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ON THE SPECTRAL RADII OF QUASI-TREE GRAPHS AND

QUASI-UNICYCLIC GRAPHS WITH K PENDANT VERTICES∗

XIANYA GENG† AND SHUCHAO LI†

Abstract. A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex

u0 ∈ V (G) such that G−u0 is a tree. A connected graph G = (V, E) is called a quasi-unicyclic graph

if there exists a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph. Set T (n, k) := {G : G is a

n-vertex quasi-tree graph with k pendant vertices}, and T (n, d0, k) := {G : G ∈ T (n, k) and there is

a vertex u0 ∈ V (G) such that G−u0 is a tree and dG(u0) = d0}. Similarly, set U (n, k) := {G : G is

a n-vertex quasi-unicyclic graph with k pendant vertices}, and U (n, d0, k) := {G : G ∈ U (n, k) and

there is a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph and dG(u0) = d0}. In this paper,

the maximal spectral radii of all graphs in the sets T (n, k), T (n, d0, k), U (n, k), and U (n, d0, k),

are determined. The corresponding extremal graphs are also characterized.

Key words. Quasi-tree graph, Quasi-unicyclic graph, Eigenvalues, Pendant vertex, Spectral

radius.
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1. Introduction. All graphs considered in this paper are finite, undirected and

simple. Let G = (V,E) be a graph with n vertices and let A(G) be its adjacency

matrix. Since A(G) is symmetric, its eigenvalues are real. Without loss of generality,

we can write them as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and call them the eigenvalues

of G. The characteristic polynomial of G is just det(λI − A(G)), and is denoted by

φ(G;λ). The largest eigenvalue λ1(G) is called the spectral radius of G, denoted by

ρ(G). If G is connected, then A(G) is irreducible and by the Perron-Frobenius theory

of non-negative matrices, ρ(G) has multiplicity one and there exists a unique positive

unit eigenvector corresponding to ρ(G). We shall refer to such an eigenvector as the

Perron vector of G.

A connected graph G = (V,E) is called a quasi-tree graph, if there exists a vertex

u0 ∈ V (G) such that G − u0 is a tree. The concept of quasi-tree graph was first
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introduced in [18, 19]. A connected graph G = (V,E) is called a quasi-unicyclic

graph, if there exists a vertex u0 ∈ V (G) such that G − u0 is a unicyclic graph.

The concept of quasi-unicyclic graph was first introduced in [9]. For convenience,

set T (n, k) := {G : G is a n-vertex quasi-tree graph with k pendant vertices}, and

T (n, d0, k) := {G : G ∈ T (n, k) and there is a vertex u0 ∈ V (G) such that G−u0 is a

tree and dG(u0) = d0}. Similarly, set U (n, k) := {G : G is a n-vertex quasi-unicyclic

graph with k pendant vertices}, and U (n, d0, k) := {G : G ∈ U (n, k) and there is a

vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph and dG(u0) = d0}.

The investigation of the spectral radius of graphs is an important topic in the

theory of graph spectra. For results on the spectral radius of graphs, one may refer

to [1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24] and the references

therein.

Wu, Xiao and Hong [22] determined the spectral radius of trees on k pendant

vertices. Guo, Gutman and Petrović [11, 20] determined the graphs with the largest

spectral radius among all the unicyclic and bicyclic graphs with n vertices and k

pendant vertices. The present authors determined the graph with maximum spectral

radius among n-vertex tricyclic graphs with k pendant vertices; see [7]. In light of

the information available for the spectral radii of trees and unicyclic graphs, it is

natural to consider other classes of graphs, and the quasi-tree graphs (respectively,

quasi-unicyclic graphs) are a reasonable starting point for such an investigation.

In this article, we determine the maximal spectral radii of all graphs in the set

T (n, k), T (n, d0, k), U (n, k), and U (n, d0, k) respectively. The corresponding ex-

tremal graphs are also characterized.

