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BOUNDING REAL TENSOR OPTIMIZATIONS VIA THE NUMERICAL RANGE∗

NATHANIEL JOHNSTON† AND LOGAN PIPES†

Abstract. A new method of using the numerical range of a matrix to bound the optimal value of certain optimization

problems over real tensor product vectors is presented. This bound is stronger than the trivial bounds based on eigenvalues and

can be computed significantly faster than bounds provided by semidefinite programming relaxations. Numerous applications to

other hard linear algebra problems are discussed, such as showing that a real subspace of matrices contains no rank-one matrix,

and showing that a linear map acting on matrices is positive.
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1. Introduction. The numerical range [23, Chapter 1] of a square complex matrix A ∈ Mn(C) is the

set

W (A)
def
=
{
v∗Av : v ∈ Cn, ‖v‖ = 1

}
.

While it was first introduced and studied over a century ago [21, 36], the numerical range has come into

particular prominence over the past two decades or so, thanks to numerous applications that it has found

in scientific fields like numerical analysis [2] and quantum information theory [7, 8, 28].

In this work, we present a new application of the numerical range: we show how it can be used to give

a nontrivial bound on the optimal value of a linear function being optimized over the set of real tensor

product vectors (i.e., elementary tensors) of unit length. Computing the exact value of such an optimization

problem is NP-hard [18],1 and numerous well-studied problems can be phrased in this way. We thus obtain,

as immediate corollaries of our results, ways of using the numerical range to help solve the following (also

NP-hard) problems:

• Determine whether or not a given subspace of real matrices contains a rank-1 matrix [12, 31].

• Determine whether or not a given linear map acting on Mn(R) is positive [9, 32].

• Determine whether or not a biquadratic form acting on Rm × Rn is positive semidefinite [11].

While our method is specific to optimizations over real product vectors, it can be extended with some

limitations to optimizations over complex product vectors as well. This gives some additional applications

of our method, particularly from quantum information theory, such as the problem of determining whether

or not a given Hermitian matrix is an entanglement witness [35]. In fact, in [19] the authors give a list of

more than a dozen different problems that are of interest in quantum information theory that are equivalent

to this one.
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We note that connections between the numerical range and the above problems have appeared in the past,

but our bound is new and distinct from known methods. For example, an easy-to-use necessary condition

for positivity of a linear map acting on complex matrices in terms of the numerical range appeared in [24],

but our bound instead provides an easy-to-use sufficient condition. Similarly, numerous other methods are

known for bounding optimization problems like the ones we investigate [15, 20]. However, most of these

known methods rely on tools like semidefinite programming which, despite being solvable in polynomial

time [30], are quite computationally expensive. These semidefinite programs are typically difficult to apply

to matrices with more than a few hundred rows and columns, whereas our bound can be applied to matrices

with millions of rows and columns.

1.1. Organization of paper. We start in Section 2 by introducing our notation, the optimization

problem that is of interest to us, and some elementary properties of its optimal value. In Section 3, we

present our main results (Theorems 3.1 and 3.2), which provide a nontrivial bound on the optimal value of

the optimization problem in terms of the numerical range of a certain matrix. In Section 3.1, we discuss

how our method compares with known semidefinite programming methods of bounding the optimal value of

our tensor optimization problem (implementation details of our method are provided in Appendix A, and

code is provided at [34]), and we show in particular that our method works much faster and is applicable to

matrices that are much larger.

In Section 4, we present some applications of our bound: in Section 4.1, we show that our result implies

a simple-to-check sufficient condition for a subspace of matrices to not contain any rank-one matrices, and

in Section 4.2, we derive a simple-to-check sufficient condition for a linear map acting on matrices to be

positive (or equivalently, for a biquadratic form to be positive semidefinite). We then generalize our results

in two ways: in Section 5, we generalize our results to optimizations over complex product vectors (with

some necessary limitations), and in Section 6, we generalize our results to the setting where more than two

spaces are tensored together.

2. Optimization over product vectors. We use Mm,n to denote the set of m×n matrices with real

entries, Mn for the special case when m = n, and MS
n for the subset of them that are symmetric (i.e., the

matrices A ∈ Mn satisfying AT = A). In the few instances where we consider sets of complex matrices, we

denote them by Mm,n(C) or Mn(C), as appropriate. We use “⊗” to denote the usual tensor (i.e., Kronecker)

product, and ej denotes the j-th standard basis vector of Rn (i.e., the vector with 1 in its j-th entry and 0

elsewhere).

The main problem that we consider in this paper is given B ∈Mm⊗Mn, how can we compute or bound

the quantities

µmin(B)
def
= min

v∈Rm,w∈Rn

{
(v ⊗w)TB(v ⊗w) : ‖v‖ = ‖w‖ = 1

}
and

µmax(B)
def
= max

v∈Rm,w∈Rn

{
(v ⊗w)TB(v ⊗w) : ‖v‖ = ‖w‖ = 1

}
?

(2.1)

When B is symmetric, these quantities can be thought of as analogous to the maximal and minimal

eigenvalues of B, but with the restriction that the optimization takes place only over unit-length product

vectors, rather than all unit-length vectors. In particular, if B is symmetric and we let λmax(B) and λmin(B)

denote the maximal and minimal eigenvalues of B, respectively, then it follows immediately from the Rayleigh

quotient that
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µmin(B) ≥ λmin(B) and µmax(B) ≤ λmax(B).(2.2)

Similarly, if we define the partial transpose of a matrix A =
∑
j Xj ⊗ Yj ∈Mm ⊗Mn by

AΓ def
=
∑
j

Xj ⊗ Y Tj ,(2.3)

and note that the partial transpose is a well-defined linear map on Mm ⊗Mn,2 then we see that

(v ⊗w)TB(v ⊗w) = Tr
(
(vvT ⊗wwT )B

)
= Tr

(
(vvT ⊗ (wwT )T )B

)
= Tr

(
(vvT ⊗wwT )BΓ

)
= (v ⊗w)TBΓ(v ⊗w),

(2.4)

for all v ∈ Rm and w ∈ Rn. It follows that if B is symmetric then

µmin(B) ≥ λmin(BΓ) and µmax(B) ≤ λmax(BΓ).(2.5)

We call the eigenvalue bounds of Inequalities (2.2) and (2.5) the trivial bounds on µmax(B) and µmin(B),

and an argument similar to the one that we used to derive them shows that if p ∈ R then

µmin(B) ≥ λmin

(
pB + (1− p)BΓ

)
and µmax(B) ≤ λmax

(
pB + (1− p)BΓ

)
,(2.6)

whenever B is symmetric.

