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Abstract. Let V be a 2m-dimensional vector space over a field F (m ≥ 2) and let k ∈

{1, . . . , 2m − 1}. Let A2m−1,k denote the Grassmannian of the (k − 1)-dimensional subspaces of

PG(V ) and let egr denote the Grassmann embedding of A2m−1,k into PG(
∧k V ). Let S be a reg-

ular spread of PG(V ) and let XS denote the set of all (k − 1)-dimensional subspaces of PG(V )

which contain at least one line of S. Then we show that there exists a subspace Σ of PG(
∧k V ) for

which the following holds: (1) the projective dimension of Σ is equal to
(

2m

k

)

− 2 ·
(

m

k

)

− 1; (2) a

(k−1)-dimensional subspace α of PG(V ) belongs to XS if and only if egr(α) ∈ Σ; (3) Σ is generated

by all points egr(p), where p is some point of XS .

Key words. Regular spread, Grassmannian, Grassmann embedding, Klein correspondence.

AMS subject classifications. 15A75, 51A45.

1. The main result. Let V be a 2m-dimensional vector space over a field F

(m ≥ 2) and let PG(V ) denote the projective space associated to V . For every

k ∈ {1, . . . , 2m− 1}, let A2m−1,k denote the following point-line geometry.

• The points of A2m−1,k are the (k − 1)-dimensional subspaces of PG(V ).

• The lines of A2m−1,k are the sets L(π1, π2) of (k − 1)-dimensional subspaces

of PG(V ) which contain a given (k − 2)-dimensional subspace π1 and are

contained in a given k-dimensional subspace π2 (π1 ⊆ π2).

• Incidence is containment.

The geometry A2m−1,k is called the Grassmannian of the (k − 1)-dimensional sub-

spaces of PG(V ). Obviously, A2m−1,k
∼= A2m−1,2m−k and the geometry A2m−1,1

∼=
A2m−1,2m−1 is isomorphic to the (point-line system of) the projective space PG(2m−

1,F).

For every point p = 〈v̄1, . . . , v̄k〉 of A2m−1,k, let egr(p) denote the point 〈v̄1 ∧ v̄2 ∧

· · · ∧ v̄k〉 of PG(
∧k

V ). The map egr defines an embedding of the geometry A2m−1,k

into the projective space PG(
∧k

V ) which is called the Grassmann embedding of

A2m−1,k. The image of egr is a so-called Grassmann variety G2m−1,k of PG(
∧k V ).
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A spread of PG(V ) is a set of lines of PG(V ) partitioning the point-set of PG(V ).

In Section 2, we will define a nice class of spreads of PG(V ) which are called regular

spreads.

The following is the main result of this note.

Theorem 1.1. Let S be a regular spread of the projective space PG(V ). Let

k ∈ {1, . . . , 2m − 1}. Let XS denote the set of all (k − 1)-dimensional subspaces

of PG(V ) which contain at least one line of S. Then there exists a subspace Σ of

PG(
∧k

V ) for which the following holds:

(1) The projective dimension of Σ is equal to
(
2m
k

)
− 2 ·

(
m
k

)
− 1.

(2) A (k − 1)-dimensional subspace α of PG(V ) belongs to XS if and only if

egr(α) ∈ Σ.

(3) Σ is generated by all points egr(p), where p is some element of XS.

In Theorem 1.1 and elsewhere in this paper, we take the convention that
(
n
z

)
= 0 for

every n ∈ N and every z ∈ Z \ {0, . . . , n}.

Some special cases. (1) If k = 1, then by Theorem 1.1(1), Σ = ∅. Indeed, in this

case we have XS = ∅.

(2) If k = 2, then by Theorem 1.1, dim(Σ) = m2 − 1 and XS = S consists of all

lines L of PG(V ) for which egr(L) ∈ Σ∩G2m−1,2. For a discussion of the special case

k = m = 2, see Section 4.

(3) If k = m, then by Theorem 1.1(1), Σ has co-dimension 2 in PG(
∧m

V ).

(4) If k ∈ {m + 1, . . . , 2m − 1}, then by Theorem 1.1, Σ = PG(
∧k

V ) and XS

consists of all (k − 1)-dimensional subspaces of PG(V ).