2. Preliminaries. Denote the cycle, the path, and the star on n vertices by Cn,

Pn, and K1,n−1 respectively. Let G−x or G−xy denote the graph that arises from G

by deleting the vertex x ∈ V (G) or the edge xy ∈ E(G). Similarly, G+ xy is a graph

that arises from G by inserting an edge xy 6∈ E(G), where x, y ∈ V (G). A pendant

vertex of G is a vertex of degree 1. The k paths Pl1 , Pl2 , . . . , Plk are said to have

almost equal lengths if l1, l2, . . . , lk satisfy |li − lj | ≤ 1 for 1 ≤ i, j ≤ k. For v ∈ V (G),

dG(v) denotes the degree of vertex v and NG(v) denotes the set of all neighbors of

vertex v in G.

Let G′ be a subgraph of G with v ∈ V (G′). We denote by T the connected

component containing v in the graph obtained from G by deleting the neighbors of v
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in G′. If T is a tree, we call T a pendant tree of G. Then v is called the root of T , or

the root -vertex of G. Throughout this paper, we assume that T does not include the

root.

In this section, we list some known results which will be needed in this paper.

Lemma 2.1 ([17, 22]). Let G be a connected graph and ρ(G) be the spectral radius

of A(G). Let u, v be two vertices of G. Suppose v1, v2, . . . , vs ∈ NG(v)\NG(u)(1 ≤ s ≤

dG(v)) and x = (x1, x2, . . . , xn)
T is the Perron vector of A(G), where xi corresponds

to vi(1 ≤ i ≤ n). Let G∗ be the graph obtained from G by deleting the edges vvi and

inserting the edges uvi (1 ≤ i ≤ s). If xu ≥ xv, then ρ(G) < ρ(G∗).

Lemma 2.2 ([12]). Let G,G′, G′′ be three mutually disjoint connected graphs.

Suppose that u, v are two vertices of G, u′ is a vertex of G′ and u′′ is a vertex of G′′.

Let G1 be the graph obtained from G,G′, G′′ by identifying, respectively, u with u′

and v with u′′. Let G2 be the graph obtained from G,G′, G′′ by identifying vertices

u, u′, u′′. Let G3 be the graph obtained from G,G′, G′′ by identifying vertices v, u′, u′′.

Then either ρ(G1) < ρ(G2) or ρ(G1) < ρ(G3).

Let G be a connected graph, and uv ∈ E(G). The graph Gu,v is obtained from G

by subdividing the edge uv, i.e., inserting a new vertex w and edges wu,wv in G−uv.

Hoffman and Smith define an internal path of G as a walk v0v1 . . . vs (s ≥ 1) such

that the vertices v0, v1, . . . , vs are distinct, dG(v0) > 2, dG(vs) > 2, and dG(vi) = 2,

whenever 0 < i < s. And s is called the length of the internal path. An internal path

is closed if v0 = vs.

Let Wn be the tree on n vertices obtained from a path Pn−4 (of length n− 5) by

attaching two new pendant edges to each end vertex of Pn−4, respectively. In [15],

Hoffman and Smith obtained the following result:

Lemma 2.3 ([15]). Let uv be an edge of the connected graph G on n vertices.

(i) If uv does not belong to an internal path of G, and G 6= Cn, then ρ(Gu,v) > ρ(G);

(ii) If uv belongs to an internal path of G, and G 6= Wn, then ρ(Gu,v) < ρ(G).

Lemma 2.4. Let G1 and G2 be two graphs.

(i) ([16])If G2 is a proper spanning subgraph of a connected graph G1. Then φ(G2;λ)

> φ(G1;λ) for λ ≥ ρ(G1);

(ii) ([4, 5])If φ(G2;λ) > φ(G1;λ) for λ ≥ ρ(G2), then ρ(G1) > ρ(G2);
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(iii) ([15])If G2 is a proper subgraph of a connected graph G1, then ρ(G2) < ρ(G1).

Lemma 2.5 ([10, 16]). Let v be a vertex in a non-trivial connected graph G and

suppose that two paths of lengths k, m (k ≥ m ≥ 1) are attached to G by their end

vertices at v to form G∗

k,m. Then ρ(G∗

k,m) > ρ(G∗

k+1,m−1).