Inequalities (2.6) can only be used when B is symmetric, since otherwise pB+ (1−p)BΓ might not even

have real eigenvalues. However, this is not really a restriction: since vTY v = 0 whenever Y is skew-symmetric

(i.e., Y T = −Y ), it follows that if B has Cartesian decomposition B = X + Y (where X = (B + BT )/2 is

symmetric and Y = (B −BT )/2 is skew-symmetric) then

µmin(B) = µmin(X) and µmax(B) = µmax(X),(2.7)

so Inequalities (2.6) can be applied to X = (B+BT )/2 instead. In fact, the following lemma shows that we

can restrict our attention even further to matrices that also equal their own partial transpose:

Lemma 2.1. Let B ∈Mm⊗Mn be symmetric. There exist unique symmetric matrices X,Y ∈Mm⊗Mn

such that XΓ = X, Y Γ = −Y , and B = X + Y , and they are

X =
1

2
(B +BΓ) and Y =

1

2
(B −BΓ).(2.8)

Furthermore, (v ⊗w)TY (v ⊗w) = 0 for all v ∈ Rm and w ∈ Rn, and

µmin(B) = µmin(X) and µmax(B) = µmax(X).

Proof. It is clear that the matrices X and Y from Equation (2.8) are symmetric and satisfy XΓ = X,

Y Γ = −Y , and B = X + Y . To see that they are unique, just notice that B = X + Y implies BΓ =

XΓ + Y Γ = X − Y , so B +BΓ = (X + Y ) + (X − Y ) = 2X, so X = (B +BΓ)/2, as claimed. Uniqueness of

Y can similarly be derived by computing B −BΓ.

2The partial transpose has received significant attention when acting on complex matrices thanks to its uses in quantum

information theory [33], but it has recently been used in the real case too [9].
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To see that (v ⊗w)TY (v ⊗w) = 0 for all v ∈ Rm and w ∈ Rn, we just note that the same argument

used in Equation (2.4) tells us that

(v ⊗w)T (−Y )(v ⊗w) = (v ⊗w)TY Γ(v ⊗w) = (v ⊗w)TY (v ⊗w).

Since B = X + Y , this immediately implies µmax(B) = µmax(X) and µmin(B) = µmin(X).

The above lemma can be thought of as a “partial” version of the usual Cartesian decomposition, and

when combined with the usual Cartesian decomposition it tells us that for any B ∈Mm ⊗Mn we have

µmin(B) =
1

4
µmin

(
B +BT +BΓ + (BT )Γ

)
and µmax(B) =

1

4
µmax

(
B +BT +BΓ + (BT )Γ

)
.

3. Main results. We now present our main pair of results, which bound the optimal values of the

optimization problems (2.1) in an easily computable way in terms of the numerical range. Given B ∈
Mm ⊗Mn, consider the following set (recall that W (B + iBΓ) is the numerical range of the complex matrix

B + iBΓ):

W 1+i(B)
def
=
{
c ∈ R : c(1 + i) ∈W (B + iBΓ)

}
.(3.9)

This set is always nonempty, since it contains all of the diagonal entries of B, for example. To see this,

notice that if ej is the j-th standard basis vector of Rn (1 ≤ j ≤ n), and we choose x = ej ⊗ ek for some

1 ≤ j ≤ m and 1 ≤ k ≤ n, then

x∗(B + iBΓ)x = x∗Bx + ix∗BΓx = b(j,j),(k,k)(1 + i),

where b(j,j),(k,k) denotes the (k, k)-entry of the (j, j)-block of B. The set W 1+i(B) is furthermore convex

and compact since W (A) is convex and compact [23, Section 1.3] for all complex matrices A. It follows that

W 1+i(B) is a closed and bounded interval of real numbers. We give names to its endpoints:

W 1+i
min (B)

def
= min

{
c ∈W 1+i(B)

}
and W 1+i

max(B)
def
= max

{
c ∈W 1+i(B)

}
.(3.10)

Our first main result describes how W 1+i
min (B) and W 1+i

max(B) relate to µmin(B) and µmax(B).

Theorem 3.1. Let B ∈Mm ⊗Mn. Then

µmin(B) ≥W 1+i
min (B) and µmax(B) ≤W 1+i

max(B).

Proof. We only prove the inequality on the right, as the one on the left follows via an almost identical

argument.

Thanks to compactness of the set of unit product vectors, there exists x = v ⊗w ∈ Rm ⊗ Rn so that

‖x‖ = 1 and xTBx = µmax(B). Routine algebra then shows that

xTBΓx = Tr
(
BΓxxT

)
= Tr

(
B(xxT )Γ

)
= Tr

(
BxxT

)
= xTBx = µmax(B)

too, where the central equality used the fact that x is a real product vector, so

(xxT )Γ = vvT ⊗ (wwT )T = vvT ⊗wwT = xxT .

It follows that

xT (B + iBΓ)x = xTBx + ixTBΓx = (1 + i)µmax(B) ∈W (B + iBΓ),

so µmax(B) ∈W 1+i(B), which shows that µmax(B) ≤W 1+i
max(B), as desired.
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Our second main result establishes how the bound of Theorem 3.1 compares with the eigenvalue bounds

of Inequalities (2.6). We do not prove this theorem here, however, as it arises as a special case of a more

general result that we will prove in Section 6 (see Theorem 6.2 in particular).

Theorem 3.2. Let B ∈Mm ⊗Mn be symmetric. Then

W 1+i
min (B) = max

p∈R

{
λmin(pB + (1− p)BΓ)

}
and W 1+i

max(B) = min
p∈R

{
λmax(pB + (1− p)BΓ)

}
.

Another way of phrasing Theorem 3.1 is as saying that µmin(B), µmax(B) ∈W 1+i(B). Similarly, Theo-

rem 3.2 says exactly that, if B is symmetric, then W 1+i(B) is the following intersection of subintervals of

R:

W 1+i(B) =
⋂
p∈R

[
λmin(pB + (1− p)BΓ), λmax(pB + (1− p)BΓ)

]
.

These facts are illustrated schematically in Figure 1.

Re

Im {c(1 + i) : c ∈ R}

λmax(B)

λmax(BΓ)

λmin(B)

λmin(BΓ)

µmin(B) µmax(B)

W (B + iBΓ)

λmin(pB + (1− p)BΓ)

W 1+i(B)

λmax(pB + (1− p)BΓ)

W 1+i
max(B)W 1+i

min (B)

Figure 1: An illustration of the bounds described by Theorems 3.1 and 3.2 when B ∈Mm⊗Mn is symmetric.

Remark 3.3. There is nothing particularly special about the “1 + i” in W 1+i(B). We could have instead

picked any two nonzero y, z ∈ R and replaced the defining Equation (3.9) with

W y+iz(B)
def
=
{
c ∈ R : c(y + iz) ∈W (yB + izBΓ)

}
.

As long as y, z 6= 0, we have W 1+i(B) = W y+iz(B) (after all, c ∈W y+iz(B) if and only if there exists a unit

vector x for which x∗Bx = x∗BΓx, which is also equivalent to c ∈ W 1+i(B)), so the bounds provided by
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Theorems 3.1 and 3.2 would be unchanged if we replaced W 1+i(B) by W y+iz(B). We picked x = y = 1 for

simplicity and numerical stability.