2. Regular spreads.

2.1. Definition. Let PG(3,F) be a 3-dimensional projective space over a field

F. A regulus of PG(3,F) is a set R of mutually disjoint lines of PG(3,F) satisfying

the following two properties:

• If a line L of PG(3,F) meets three distinct lines of R, then L meets every

line of R;

• If a line L of PG(3,F) meets three distinct lines of R, then every point of L

is incident with (exactly) one line of R.

Any three mutually disjoint lines L1, L2, L3 of PG(3,F) are contained in a unique

regulus which we will denote by R(L1, L2, L3).
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Let n ∈ N \ {0, 1, 2} and F a field. Recall that a spread of the projective space

PG(n,F) is a set of lines which determines a partition of the point set of PG(n,F).

A spread S is called regular if the following two conditions are satisfied:

(R1) If π is a 3-dimensional subspace of PG(n,F) containing two distinct elements

of S, then the elements of S contained in π determine a spread of π;

(R2) If L1, L2 and L3 are three distinct lines of S which are contained in some

3-dimensional subspace, then R(L1, L2, L3) ⊆ S.

2.2. Classification of regular spreads. Let n ∈ N\{0, 1} and let F,F′ be fields

such that F′ is a quadratic extension of F. Let V ′ be an n-dimensional vector space

over F′ with basis {ē1, . . . , ēn}. We denote by V the set of all F-linear combinations

of the elements of {ē1, . . . , ēn}. Then V can be regarded as an n-dimensional vector

space over F. We denote the projective spaces associated with V and V ′ by PG(V )

and PG(V ′), respectively. Since every 1-dimensional subspace of V is contained in a

unique 1-dimensional subspace of V ′, we can regard the points of PG(V ) as points

of PG(V ′). So, PG(V ) can be regarded as a sub-(projective)-geometry of PG(V ′).

Any subgeometry of PG(V ′) which can be obtained in this way is called a Baer-F-

subgeometry of PG(V ′). Notice also that every subspace π of PG(V ) generates a

subspace π′ of PG(V ′) of the same dimension as π.

The following lemma is known (and easy to prove).

Lemma 2.1. Every point p of PG(V ′) not contained in PG(V ) is contained in a

unique line of PG(V ′) which intersects PG(V ) in a line of PG(V ), i.e. there exists a

unique line L of PG(V ) for which p ∈ L′.

The line L in Lemma 2.1 is called the line of PG(V ) induced by p.

Suppose now that F′ is a separable (and hence also Galois) extension of F and let

ψ denote the unique nontrivial element in Gal(F′/F). For every vector x̄ =
∑n

i=1
kiēi

of V ′, we define x̄ψ :=
∑n

i=1
kψi ēi. For every point p = 〈x̄〉 of PG(V ′), we define

pψ := 〈x̄ψ〉 and for every subspace π of PG(V ′) we define πψ := {pψ | p ∈ π}. The

subspace πψ is called conjugate to π with respect to ψ. Notice that if π is a subspace

of PG(V ), then π′ψ = π′.

The following proposition is taken from Beutelspacher and Ueberberg [1, Theorem

1.2] and generalizes a result from Bruck [2]. See also the discussion in Section 4.

Proposition 2.2 ([1]).

(a) Let t ∈ N\{0, 1} and let F,F′ be fields such that F′ is a quadratic extension of

F. Regard PG(2t− 1,F) as a Baer-F-subgeometry of PG(2t− 1,F′). Let π be
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a (t− 1)-dimensional subspace of PG(2t− 1,F′) disjoint from PG(2t− 1,F).

Then the set Sπ of all lines of PG(2t− 1,F) which are induced by the points

of π is a regular spread of PG(2t− 1,F).

(b) Suppose t ∈ N \ {0, 1} and that F is a field. If S is a regular spread of

the projective space PG(2t− 1,F), then there exists a quadratic extension F
′

of F such that the following holds if we regard PG(2t − 1,F) as a Baer-F-

subgeometry of PG(2t− 1,F′):

(i) If F′ is a separable field extension of F, then there are precisely two (t−

1)-dimensional subspaces π of PG(2t− 1,F′) disjoint from PG(2t− 1,F)

for which S = Sπ.

(ii) If F′ is a non-separable field extension of F, then there is exactly one

(t− 1)-dimensional subspace π of PG(2t− 1,F′) disjoint from

PG(2t− 1,F) for which S = Sπ.