Remark 2.6. If the m vertices of a graph G can be partitioned into k disjoint

paths of almost equal lengths, then a simple arithmetic argument shows that either

k|m and all the paths have m/k vertices, or k ∤ m and then the paths have length

⌊m/k⌋ or ⌊m/k⌋+ 1 and there are m− k · ⌊m
k
⌋ paths of the latter length.

3. Spectral radius of quasi-tree graphs with k pendant vertices. In this

section, we shall determine the spectral radii of graphs in T (n, d0, k) and T (n, k),

respectively. Note that for the set T (n, d0, k), when d0 = 1, T (n, 1, k) is just the set

of all n-vertex trees with k pendant vertices. In [22] the maximal spectral radius of

all the graphs in the set T (n, 1, k) is determined. So, we consider the case of d0 ≥ 2

in what follows.

3 ,2 ,8B
3 ,3 ,8B 3 ,4 ,8B

0u 0u 0u

Figure 1. Graphs B8,2,3, B8,3,3, B8,4,3.

Let Bn,d0,k be an n-vertex graph obtained from K1,d0−1 and an isolated vertex

u0 by inserting all edges between K1,d0−1 and u0, and attaching k paths with almost

equal lengths to the center of K1,d0−1. For example, graphs B8,2,3, B8,3,3, B8,4,3 are

depicted in Figure 1. Note that for any G ∈ T (n, d0, k), we have k + d0 ≤ n− 1.

Theorem 3.1. Let G ∈ T (n, d0, k) with d0 ≥ 2, k > 0. Then

ρ(G) ≤ ρ(Bn,d0,k)

and the equality holds if and only if G ∼= Bn,d0,k.

Proof. Choose G ∈ T (n, d0, k) such that ρ(G) is as large as possible. Let

V (G) = {u0, u1, u2, . . . , un−1} and x = (x0, x1, . . . , xn−1)
T be the Perron vector of
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A(G), where xi corresponds to the vertex ui for 0 ≤ i ≤ n − 1. Assume that G′ :=

G−u0 is a tree. Choose a vertex u1 ∈ V (G′) such that dG′(u1) is as large as possible.

Note that G has pendant vertices, hence by Lemma 2.2, there exists exactly one

pendant tree, say T , attached to a vertex, say u2, of G.

First, we establish the following sequence of facts.

Fact 1. Each vertex u of T has degree d(u) ≤ 2.

Proof. Suppose to the contrary that there exists one vertex ui of T such that

d(ui) > 2. Denote N(ui) = {z1, z2, . . . , zt} and N(u2) = {w1, w2, . . . , ws}. Assume

that z1, w3 belong to the path joining ui and u2, and that w1, w2 belong to some cycle

in G. Let

G∗ =

{

G− {uiz3, . . . , uizt}+ {u2z3, . . . , u2zt}, if x2 ≥ xi,

G− {u2w1, u2w4, . . . , u2ws}+ {uiw1, uiw4, . . . , uiws}, if x2 < xi.

Then G∗ ∈ T (n, d0, k). By Lemma 2.1, we have ρ(G∗) > ρ(G), a contradiction. Thus

G is a graph with k paths attached to u2.

Fact 2. k paths attached to u2 have almost equal lengths.

Proof. Denote the k paths attached to u2 by Pl1 , Pl2 , . . . , Plk , then we will show

that |li − lj | ≤ 1 for 1 ≤ i, j ≤ k. If there exist two paths, say Pl1 and Pl2 , such that

|l1 − l2| ≥ 2, denote Pl1 = u2v1v2 . . . vl1 and Pl2 = u2w1w2 . . . wl2 . Let

G∗ = G− {vl1−1vl1}+ {wl2vl1}.

Then G∗ ∈ T (n, d0, k). By Lemma 2.5, we have ρ(G∗) > ρ(G), a contradiction. Thus

k paths attached to u2 have almost equal lengths.

By Facts 1 and 2, G is a graph with k paths with almost equal lengths attached

to u2 of G.

Fact 3. u1 = u2.