(On the other hand, if z = 0 then W y(B) = [λmin(B), λmax(B)] and if y = 0 then W iz(B) =

[λmin(BΓ), λmax(BΓ)], so in these cases we would recover just the trivial bounds on µmin(B) and µmax(B)

in Theorem 3.1.)

3.1. Comparison with known bounds. Besides providing a useful theoretical link between tensor

optimization and the numerical range, Theorems 3.1 and 3.2 are also useful practically since they are much

easier to compute than other known bounds. In this section, we briefly compare our bounds with other

techniques that are typically employed to bound the optimal value of tensor optimization problems.

Typical methods of bounding µmin(B) and µmax(B) make use of semidefinite programming (SDP) re-

laxations. We do not provide a detailed introduction to semidefinite programming here—see [4] or [26,

Section 3.C] for such an introduction—but rather we just note that semidefinite programs are a specific type

of convex optimization problem that can be solved in polynomial time [30]. For example, it is straightfor-

ward to show that the optimal value of the following semidefinite program (in the symmetric matrix variable

X ∈Mm ⊗Mn) provides an upper bound on µmax(B):

maximize: Tr(BX)

subject to: XΓ = X

Tr(X) = 1

X � O,

(3.11)

where the constraint X � O means that X is (symmetric) positive semidefinite. Indeed, for any unit vectors

v and w in the optimization problem (2.1), we can choose X = vvT ⊗ wwT as a feasible point in the

SDP (3.11) that attains the same value in the objective function.

In fact, semidefinite programs like this one typically provide a better bound on µmax(B) than Theorem 3.1

does. The advantage of Theorem 3.1 is that it requires significantly fewer computational resources to

implement. Despite the fact that semidefinite programs can be solved in polynomial time, in practice they

are quite slow and use an extraordinary amount of memory when the matrices involved have more than

a few hundred rows and columns. By comparison, the numerical range of a matrix (and thus the bound

provided by Theorem 3.1) can easily be computed for any matrix that fits into a computer’s memory—tens

of thousands of rows and columns, or even millions of rows and columns if the matrix is sparse (i.e., has

most entries equal to 0).

Example 3.4. If m = n = 19 then the semidefinite program (3.11) takes about 45 minutes to solve when

applied to a random symmetric matrix B ∈Mm ⊗Mn, whereas our method finishes in about 1 second (we

implemented our method in MATLAB and our code is available at [34]).

In fact, the semidefinite program (3.11) is impractical to run already when m = n = 20, as our desktop

computer with 16Gb of RAM runs out of memory before completing the computation in this case via standard

semidefinite programming solvers in either of MATLAB [17] or Julia [37]. By contrast, our method continues

working for significantly larger matrices and takes about 17 minutes to apply to a random symmetric matrix

B ∈Mm ⊗Mn when m = n = 100.

Example 3.5. Since the numerical range of a matrix can be computed by just finding the maximum

eigenvalue of some Hermitian matrices (see Appendix A for details), and there are algorithms for numerically
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computing the maximum eigenvalue of large sparse matrices very quickly, Theorem 3.1 can be directly applied

to large sparse matrices.

For example, when m = n = 500 we generated a random symmetric sparse matrix B ∈ Mm ⊗ Mn

(with entries generated independently according to a standard normal distribution) with approximately

1, 000, 000 non-zero entries. For this matrix, our code computed both of the bounds from Theorem 3.1 in

a total of 6 minutes, showing that µmin(B) ≥ W 1+i
min (B) ≈ −1.9094 and µmax(B) ≤ W 1+i

max(B) ≈ 2.3991.

These bounds are much better than the trivial eigenvalue bounds of µmin(B) ≥ λmin(B) ≈ −3.2537 and

µmax(B) ≤ λmax(B) ≈ 3.2538 (see Figure 2).

Re

Im

W (B + iBΓ)

W 1+i
min (B) ≈ −1.9094

W 1+i
max(B) ≈ 2.3991

λmin(B) ≈ −3.2537 λmax(B) ≈ 3.2538

Figure 2: The numerical range of a random sparse symmetric matrix B ∈M500 ⊗M500.

It is perhaps worth noting that Theorems 3.1 and 3.2 can themselves be interpreted as semidefinite pro-

gramming relaxations of µmax(B). For example, W 1+i
max(B) is the optimal value of the following primal/dual

pair of semidefinite programs in the variables c, p ∈ R and the symmetric matrix variable X ∈Mm ⊗Mn:

Primal problem Dual problem

maximize: Tr(BX) minimize: c

subject to: Tr(BX) = Tr(BXΓ) subject to: pB + (1− p)BΓ � cI
Tr(X) = 1

X � O

.(3.12)

However, it is more computationally efficient to compute W 1+i
max(B) directly via the numerical range (as

described in Appendix A), rather than via semidefinite program solvers.

4. Some applications. To illustrate the effectiveness of our results, we now apply Theorems 3.1 and 3.2

to some specific problems that arise as special cases of the optimization problem (2.1).
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4.1. Application to rank-one-avoiding matrix subspaces. We say that a subspace of matrices

S ⊆Mm,n is rank-one-avoiding if rank(X) 6= 1 for all X ∈ S. Although there are a few results on bounding

which subspaces can be rank-one-avoiding, for instance those of dimension greater than mn − max{m,n}
cannot be rank-one-avoiding [16], showing that a given matrix subspace S is rank-one-avoiding seems to be

hard (indeed, determining the minimal rank of a non-zero matrix in a subspace is NP-hard [5]). However,

our method can be adapted to solve this problem quickly for a large number of matrix subspaces.

Consider the following quantity, which can be thought of as a measure of how close S is to being

rank-one-avoiding:

d(S)
def
= max

Y ∈S

{
‖Y ‖ : ‖Y ‖F ≤ 1

}
,(4.13)

where ‖Y ‖ is the operator norm (i.e., the largest singular value of Y ) and ‖Y ‖F is the Frobenius norm

(i.e., the 2-norm of the vector of singular values of Y ). We note that this maximum really is a maximum

(not a supremum) by compactness of the set of Y ∈ S with ‖Y ‖F ≤ 1. It is straightforward to show that

‖Y ‖ ≤ ‖Y ‖F, with equality if and only if rank(Y ) = 1, which immediately implies that d(S) ≤ 1 with

equality if and only if there exists Y ∈ S with rank(Y ) = 1. In other words, S is rank-one-avoiding if and

only if d(S) < 1.

Before we can state the main result of this section, we recall that the (column-by-column) vectorization

of a matrix is the operation vec : Mm,n → Rn ⊗ Rm defined by

vec
([

v1 v2 · · · vn

]) def
=


v1

v2

...

vn

 .
For a subspace S ⊆Mm,n, we similarly define vec(S)

def
= {vec(Y ) : Y ∈ S}.

