent matrix of a connected graph is irreducible. Therefore the proof of Theorem 4.2 is completed.

Acknowledgments. The authors would like to express their sincere gratitude to the referee for a very careful reading of the paper and for all of his or her insightful comments and valuable suggestions, resulting in a number of improvements of this paper.

REFERENCES

[1] R.A. Brualdi and E.S. Solheid. On the spectral radius of connected graphs. Publ. Inst. Math. (Beograd) (N.S.) 39(53):45-54, 1986.
[2] A. Chang and F. Tian. On the spectral radius of unicyclic graphs with perfect matching Linear Algebra Appl., 370:237-250, 2003.
[3] A. Chang, F. Tian and A. Yu. On the index of bicyclic graphs with perfect matchings. Discrete Math. 283:51-59, 2004.
[4] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press Inc., New York, 1980. Third revised ed.: Johann Ambrosius Barth, Heidelberg, 1995.
[5] D. Cvetković and P. Rowlinson. The largest eigenvalues of a graph: a survey. Linear and Multilinear Algebra, 28:3-33, 1990.
[6] D. Cvetković and P. Rowlinson. Spectra of unicyclic graphs. Graphs Combin., 3:7-23, 1987.
[7] X. Geng and S. Li. The spectral radius of tricyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 428:2639-2653, 2008.
[8] X. Geng, S. Li, and X. Li. On the index of tricyclic graphs with perfect matchings. Linear Algebra Appl., 431:2304-2316, 2009.
[9] X. Geng, S. Li, and S.K. Simić. On the spectral radius of quasi- k-cyclic graphs. Linear Algebra Appl., DOI: 10.1016/j.laa.2010.06.007, 2010.
[10] J. Guo and J. Shao. On the spectral radius of trees with fixed diameter. Linear Algebra Appl. 413:131-147, 2006.
[11] S. Guo. The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl. 408:78-85, 2005.
[12] S. Guo. On the spectral radius of bicyclic graphs with n vertices and diameter d. Linear Algebra Appl. 422:119-132, 2007.
[13] S. Guo, G.H. Xu, and Y.G. Chen. On the spectral radius of trees with n vertices and diameter d. Adv. Math. (China), 34:683-692, 2005 (Chinese).
[14] Y. Hong. Bounds on the spectra of unicyclic graphs. J. East China Norm. Univ. Natur. Sci. Ed., 1:31-34, 1986 (Chinese).
[15] A.J. Hoffman and J.H. Smith. On the spectral radii of topologically equivalent graphs. Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), Academia, Prague, pp. 273-281, 1975.
[16] Q. Li and K. Feng. On the largest eigenvalue of graphs. Acta Math. Appl. Sinica, 2:167-175, 1979 (Chinese).
[17] H. Liu, M. Lu, and F. Tian. On the spectral radius of graphs with cut edges. Linear Algebra Appl., 389:139-145, 2004.
[18] H. Liu and M. Lu. On the spectral radius of quasi-tree graphs. Linear Algebra Appl., 428:27082714, 2008.
[19] M. Lu and J. Gao, On the Randić index of quasi-tree graphs, J. Math. Chem. 42:297-310, 2007.
[20] M. Petrović, I. Gutman, and S.G. Guo. On the spectral radius of bicyclic graphs. Bull. Cl. Sci. Math. Nat. Sci. Math., 30:93-99, 2005.
[21] S.K. Simić. On the largest eigenvalue of bicyclic graphs. Publ. Inst. Math. (Beograd) (N.S.) 46(60):101-106, 1989.
[22] B. Wu, E. Xiao, and Y. Hong. The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 395:343-349, 2005.
[23] G.H. Xu. On the spectral radius of trees with perfect matchings. Combinatorics and Graph Theory, World Scientific, Singapore, 1997.
[24] A. Yu and F. Tian. On the spectral radius of bicyclic graphs. MATCH Commun. Math. Comput. Chem., 52:91-101, 2004.

[^0]: *Received by the editors July 12, 2008. Accepted for publication July 9, 2010. Handling Editor: Bryan L. Shader
 ${ }^{\dagger}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China. This work is financially supported by self-determined research funds of CCNU (CCNU09Y01005, CCNU09Y01018) from the colleges' basic research and operation of MOE. (S. Li's email: lscmath@mail.ccnu.edu.cn).