Proof. Suppose that u1 6= u2. Since G
′ is a tree, there is an unique path Pm (m ≥

2) connecting u1 and u2 in G′. By the choice of u1, dG′(u1) ≥ dG′(u2) ≥ k + 2, there

is a vertex u3 ∈ dG′(u1) such that u3 /∈ Pm. Let v1 ∈ NG′(u2) and v1 ∈ V (T ). Set

G∗ =

{

G− u2v1 + u1v1, if x1 ≥ x2,

G− u1u3 + u2u3, if x1 < x2.
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Then G∗ ∈ T (n, d0, k). By Lemma 2.1, we have ρ(G∗) > ρ(G), a contradiction.

Hence u1 = u2.

Fact 4. u1 is adjacent to each vertex of G′ − T .

Proof. We first show that there does not exist an internal path of G − T with

length greater than 1 unless the path lies on a cycle of length 3. Otherwise, if there

is an internal path with length greater than 1 such that this path does not lie on a

cycle of length 3, then let w1w2 . . . wl be such an internal path, and assume that vm

is a pendant vertex in T . Let

G∗ = G− w1w2 − w2w3 + w1w3 + vmw2.

Then G∗ ∈ T (n, d0, k) with ρ(G) < ρ(G∗) by Lemmas 2.3(ii) and 2.4(iii), a contra-

diction. Hence, there does not exist an internal path of G − T with length greater

than 1 unless the path lies on a cycle of length 3.

Next we suppose that u1ui /∈ E(G) for some ui ∈ V (G′) \ V (T ). Since G′ is

a tree, there is an unique path connecting u1 and ui in G′. Let u1, u4, u5 be the

first three vertices on the path connecting u1 and ui in G′ (possibly u5 = ui), then

u1u4, u4u5 ∈ E(G) and u1u5 /∈ E(G). Assume that v1 is in both NG′(u1) and V (T ).

If x1 ≥ x4, let G∗ = G − u4u5 + u1u5; if x1 < x4, let G∗ = G − u1v1 + u4v1.

In either case, G∗ ∈ T (n, d0, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction.

Therefore, u1ui ∈ E(G) for all ui ∈ V (G′) \ V (T ).

By Fact 4, we have NG(u0) ⊆ NG(u1), and since there does not exist an internal

path of G − T with length greater than 1 unless the paths lies on a cycle of length

3. So we can obtain u0u1 ∈ E(G). As G ∈ T (n, d0, k), u0 must be adjacent to each

vertex of V (G′) \ V (T ). Together with Remark 2.6, we obtain G ∼= Bn,d0,k.

This completes the proof of Theorem 3.1.

For the set of graphs T (n, k), when k = n−1, T (n, n−1) = {Kn,n−1} and when

k = n − 2, T (n, n− 2) = {Ht : Ht is obtained from an edge v1v2 by appending t

(resp. n− 2− t) pendant edges to v1 (resp. v2), where 0 < t < n− 2}. By Lemma

2.2, H1 is the unique graph in T (n, n − 2) with maximal spectral radius. Hence,

we need only consider the case of 1 ≤ k ≤ n− 3.

Let Cn,k, (1 ≤ k ≤ n − 3) be a graph obtained from K1,n−2 and an isolated

vertex u0 by inserting edges to connecting u0 with the center of K1,n−2 and n− k− 2
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Figure 2. Graphs C6,1, C6,2 and C6,3.

pendant vertices of K1,n−2. For example, graphs C6,1, C6,2 and C6,3 are depicted in

Figure 2.

Theorem 3.2. Let G ∈ T (n, k) with 1 ≤ k ≤ n− 3. Then

ρ(G) ≤ ρ(Cn,k)

and the equality holds if and only if G ∼= Cn,k.

Proof. Choose G ∈ T (n, k) such that ρ(G) is as large as possible. Let V (G) =

{u0, u1, . . . , un−1} and x = (x0, x1, . . . , xn−1)
T be the Perron vector of A(G), where

xi corresponds to the vertex ui (0 ≤ i ≤ n − 1). Assume G − u0 is a tree. Denote

G0 = G− u0.