Our main result of this section is then an easy-to-compute upper bound on d(S) in terms of vec(S), and

thus a way to show that a subspace S is rank-one-avoiding:

Theorem 4.1. Let S ⊆Mm,n be a subspace and let PS be the orthogonal projection onto vec(S). Then

d(S)2 ≤W 1+i
max(PS).

In particular, if W 1+i
max(PS) < 1 then S is rank-one-avoiding.

Proof. By Theorem 3.1, we know that µmax(PS) ≤ W 1+i
max(PS), so it suffices to show that µmax(PS) =

d(S)2. To this end, we compute

d(S)2 = max
Y ∈S

{
‖Y ‖2 : ‖Y ‖F ≤ 1

}
= max

Y ∈S
v∈Rm,w∈Rn

{
|wTY v|2 : ‖Y ‖F, ‖v‖, ‖w‖ ≤ 1

}
= max

Y ∈S
v∈Rm,w∈Rn

{
|vec(Y )T (v ⊗w)|2 : ‖vec(Y )‖, ‖v‖, ‖w‖ ≤ 1

}
= max

v∈Rm,w∈Rn

{
(v ⊗w)TPS(v ⊗w) : ‖v‖, ‖w‖ ≤ 1

}
= µmax(PS),
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where the third equality comes from the facts that ‖Y ‖F = ‖vec(Y )‖ and wTY v = vec(Y )T (v ⊗w).

Example 4.2. Consider the subspace S ⊂M2 of matrices of the form[
c −d
d c

]
,(4.14)

where c, d ∈ R. This subspace is rank-one-avoiding since for all nonzero matrices in S, the determinant

c2 + d2 is nonzero, so each matrix is invertible and thus has rank 2 (as a side note, S is a largest possible

rank-one-avoiding subspace of M2, since its dimension (2) saturates the upper bound of mn−max(m,n) = 2

from [16]).

To see that S is rank-one-avoiding via our machinery, we note that direct computation shows that

PS =
1

2


1 0 0 1

0 1 −1 0

0 −1 1 0

1 0 0 1

 ,
and that W 1+i

max(PS) = 1/2. It then follows from Theorem 4.1 that S is rank-one-avoiding.

Remark 4.3. The previous example demonstrates that our results really are specific to the case of real

matrices; the subspace S from Example 4.2 is rank-one-avoiding in the real case, but not in the complex case

(e.g., if we choose c = 1 and d = i then the matrix (4.14) has rank 1).3 There are some known very quick

methods of showing that a subspace of complex matrices is rank-one-avoiding (see [14, 27], for example), but

those methods do not work in the real case (whereas our method does not work in the complex case). We

are not aware of any other effective methods for showing that a real subspace is rank-one-avoiding, besides

(much slower) methods based on semidefinite programming like those of Section 3.1.

Since we can easily compute W 1+i
max(PS) for any subspace S, we can get a rough idea of the efficacy

of Theorem 4.1 by generating orthogonal projection matrices for random subspaces of a given dimension,

and computing W 1+i
max(PS) for each. Figure 3 illustrates the probability of Theorem 4.1 detecting that a

subspace of the given dimension is rank-one-avoiding, based on 10, 000 randomly generated (according to

Haar measure on the Grassmannian) subspaces of each dimension.

4.2. Application to positive linear maps and biquadratic forms. Recall that we use MS
n to

denote the set of (real) symmetric n × n matrices. We similarly use MA
n to denote the set of (real) skew-

symmetric n× n matrices (i.e., matrices Y satisfying Y T = −Y ). We say that a linear map Φ : Mm →Mn

is transpose-preserving if Φ(XT ) = Φ(X)T for all X ∈Mm (or equivalently, if Φ(MS
m) ⊆MS

n and Φ(MA
m) ⊆

MA
n ).4 If Φ is transpose-preserving then we say that it is positive if Φ(X) ∈ MS

n is positive semidefinite

whenever X ∈ MS
m is positive semidefinite [32, 9]. It is straightforward to show that if there exist matrices

{Aj} ⊆Mn,m and a linear map Ψ : Mm →Mn such that Ψ(X) = O whenever X ∈MS
m and

Φ(X) =
∑
j

AjXA
T
j + Ψ(X) for all X ∈Mm,(4.15)

then Φ is positive (in fact, maps of the form X 7→
∑
j AjXA

T
j are called completely positive).

3In fact, every 2-dimensional subspace of M2(C) contains a rank-1 matrix [13].
4These maps were called Hermitian in [9]; we instead use the terminology of [26].
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(a) A visualization of the probabilities when m ≥ n (the pic-

ture is symmetric when m ≤ n), where the largest circles

shown mean probability 1 and no circle means probability 0.

k

n
2 3 4 5

1 1.00 1.00 1.00 1.00

2 0.21 0.96 1.00 1.00

3 0.00 0.56 1.00 1.00

4 · 0.09 0.95 1.00

5 · 0.00 0.69 1.00

6 · · 0.25 0.99

7 · · 0.03 0.92

8 · · 0.00 0.68

9 · · · 0.31

10 · · · 0.07

11 · · · 0.00

12 · · · ·

(b) Explicit probabilities, rounded to two decimal

places, when m = n.

Figure 3: The approximate probability of Theorem 4.1 detecting that a k-dimensional subspace of Mm,n is

rank-one-avoiding, based on 10, 000 randomly generated (according to Haar measure on the Grassmannian)

subspaces of each dimension.

Conversely, if min{m,n} ≤ 2 then it is known [6] that if Φ is positive then it can be written in the

form (4.15). However, if min{m,n} ≥ 3 then there are exceptions (i.e., positive linear maps that cannot be

written in the form (4.15)). For example, the Choi map Φ : M3 →M3 defined by

Φ(X) :=

x1,1 + x3,3 −x1,2 −x1,3

−x2,1 x1,1 + x2,2 −x2,3

−x3,1 −x3,2 x2,2 + x3,3

 ,(4.16)

is positive but cannot be written in the form (4.15) [11].

The Choi matrix [10] of a linear map Φ : Mm →Mn is the matrix CΦ ∈Mm ⊗Mn defined by

CΦ
def
=

m∑
i,j=1

Ei,j ⊗ Φ(Ei,j),

where Ei,j is the matrix with a 1 in its (i, j)-entry and zeroes elsewhere. It is straightforward to show that

Φ is transpose-preserving if and only if CΦ is symmetric. Furthermore, a transpose-preserving map Φ can be

written in the form (4.15) if and only if CΦ = A+B for some symmetric A,B ∈Mm ⊗Mn with A positive

semidefinite and B satisfying B = −BΓ (A and B are the Choi matrices of the maps X 7→
∑
j AjXA

T
j and

Ψ, respectively, and it is well-known [10] that a map is completely positive if and only if its Choi matrix is

positive semidefinite).
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In general, determining positivity of a linear map is hard, since it is equivalent to solving the optimization

problem (2.1):

Theorem 4.4. Let Φ : Mm →Mn be a transpose-preserving linear map. Then

min
{
λmin

(
Φ(X)

)
: X � O,Tr(X) = 1

}
= µmin(CΦ).(4.17)

In particular, Φ is positive if and only if µmin(CΦ) ≥ 0.

Proof. By convexity and the spectral decomposition, λmin

(
Φ(X)

)
is minimized as in Equation (4.17)

when X = xxT for some x ∈ Rm with ‖x‖ = 1. It follows that

min
{
λmin

(
Φ(X)

)
: X � O,Tr(X) = 1

}
= min

x∈Rm

{
λmin

(
Φ(xxT )

)
: ‖x‖ = 1

}
= min

x∈Rm,y∈Rn

{
yTΦ(xxT )y : ‖x‖ = ‖y‖ = 1

}
= min

x∈Rm,y∈Rn

{
(x⊗ y)TCΦ(x⊗ y) : ‖x‖ = ‖y‖ = 1

}
= µmin(CΦ),

as claimed.

Determining whether or not Φ can be written in the form (4.15) is much simpler than determining

positivity, as it can be decided by the following semidefinite program in the variables c ∈ R and X,Y ∈
Mm ⊗Mn:

minimize: c

subject to: CΦ + cI = X + Y

Y Γ = −Y
X � O.

(4.18)

In particular, such a decomposition of Φ exists if and only if the optimal value of this semidefinite program

is nonpositive.

However, as with the examples from Section 3.1, this semidefinite program is only feasible to run when

m,n < 20 or so. The numerical range approach of Theorem 3.1 can be adapted to this problem for much

larger values of m and n:

Theorem 4.5. Let Φ : Mm → Mn be a transpose-preserving linear map. If W 1+i
min (CΦ) ≥ 0 then Φ can

be written in the form (4.15) and is thus positive.

Proof. Since Φ is transpose-preserving, CΦ is symmetric, so know from Theorem 3.2 that

W 1+i
min (CΦ) = max

p∈R

{
λmin(pCΦ + (1− p)CΓ

Φ)
}
.

The hypothesis W 1+i
min (CΦ) ≥ 0 is thus equivalent to the existence of a particular p ∈ R such that pCΦ +

(1− p)CΓ
Φ is positive semidefinite. That is, Ω := pΦ + (1− p)(Φ ◦ T ) is completely positive, where T is the

transpose map.

Rearranging this equation shows that Φ = Ω− (1− p)(Φ ◦ T −Φ). Since Ω is completely positive, it can

be written in the form Ω(X) =
∑
j AjXA

T
j , and we can choose Ψ := −(1− p)(Φ ◦T −Φ) so that Φ = Ω + Ψ

is a decomposition of the form (4.15).
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Theorem 4.5 performs very well in practice, as illustrated by the next example.

Example 4.6. Let c ∈ R and consider the linear map Φc : M3 →M3 defined by

Φc(X) :=

x1,1 + cx2,2 + x3,3 −x1,2 −x1,3

−x2,1 x1,1 + x2,2 + cx3,3 −x2,3

−x3,1 −x3,2 cx1,1 + x2,2 + x3,3

 .(4.19)

This map is positive exactly when c ≥ 0 (when c = 0 it is the Choi map from Equation (4.16)), and the

semidefinite program (4.18) shows that it can be written in the form (4.15) exactly when c ≥ 1/4.

Theorem 4.5 captures this behavior perfectly: W 1+i
min (CΦc) ≥ 0 exactly when c ≥ 1/4 (see Figure 4). By

contrast, the trivial eigenvalue bounds λmin(CΦc
) and λmin(CΓ

Φc
) only show that Φc can be written in the

form (4.15) when c ≥ 1, since λmin(CΦc
) = −1 < 0 for all c and λmin(CΓ

Φc
) ≥ 0 only when c ≥ 1.

Re

Im

W 1+i
min (CΦ1/4

)

(a) W
(
CΦ1/4

+ iCΓ
Φ1/4

)

0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

c

W 1+i
min (CΦc

)

( 1
4 , 0)

(0, 1− 2√
3
)

(b) A plot of W 1+i
min (CΦc) as a function of c.

Figure 4: Theorem 4.5 shows that the map Φc from Equation (4.19) can be written in the form (4.15), and

is thus positive, when c ≥ 1/4.

Since there is a straightforward correspondence between positive linear maps and biquadratic forms

(see [11] for details), the results in this section immediately apply to the problem of trying to show that a

biquadratic form can be written as a sum of squares.

5. Generalization to complex matrices. Given the ubiquity of complex tensor optimizations and

positive linear maps acting on complex matrices in quantum information theory (see [25, 19] and the refer-

ences therein, for example), it is natural to ask how far our results from the previous section can generalize

to optimizations over complex product vectors. We thus now define complex versions of the quantities from

Equation (2.1):

µC
min(B)

def
= min

v∈Cm,w∈Cn

{
(v ⊗w)∗B(v ⊗w) : ‖v‖ = ‖w‖ = 1

}
and

µC
max(B)

def
= max

v∈Cm,w∈Cn

{
(v ⊗w)∗B(v ⊗w) : ‖v‖ = ‖w‖ = 1

}
.

(5.20)
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Note that we still require B to be real symmetric (not complex Hermitian), since our goal is to find

cases where the optimal values of the complex optimization problems from Equation (5.20) simply equal the

corresponding real optimal values from Equation (2.1). If we were to allow B to be complex Hermitian then

there is essentially no hope of this happening, as illustrated by the next example:

Example 5.1. Consider the Hermitian matrix

B =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 ∈M2(C)⊗M2(C).

It is straightforward to check that, for all v,w ∈ R2, we have

(v ⊗w)∗B(v ⊗w) =
[
v1w1 v1w2 v2w1 v2w2

] 
iv2w2

iv2w1

−iv1w2

−iv1w1

 = 0,

which implies µmin(B) = µmax(B) = 0.5 On the other hand, µC
min(B) = −1 and µC

max(B) = 1, which can be

verified by noting that the eigenvalues of B are λmax(B) = 1 and λmin(B) = −1, and some corresponding

eigenvectors are (1,−i)⊗ (1, 1) and (1, i)⊗ (1, 1), respectively.

The following lemma shows that if we require B to be real and have some extra symmetry properties, then

problems like the one described in Example 5.1 no longer occur, and we do indeed have µmin(B) = µC
min(B)

and µmax(B) = µC
max(B):

Lemma 5.2. Let B ∈Mm ⊗Mn be symmetric and define X = (B +BΓ)/2. Then

µmin(B) = µmin(X) = µC
min(X) and µmax(B) = µmax(X) = µC

max(X).

Proof. Since B is symmetric, we know from Lemma 2.1 that

µmin(B) = µmin(X) and µmax(B) = µmax(X).