Note thatG has pendant vertices, hence in view of Lemma 2.2, there exists exactly

one pendant tree, say T , attached to a vertex, say u1, of G. Similar to the proof of

Facts 1 and 2 in Theorem 3.1, we obtain that G is a graph having k paths with almost

equal lengths attached to u1. We establish the following sequence of facts.

Fact 1. The pendant tree T contained in G is a star.

Proof. As T is a tree obtained by attaching k paths with almost equal lengths to

the vertex u1. Then it is sufficient to show that the length of each path is 1. Suppose

to the contrary that v1v2 . . . vt where v1 = u1 is such a path of length t− 1 > 1. Let

G′ = G− v1v2 − v2v3 + v1v3 + u0v2 + u1v2.

Then G′ ∈ T (n, k). By Lemmas 2.3(ii) and 2.4(iii), we have ρ(G) < ρ(G′), a contra-

diction. Hence the length of each path is 1. So we have T is a star.

Fact 2. u1 is adjacent to each vertex of G0 − T .

Proof. We first show that there does not exist an internal path of G − T with

length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, assume
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that w1w2 . . . wl is an internal path with length greater than 1 such that this path

does not lie on a cycle of length 3. Let

G′ = G− w1w2 − w2w3 + w1w3 + u0w2 + u1w2.

Then G′ ∈ T (n, k). By Lemmas 2.3(ii) and 2.4(iii), we have ρ(G) < ρ(G′), a contra-

diction. Hence, there does not exist an internal path of G − T with length greater

than 1 unless the paths lies on a cycle of length 3.

Now suppose that u1ui /∈ E(G) for some ui ∈ V (G0) \ V (T ). Since G0 is a

tree, there is an unique path connecting u1 and ui in G0. Let u1, u4, u5 be the

first three vertices on the path connecting u1 and ui in G0 (possibly u5 = ui), then

u1u4, u4u5 ∈ E(G) and u1u5 /∈ E(G). Denote v1 ∈ NG0
(u1), and v1 ∈ V (T ).

If x1 ≥ x4, let G
∗ = G−u4u5+u1u5; if x1 < x4, let G

∗ = G−u1v1+u4v1. Then

in either case, G∗ ∈ T (n, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction.

Therefore, u1ui ∈ E(G) for all ui ∈ V (G0) \ V (T ).

By Fact 2, we have NG(u0) ⊆ NG(u1), and since there does not exist an internal

path of G− T with length greater than 1 unless the paths lies on a cycle of length 3.

So we can obtain u0u1 ∈ E(G). As G ∈ T (n, k), u0 must be adjacent to each vertex

of V (G0) \ V (T ), together with Remark 2.6, we obtain G ∼= Cn,k.

This completes the proof of Theorem 3.2.

4. Spectral radius of quasi-unicyclic graphs with k pendant vertices.

In this section, we determine the spectral radii of graphs in U (n, d0, k) and U (n, k),

respectively. Note that U (n, 1, k) is just the set of all n-vertex unicyclic graphs with

k pendant vertices. In [11] the maximal spectral radius of all the graphs in the set

U (n, 1, k) is determined. So, we consider the case of d0 ≥ 2 in what follows. Note

that for any n-vertex quasi-unicyclic graph with k pendant vertices, we have k ≤ n−4

when d0 = 2, 3, and k + d0 ≤ n− 1 when d0 > 3.

In order to formulate our results, we need to define some quasi-unicyclic graphs

as follows. Graphs U1, U2, U3, U4 and U5 are depicted in Figure 3, where the order of

U3 (respectively, U4, U5) is d0 + 1 (respectively, d0 + 2, d0 + 3).

Let U1
n,2,k (respectively, U2

n,2,k) be an n-vertex graph obtained from U1 (respec-

tively, U2) by attaching k paths with almost equal lengths to the vertex u in U1 (re-

spectively, U2). For d0 ≥ 3, let U1
n,d0,k

(respectively, U2
n,d0,k

, U3
n,d0,k

) be an n-vertex
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Figure 3. Graphs U1, U2, U3, U4 and U5.

graph obtained from U3 (respectively, U4, U5) by attaching k paths with almost equal

lengths to the vertex u in U3 (respectively, U4, U5). For example, U1
9,2,2, U

1
9,3,2, U

2
9,3,2,

U3
9,3,2, U

1
9,4,2, U

2
9,4,2 and U3

9,4,2 are depicted in Figure 4.
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Figure 4. Graphs U1
9,2,2, U

1
9,3,2, U

2
9,3,2, U

3
9,3,2, U

1
9,4,2, U

2
9,4,2 and U3

9,4,2.