All that remains is to show that µmin(X) = µC
min(X) and µmax(X) = µC

max(X). We just prove that

µmax(X) = µC
max(X), since the corresponding minimization result follows similarly. Furthermore, the in-

equality µmax(X) ≤ µC
max(X) is immediate from the definition, so we just prove the opposite inequality.

Thanks to compactness of the set of unit product vectors, there exist v ∈ Cm and w ∈ Cn with

‖v‖ = ‖w‖ = 1 and (v ⊗w)∗X(v ⊗w) = µC
max(X). If we use the fact that XΓ = X, then algebra similar

to that of Equation (2.4) then shows that

Tr
(
X(vv∗ ⊗ww∗)

)
= (v ⊗w)∗X(v ⊗w) = (v ⊗w)∗XΓ(v ⊗w) = Tr

(
X(vv∗ ⊗ww∗)

)
,

so

µC
max(X) = Tr

(
X(vv∗ ⊗ Re(ww∗))

)
.

5Strictly speaking, µmin(B) and µmax(B) are not defined here, since B was assumed to be real in the defining Equation (2.1).

For the purposes of this example, we have just extended the definition to allow complex matrices B (while still optimizing over

real vectors v and w).
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Similar algebra, using the fact that XT = X, then shows that

µC
max(X) = Tr

(
X(Re(vv∗)⊗ Re(ww∗))

)
.(5.21)

The matrix Re(vv∗)⊗ Re(ww∗) is clearly symmetric, and it is even positive semidefinite since

Re(vv∗)⊗ Re(ww∗) =
(
Re(v)Re(v)T + Im(v)Im(v)T

)
⊗
(
Re(w)Re(w)T + Im(w)Im(w)T

)
.

It is furthermore the case that Tr(Re(vv∗)⊗ Re(ww∗)) = 1, so if we define

x1 :=
Re(v)⊗ Re(w)

‖Re(v)⊗ Re(w)‖
, x2 :=

Re(v)⊗ Im(w)

‖Re(v)⊗ Im(w)‖
,

x3 :=
Im(v)⊗ Re(w)

‖Im(v)⊗ Re(w)‖
, x4 :=

Im(v)⊗ Im(w)

‖Im(v)⊗ Im(w)‖
,

then the quantity in Equation (5.21) is equal to some convex combination of the quantities

Tr
(
X(x1x1

T )
)
, Tr

(
X(x2x2

T )
)
, Tr

(
X(x3x3

T )
)
, and Tr

(
X(x4x4

T )
)
.

It follows that there exists some 1 ≤ j ≤ 4 such that

µC
max(X) ≤ Tr

(
X(xjxj

T )
)

= xj
TXxj ≤ µmax(X),

which completes the proof.

It might be tempting to conjecture that if B is real symmetric then µmin(B) = µC
min(B), thus filling in

an apparent “gap” in Lemma 5.2. We now present an example to show that this is not true:

Example 5.3. Consider the symmetric matrix

B =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 ∈M2 ⊗M2.

Since BΓ = −B, we know from Lemma 2.1 that (v ⊗ w)TB(v ⊗ w) = 0 for all v,w ∈ R2, which implies

µmin(B) = µmax(B) = 0. On the other hand, µC
min(B) = −1 and µC

max(B) = 1, which can be verified by

noting that the eigenvalues of B are λmax(B) = 1 and λmin(B) = −1, and some corresponding eigenvectors

are (1, i)⊗ (1,−i) and (1, i)⊗ (1, i), respectively.

Remark 5.4. Lemma 5.2 tells us that the product vector optimizations introduced in Equation (2.1)

and (5.20) do not depend on the choice of field (R or C) when real B ∈ Mm ⊗Mn satisfies B = BT = BΓ.

These constraints on B are equivalent to the requirement that B ∈MS
m ⊗MS

n .

This vector space is strictly smaller than the vector space of symmetric matrices in Mm⊗Mn: the former

has dimension mn(m + 1)(n + 1)/4, while the latter has dimension mn(mn + 1)/2. This contrasts quite

starkly with the complex case, where (here we use MH
n to denote the set of n×n complex Hermitian matrices)

MH
m ⊗MH

n is isomorphic in a natural way to the vector space of Hermitian matrices in Mm(C) ⊗Mn(C);

they are both real vector spaces with dimension m2n2. See [22] for further discussion of these sorts of issues.
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Examples 5.1 and 5.3 show that we have to be extremely careful when trying to apply our results to

optimizations over complex product vectors—the matrix B has to be real, symmetric, and equal to its own

partial transpose:

Corollary 5.5. Suppose X ∈ MS
m ⊗MS

n and let B ∈ Mm ⊗Mn be any matrix for which X = (B +

BT +BΓ + (BT )Γ)/4. Then

µC
min(X) ≥W 1+i

min (B) and µC
max(X) ≤W 1+i

max(B).

Proof. This follows immediately from combining Theorem 3.1 and Lemma 5.2.

5.1. Application to entanglement witnesses. A standard application of Corollary 5.5 would be

to show that a given matrix X ∈ MH
m ⊗ MH

n is, in the terminology of quantum information theory, an

entanglement witness [35], which just means that X has µC
min(X) ≥ 0 but is not positive semidefinite. We

illustrate this procedure with an example.

Example 5.6. Recall the Choi map Φ from Equation (4.16). It is known that (if · denotes 0) the matrix

X =
1

4

(
CΦ + CTΦ + CΓ

Φ + (CTΦ )Γ
)

=
1

2



2 · · · −1 · · · −1

· · · −1 · · · · ·
· · 2 · · · −1 · ·
· −1 · 2 · · · · ·
−1 · · · 2 · · · −1

· · · · · · · −1 ·
· · −1 · · · · · ·
· · · · · −1 · 2 ·
−1 · · · −1 · · · 2


,

is an entanglement witness, but verifying this fact computationally is difficult. To get an idea of the effec-

tiveness of a computational technique for showing that a matrix is an entanglement witness, we can ask for

the smallest 0 ≤ c ∈ R such that the technique succeeds on the input matrix X + cI.

Perhaps the computationally simplest such c to find is c = −λmin(X), which is equal to (
√

2 − 1)/2 ≈
0.2071 in this case. However, X + cI is technically not an entanglement witness for this value of c, since

it is actually positive semidefinite. A better (i.e., smaller) c can be computed by the following (much more

expensive) semidefinite programming relaxation, which is common in quantum information theory [15]:

minimize: c

subject to: X + cI = Y + ZΓ

Y,Z � O.
(5.22)

This semidefinite program has an optimal value of c = 2/
√

3 − 1 ≈ 0.1547, which is slightly better

than the trivial eigenvalue bound. In quantum information theory terminology, this means that X + cI is a

decomposable entanglement witness [1] for this value of c. The bound of Corollary 5.5 does just as well and

shows that X+ cI is an entanglement witness when c = −W 1+i
min (CΦ) = 2/

√
3− 1 ≈ 0.1547 (see Figure 5 and

also compare with Figure 4) via a fraction of the computational resources.

We do note, however, that our method is not as powerful as semidefinite programming in general. Just

like we saw in Section 3.1, our method is faster than the usual semidefinite programming relaxations, and

can handle larger programs, at the expense of typically giving a weaker bound.
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Re

Im

W (CΦ + iCΓ
Φ)

W 1+i
min (CΦ) ≈ −0.1547

Figure 5: The numerical range of CΦ + iCΓ
Φ, where Φ is the Choi map on M3.

6. Multipartite generalization. We now (and for the rest of the paper) return to the case of only

considering real matrices and vectors, and we generalize our results to tensor optimizations in which there

are more than two tensor factors. Throughout this section, we fix positive integers p, n1, n2, . . ., np, and a

matrix B ∈Mn1
⊗ · · · ⊗Mnp

. Our goal is to show how our results (Theorems 3.1 and 3.2 in particular) can

be generalized to bound the quantities

µmin(B)
def
= min

vj∈Rnj

{
(v1 ⊗ · · · ⊗ vp)TB(v1 ⊗ · · · ⊗ vp) : ‖vj‖ = 1 for all 1 ≤ j ≤ p

}
and

µmax(B)
def
= max

vj∈Rnj

{
(v1 ⊗ · · · ⊗ vp)TB(v1 ⊗ · · · ⊗ vp) : ‖vj‖ = 1 for all 1 ≤ j ≤ p

}
.

(6.23)

If p = 2 then these quantities simplify to exactly the quantities (2.1) that we considered earlier.

Now that we are considering tensor optimizations on more than just two systems, we need to introduce

two modifications of tools that we used previously before we can generalize Theorems 3.1 and 3.2. First,

we cannot simply make use of the partial transpose of Equation (2.3). Instead, we can now transpose any

combination of the p subsystems, not just the second subsystem. That is, for 1 ≤ j ≤ p we define the j-th

partial transpose of a matrix B =
∑
`X1,` ⊗X2,` ⊗ · · · ⊗Xp,` as

Γj(B)
def
=
∑
`

X1,` ⊗ · · · ⊗Xj−1,` ⊗XT
j,` ⊗Xj+1,` ⊗ · · · ⊗Xp,`.(6.24)

Slightly more generally, if S ⊆ [p] is any subset of [p] = {1, 2, . . . , p}, then we define ΓS to be the composition

of Γj for each j ∈ S.

Second, instead of the numerical range, we now make use of the joint numerical range, which is defined

for A1, A2, . . . , Ak ∈MS
n by

W (A1, A2, . . . , Ak)
def
=
{

(v∗A1v,v
∗A2v, . . . ,v

∗Akv) : v ∈ Cn, ‖v‖ = 1
}
.(6.25)

In the special case when k = 2, the joint numerical range W (A1, A2) is exactly equal to the (regular, not

joint) numerical range W (A1 + iA2), if we identify R2 with C in the usual way. Unlike the numerical range,

however, when k ≥ 4 or (k, n) = (3, 2) the joint numerical range is not convex in general (see [3], for example).
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Our bounds on µmax(B) and µmin(B) will depend on the following joint numerical range of several partial

transpositions of of B. In particular, if P = {S1, S2, . . . , Sk} ⊆ P([p]) is any nonempty member of the power

set of [p], then we define

WP,1(B)
def
=
{
c ∈ R : (c, c, . . . , c) ∈W

(
ΓS1(B),ΓS2(B), . . . ,ΓSk

(B)
)}
.(6.26)

As with the bipartite case of W 1+i(B) from Equation (3.9), WP,1(B) is always nonempty since it

contains, for example (e1 ⊗ · · · ⊗ e1)TB(e1 ⊗ · · · ⊗ e1). Also similar to the bipartite case, we denote its

extreme values by

WP,1
min(B)

def
= min

{
c ∈WP,1(B)

}
and WP,1

max(B)
def
= max

{
c ∈WP,1(B)

}
.

Since W
(
ΓS1

(B),ΓS2
(B), . . . ,ΓSk

(B)
)

is compact [29, Property (F)], so too is WP,1(B), and thus these

bounds are attained and well defined. We are finally in a position to state the main result of this section:

Theorem 6.1. Let B ∈Mn1 ⊗ · · · ⊗Mnp and let P ⊆ P([p]) be non-empty. Then

µmin(B) ≥WP,1
min(B) and µmax(B) ≤WP,1

max(B).

For example, if p = 2 and P =
{
{}, {2}

}
, then this theorem recovers exactly Theorem 3.1, since the two

members of P correspond to taking the partial transpose on no subsystems (i.e., B itself) and taking the

partial transpose on the 2nd subsystem (which we simply called BΓ).

In general, choosing a larger set P results in a tighter bound on µmin(B) and µmin(B) in Theorem 6.1, at

the expense of increased computational resources. However, there is never any advantage to choosing P so

that |P | > 2p−1 (which is why we chose P with |P | = 2 in the p = 2 case, for example, rather than choosing

P =
{
{}, {1}, {2}, {1, 2}

}
with |P | = 4). To see why this is the case, notice that if S ∈ P then there is

nothing to be gained by having [p] \ S ∈ P , since Γ[p]\S(B) = (T ◦ ΓS)(B), so xTΓ[p]\S(B)x = xTΓS(B)x

for all x ∈ Rn1···np , so WP,1(B) does not depend on whether or not [p] \ S ∈ P .

Proof of Theorem 6.1. We only prove the rightmost inequality for brevity, as the proof of the left in-

equality is almost identical.

By compactness of the set of unit product vectors, we know that there exists x = v1 ⊗ · · · ⊗ vp ∈
Rn1 ⊗ · · · ⊗ Rnp such that ‖x‖ = 1 and xTBx = µmax(B). Then for all S ∈ P we have ΓS(xxT ) = xxT , so

xTΓS(B)x = Tr
(
ΓS(B)xxT

)
= Tr

(
BΓS(xxT )

)
= Tr

(
BxxT

)
= xTBx = µmax(B),

where we used the fact that each partial transpose map ΓS is its own dual in the trace inner product

(i.e., Tr(ΓS(X)TY ) = Tr(XTΓS(Y )) for all matrices X and Y ). It follows that µmax(B) ∈ WP,1(B), so

µmax(B) ≤WP,1
max(B).

Our final result generalizes Theorem 3.2 to this multipartite setting (once again, that result comes from

choosing p = 2 and P =
{
{}, {2}

}
in this generalization). Note that we need B to be symmetric in this

theorem so that we can ensure that the eigenvalues considered are real.