Theorem 4.1. Let G ∈ U (n, d0, k), k > 0. Then

(i) if d0 = 2, then

ρ(G) ≤ ρ(U1
n,2,k)

and equality holds if and only if G ∼= U1
n,2,k.

(ii) if d0 ≥ 3, then

ρ(G) ≤ {ρ(U1
n,d0,k

), ρ(U2
n,d0,k

), ρ(U3
n,d0,k

)}

and equality holds if and only if G ∼= U1
n,d0,k

or, G ∼= U2
n,d0,k

or, G ∼= U3
n,d0,k

.

Proof. Choose G ∈ U (n, d0, k) such that ρ(G) is as large as possible. Let

V (G) = {u0, u1, u2, . . . , un−1} and x = (x0, x1, . . . , xn−1)
T be the Perron vector of

A(G), where xi corresponds to the vertex ui, (0 ≤ i ≤ n − 1). Assume G − u0 is a

unicyclic graph. Denote G′ = G− u0. Choose a vertex u1 ∈ V (G′) such that dG′(u1)

is as large as possible.

Note that G has pendant vertices, hence by Lemma 2.2, there exists exactly one

pendant tree, say T , attached to a vertex, say u2, of G. Similar to the proof of Facts 1

and 2 in Theorem 3.1, G is a graph having k paths with almost equal lengths attached

to u2. We establish the following sequence of facts.
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Fact 1. The cycle contained in G′ is C3.

Proof. We first show that there does not exists an internal path of G − T with

length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, if there

is an internal path with length greater than 1 such that this path does not lie on a

cycle of length 3, then let w1w2 . . . wl be such an internal path, and assume that vm

is a pendant vertex in T . Let

G∗ = G− w1w2 − w2w3 + w1w3 + vmw2.

Then G∗ ∈ U (n, d0, k) with ρ(G) < ρ(G∗) by Lemmas 2.3(ii) and 2.4(iii), a contra-

diction. Hence, there does not exist an internal path of G with length greater than

1 unless the paths lies on a cycle of length 3. And then we suppose that this cycle

contained in G′ is Cm(m > 3). We may assume u2u3 ∈ E(Cm). Since m > 3, there is

at least a vertex u4 ∈ N(u2)\N(u3), and there is at least a vertex u5 ∈ N(u3)\N(u2).

Let

G∗ =

{

G− u3u5 + u2u5, if x2 ≥ x3,

G− u2u4 + u3u4, if x2 < x3.

Then, G∗ ∈ U (n, d0, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction. There-

fore, m = 3.

Fact 2. The vertex u1 is in V (C3).

Proof. Suppose that u1 /∈ V (C3) and set V (C3) := {u3, u4, u5}. Since G′ is a

connected graph, there is a unique path Pk(k ≥ 2) connecting u1 with C3 in G′. We

may assume that u3 ∈ Pk. By the choice of u1, dG′(u1) ≥ dG′(u3) ≥ 3, there is a

vertex u6 ∈ N(u1) such that u6 /∈ Pk.

If x1 ≥ x3, let G
∗ = G−u3u4+u1u4; if x1 < x3, let G

∗ = G−u1u6+u3u6. Then

in either case, G∗ ∈ U (n, d0, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction.

Therefore, u1 ∈ V (C3).

By Fact 2, we may assume V (C3) = {u1, u3, u4}.

Fact 3. u1 = u2.