Theorem 6.2. Let B ∈ Mn1 ⊗ · · · ⊗Mnp be symmetric and let P = {S1, S2, . . . , Sk} ⊆ P([p]) be non-

empty. Then
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WP,1
min(B) = max

pj∈R

{
λmin

( k∑
j=1

pjΓSj (B)

)
:

k∑
j=1

pj = 1

}
and(6.27)

WP,1
max(B) = min

pj∈R

{
λmax

( k∑
j=1

pjΓSj
(B)

)
:

k∑
j=1

pj = 1

}
.(6.28)

Proof. We only prove the lower equality for sake of brevity. Let x ∈ Rn1···np be a unit vector for which

x∗ΓSj
(B)x = WP,1

max(B) for all 1 ≤ j ≤ k. If
∑k
j=1 pj = 1 then

x∗
( k∑
j=1

pjΓSj (B)

)
x =

k∑
j=1

pj
(
x∗ΓSj (B)x

)
=

k∑
j=1

pjW
P,1
max(B) = WP,1

max(B),

and thus WP,1
max(B) ≤ λmax

(∑k
j=1 pjΓSj (B)

)
.

To see that opposite inequality is attained for some particular choice of p1, p2, . . . , pk (and thus complete

the proof), we make use of Farkas’ Lemma from semidefinite programming (see [30, Lemma 3.3], for example),

which we state here for clarity:

Farkas’ Lemma. Let A1, . . . , Am and C be real symmetric matrices. Then, there exist z1, . . . , zm ∈ R such

that z1A1 + · · · + zmAm − C is positive definite if and only if there does not exist a non-zero (symmetric)

PSD matrix Y such that Tr(CY ) ≥ 0 and Tr(AjY ) = 0 for all 1 ≤ j ≤ m.

To make use of this lemma, we fix ε > 0, set m = k − 1 and choose the following matrices A1, . . . , Am,

and C:

• Aj = ΓS1
(B)− ΓSj+1

(B) for all 1 ≤ j ≤ m, and

• C = ΓS1(B)−
(
WP,1

max(B) + ε
)
I.

We claim that there does not exist a nonzero (symmetric) PSD matrix Y such that Tr(CY ) ≥ 0 and

Tr(AjY ) = 0 for all 1 ≤ j ≤ m. To verify this claim, it suffices (thanks to the spectral decomposition) to

consider the case when Y = yyT has rank 1, and by rescaling Y we can assume without loss of generality

that ‖y‖ = 1. Then Tr(AjY ) = 0 for all 1 ≤ j ≤ m implies yTΓS1
(B)y = yTΓSj+1

(B)y for all 1 ≤ j ≤ m,

so yTΓS1
(B)y ≤ WP,1

max(B). The condition Tr(CY ) ≥ 0 implies yTΓS1
(B)y ≥ WP,1

max(B) + ε, which cannot

also be true, so Y does not exist.

Farkas’ Lemma thus tells us that there exist z1, . . . , zm ∈ R such that z1A1 + · · ·+ zmAm−C is positive

definite. Plugging in our particular choices of A1, . . . , Am and C shows that there exist z1, . . . , zm ∈ R for

which (
WP,1

max(B) + ε
)
I +

 m∑
j=1

zj − 1

ΓS1
(B)−

m∑
j=1

zjΓSj+1
(B),

is positive definite. For 1 ≤ j ≤ m = k−1, we set pj = zj , and we set pk = 1−
∑m
j=1 zj so that

∑k
j=1 pj = 1.

It follows that the matrix (
WP,1

max(B) + ε
)
I −

k∑
j=1

pjΓSj
(B),

is positive definite, so

WP,1
max(B) + ε > λmax

( k∑
j=1

pjΓSj
(B))

)
.
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Since ε > 0 was arbitrary and the function that we are minimizing in Equation (6.28) is a convex function

of p1, . . . , pk, we conclude that there exist p1, . . . , pk for which
∑k
j=1 pj = 1 and

WP,1
max(B) ≥ λmax

( k∑
j=1

pjΓSj
(B))

)
,

completing the proof.

Appendix A. Implementation of Theorem 3.1.

We now describe two methods of numerically computing W 1+i
min (B) and W 1+i

max(B), both of which we have

implemented in MATLAB [34].

The conceptually easiest way to approximate the numerical range of a given matrix (and thus compute

W 1+i
min (B) and W 1+i

max(B)) is to simply generate a large number of random unit vectors v and compute v∗Av

for each of them. However, this method only yields a vague semblance of some points on the interior of W (A),

and typically does not properly demonstrate the actual shape of the numerical range unless an astronomical

number of random unit vectors are chosen. A much better method is demonstrated in [23, Chapter 1.5],

which we outline here.

Suppose A ∈Mn(C) has Cartesian decomposition A = H(A) + S(A), where

H(A) =
1

2
(A+A∗) and S(A) =

1

2
(A−A∗),

denote the Hermitian and skew-Hermitian pieces of A, respectively. Then H(A) acts as a sort of orthogonal

projection on to the real line for the numerical range: W (H(A)) = Re(W (A)). It is also the case that

W (H(A)) is simply the closed interval from λmin(H(A)) to λmax(H(A)), since Hermitian matrices are normal,

and the numerical range of a normal matrix is the convex hull of its eigenvalues. When we combine these

facts with the observation that e−iθW (eiθA) = W (A), we can obtain a boundary point of W (A) whose

tangent is normal to any given angle θ by first rotating A, computing the largest eigenvalue of the Hermitian

part of the new matrix, and conjugating the original A by the corresponding eigenvector. Some of these

steps are illustrated in Figure 6, where x is the eigenvector corresponding to the eigenvalue λmax(H(eiθA)).

Once we have a set of boundary points, we can compute an inner approximation of the numerical range

by simply connecting them, or since we know the angle of the tangent at each point, we can compute an

outer approximation by finding the intersections of each half-plane described by a tangent.

Note however that evenly spacing choices of θ does not determine evenly space points along the boundary

of W (A); in particular if the boundary of W (A) contains a flat region, this method will not yield any points

along it, it will only result in the endpoints being computed.

Our method for computing W 1+i
min (B) and W 1+i

max(B) efficiently is then to perform a binary search on

values of θ to compute boundary points as close as possible both below and above the line of slope 1. This

process may not yield boundary points arbitrarily close to the line, but it does yield points whose tangents

are at arbitrarily close angles. If those points themselves are not sufficiently close, the tangent angle at

W 1+i
min (B) or W 1+i

max(B) must lie between that of the surrounding points, and since their angles differ only by

an arbitrarily small amount, we can approximate the value in question by drawing a straight line between

them.
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Re

Im

W (A)

W (eiθA)

W (H(eiθA))

λmax(H(eiθA))

x∗(eiθA)x

x∗Ax

Figure 6: An illustration of the steps used to compute a boundary point of W (A).

Another completely different method of computing W 1+i
min (B) and W 1+i

max(B) is suggested by Theorem 3.2.

Since λmin(pB + (1− p)BΓ) and λmax(pB + (1− p)BΓ) are concave and convex functions of p, respectively,

we can perform ternary search on p to numerically find the value that maximizes the minimum eigenvalue

or minimizes the maximum eigenvalue. We have found that, in practice, this method performs comparably

to the method of computing the boundary of W (A).
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