Proof. Suppose that u1 6= u2. SinceG
′ is a connected graph, there is a unique path

Pm (m ≥ 2) connecting u1 and u2 in G′. By the choice of u1, dG′(u1) ≥ dG′(u2) ≥

k + 2, there is a vertex u5 ∈ NG′(u1) and u5 /∈ Pm. Assume that v1 ∈ NG′(u2) and
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v1 ∈ V (T ). If u2 ∈ V (C3) \ {u1}, let

G∗ =

{

G− u2v1 + u1v1, if x1 ≥ x2,

G− u1u5 + u2u5, if x1 < x2.

If u2 ∈ V (G′) \ V (C3), let

G∗ =

{

G− u2v1 + u1v1, if x1 ≥ x2,

G− u1u3 + u2u3, if x1 < x2.

Then in either case G∗ ∈ U (n, d0, k). By Lemma 2.1, we have ρ(G∗) > ρ(G), a

contradiction. Hence u1 = u2.

Thus we assume that V (C3) = {u1, u2, u3}.

Fact 4. The vertex u1 is adjacent to each vertex of V (G′) \ V (T ).

Proof. ¿From Fact 1 we know that there does not exist an internal path of G−T

with length greater than 1 unless the paths lies on a cycle of length 3. And then

we suppose that u1ui /∈ E(G) for some ui ∈ V (G′) \ V (T ). Since G′ is a unicyclic

graph, there is a unique path connecting u1 and ui in G′. Let u1, u4, u5 be the

first three vertices on the path connecting u1 and ui in G′ (possibly u5 = ui), then

u1u4, u4u5 ∈ E(G) and u1u5 /∈ E(G). Denote v1 ∈ NG′(u1), and v1 ∈ V (T ).

If x1 ≥ x4, let G
∗ = G−u4u5+u1u5; if x1 < x4, let G

∗ = G−u1v1+u4v1. Then

in either case, G∗ ∈ U (n, d0, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction.

Therefore, u1ui ∈ E(G) for all ui ∈ V (G′) \ V (T ).

Fact 5. u0u1 ∈ E(G).

Proof. Suppose that u0u1 /∈ E(G). Since dG(u0) ≥ 1, we may assume, without

loss of generality, that uiu0 ∈ E(G), where ui ∈ V (G′) \ {u1}. Assume there is a

vertex u4 ∈ V (T ).

If ui ∈ {u2, u3}, then

G∗ =

{

G− u0ui + u1ui, if x1 ≥ xi,

G− u1u4 + uiu4, if x1 < xi.

If ui ∈ V (G′) \ {u2, u3}, then

G∗ =

{

G− u0ui + u1ui, if x1 ≥ xi,

G− u1u2 + uiu2, if x1 < xi.
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Then in either case, G∗ ∈ U (n, d0, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contra-

diction. Therefore, u0u1 ∈ E(G).

By Facts 1-5 and Remark 2.6, if d0 = 2, we obtain that G ∼= U1
n,2,k or G ∼=

U2
n,2,k. We know from [20] that ρ(U1

n,2,k) > ρ(U2
n,2,k), therefore, Theorem 4.1(i)

holds. Similarly, if d0 ≥ 3, then we obtain that G ∼= U1
n,d0,k

or, G ∼= U2
n,d0,k

or,

G ∼= U3
n,d0,k

, therefore, Theorem 4.1(ii) holds.

This completes the proof of Theorem 4.1.

To conclude this section, we determine the spectral radius of graphs in U (n, k).

Let Bm(m ≥ 3) be a graph of order m obtained from C3 by attaching m− 3 pendant

vertices to a vertex of C3. For any G ∈ U (n, k), we have k ≤ n− 3. When k = n− 3,

U (n, n− 3) = {Bn}. So we consider only the case of 1 ≤ k ≤ n− 4 here.

0u

3 ,8D
2 ,8D

0u

4 ,8D

0u

Figure 5. Graphs D8,k for k = 2, 3, 4.

Let Dn,k(1 ≤ k ≤ n− 4) be a graph obtained from Bn−1 and an isolated vertex

u0 by inserting all edges between u0 and three non-pendant vertices and n − k − 4

pendant vertices of Bn−1. For example, graphs D8,2, D8,3, D8,4 are depicted in Figure

5. It is easy to see that the graph Dn,k defined as above is in U (n, k).

Theorem 4.2. Let G ∈ U (n, k) with 1 ≤ k ≤ n− 4. Then

ρ(G) ≤ ρ(Dn,k)

and the equality holds if and only if G ∼= Dn,k.

Proof. Choose G ∈ U (n, k) such that ρ(G) is as large as possible. Let V (G) =

{u0, u1, . . . , un−1} and x = (x0, x1, . . . , xn−1)
T be the Perron vector of A(G), where

xi corresponds to the vertex ui (0 ≤ i ≤ n− 1). Assume G− u0 is a unicyclic graph.

Denote G′ = G− u0.

Note that G has pendant vertices, hence in view of Lemma 2.2, there exists exactly

one pendant tree, say T , attached to a vertex, say u1, of G. With a similar method

used in the proof of Facts 1 and 2 in Theorem 3.1, we obtain that G ∈ U (n, k) and
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G has k paths with almost equal lengths attached to u1. We establish the following

sequence of facts.

Fact 1. The cycle contained in G′ is C3.

Proof. We first show that there does not exist an internal path of G − T with

length greater than 1 unless the paths lies on a cycle of length 3. Otherwise, if there

is an internal path with length greater than 1 such that this path does not lie on a

cycle of length 3, and let w1w2 . . . wlw1 be such an internal path. Set

G∗ = G− w1w2 − w2w3 + w1w3 + u0w2 + u1w2.

Then G∗ ∈ U (n, k). By Lemmas 2.3(ii) and 2.4(iii), we have ρ(G) < ρ(G∗), a

contradiction. So, there does not exist an internal path of G− T with length greater

than 1 unless the paths lies on a cycle of length 3. And then we suppose that this

cycle in G′ is Cm (m > 3). We may assume u2u3 ∈ E(Cm). Since m > 3, there is

at least a vertex u4 ∈ N(u2) \ N(u3), and there is at least one vertex, say u5, in

N(u3) \N(u2). Let

G∗ =

{

G− u3u5 + u2u5, if x2 ≥ x3,

G− u2u4 + u3u4, if x2 < x3.

Then, G∗ ∈ U (n, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction. Therefore,

m = 3.

Fact 2. T is a star.

Proof. It is sufficient to show that the length of each path is 1. Suppose to the

contrary that v1v2 . . . vk is such a path, where v1 = u1 and k > 2. Let

G∗ = G− v1v2 − v2v3 + v1v3 + u0v2 + u1v2.

Then G∗ ∈ U (n, k). By Lemmas 2.3(ii) and 2.4(iii), we have ρ(G) < ρ(G∗), a

contradiction. Hence the length of each path is 1. So we have T is a star.

Fact 3. u1 is adjacent to each vertex of V (G′) \ V (T ).

Proof. By Fact 1 (in Theorem 4.2), there does not exist an internal path of G−T

with length greater than 1 unless the paths lies on a cycle of length 3. And then we

suppose that u1ui /∈ E(G) for some ui ∈ V (G′) \ V (T ). As G is a quasi-unicyclic

graph, there is an unique path connecting u1 and ui in G′. Let u1, u4, u5 be the
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first three vertices on the path connecting u1 and ui in G′ (possibly u5 = ui), then

u1u4, u4u5 ∈ E(G) and u1u5 /∈ E(G). Denote v1 ∈ NG′(u1), and v1 ∈ V (T ).

If x1 ≥ x4, let G
∗ = G−u4u5+u1u5; if x1 < x4, let G

∗ = G−u1v1+u4v1. Then

in either case, G∗ ∈ U (n, k), and by Lemma 2.1, ρ(G) < ρ(G∗), a contradiction.

Therefore, u1ui ∈ E(G) for all ui ∈ V (G′) \ V (T ). This completes the proof of Fact

3.

By Facts 1-3, if we insert an edge e to a connected graph G, then ρ(G+e) > ρ(G)

as the adjacent matrix of a connected graph is irreducible. Therefore the proof of

Theorem 4.2 is completed.
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[19] M. Lu and J. Gao, On the Randić index of quasi-tree graphs, J. Math. Chem. 42:297–310,

2007.
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