Remark 2.3. In Proposition 2.2(bi), the two (t − 1)-dimensional subspaces π1
and π2 of PG(2t − 1,F′) disjoint from PG(2t − 1,F) for which S = Sπ1

= Sπ2
are

conjugate with respect to the unique nontrivial element ψ of Gal(F′/F). For, a line

L of PG(2t − 1,F) belongs to Sπ1
if and only if L′ intersects π1, i.e., if and only if

L′ = L′ψ intersects πψ1 .

3. Proof of the Main Theorem.

3.1. An inequality. Let F and F
′ be two fields such that F

′ is a quadratic

extension of F. Let δ be an arbitrary element of F′ \ F and let µ1, µ2 be the unique

elements of F such that δ2 = µ1δ + µ2. Then µ2 6= 0. Let m ≥ 1 and let V ′ be

a 2m-dimensional vector space over F
′ with basis {ē∗1, ē

∗

2, . . . , ē
∗

2m}. We denote by

V the set of all F-linear combinations of the elements of {ē∗1, ē
∗

2, . . . , ē
∗

2m}. Then V

can be regarded as a 2m-dimensional vector space over F. We denote the projective

spaces associated with V and V ′ by PG(V ) and PG(V ′), respectively. The projective

space PG(V ) can be regarded in a natural way as a subgeometry of PG(V ′). Every

subspace α of PG(V ) then generates a subspace α′ of PG(V ′) of the same dimension

as α.

Now, let π be an (m− 1)-dimensional subspace of PG(V ′) disjoint from PG(V ).

Then there exist vectors ē1, f̄1, . . . , ēm, f̄m such that π = 〈ē1 + δf̄1, ē2 + δf̄2, . . . , ēm+

δf̄m〉.

Lemma 3.1. {ē1, f̄1, ē2, f̄2, . . . , ēm, f̄m} is a basis of V .

Proof. If this were not the case, then there exist a1, b1, . . . , am, bm ∈ F with

(a1, b1, . . . , am, bm) 6= (0, 0, . . . , 0, 0) such that a1ē1 + b1f̄1 + · · ·+ amēm + bmf̄m = ō.

Now, put ki := ai +
bi
µ2

δ for every i ∈ {1, . . . ,m}. Then (k1, . . . , km) 6= (0, . . . , 0)
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since (a1, b1, . . . , am, bm) 6= (0, 0, . . . , 0, 0). Since k1(ē1 + δf̄1)+ · · ·+ km(ēm+ δf̄m) =

δ(a1f̄1+
b1
µ2

ē1+
µ1

µ2

b1f̄1+ · · ·+amf̄m+ bm
µ2

ēm+ µ1

µ2

bmf̄m), the subspace π is not disjoint

from PG(V ), a contradiction. So, {ē1, f̄1, . . . , ēm, f̄m} is a basis of V .

Now, let k ∈ {1, . . . , 2m}. Let W1 denote the subspace of
∧k

V generated by all

vectors v̄1 ∧ v̄2 ∧ · · · ∧ v̄k where v̄1, v̄2, . . . , v̄k are k linearly independent vectors of V

such that 〈v̄1, v̄2, . . . , v̄k〉′ meets π. (If there are no such vectors v̄1, v̄2, . . . , v̄k, then

W1 = 0.) We will prove by induction on m that dim(W1) ≥
(
2m
k

)
− 2 ·

(
m
k

)
.

If k = 1, thenW1 = 0 since π∩PG(V ) = ∅. Hence, dim(W1) = 0 =
(
2m
1

)
−2 ·

(
m
1

)
.

Suppose k = 2m. Since π ⊆ 〈v̄1, v̄2, . . . , v̄2m〉′ for every 2m linearly independent

vectors v̄1, v̄2, . . . , v̄2m of V , we have W1 =
∧2m

V and hence dim(W1) = 1 =
(
2m
2m

)
−

2 ·
(
m
2m

)
.

In the sequel, we may suppose that m ≥ 2 and k ∈ {2, . . . , 2m − 1}. Put U =

〈ē2, f̄2, . . . , ēm, f̄m〉. Every vector χ of
∧k V can be written in a unique way as

ē1 ∧ f̄1 ∧ α(χ) + ē1 ∧ β(χ) + f̄1 ∧ γ(χ) + δ(χ),

where α(χ) ∈
∧k−2 U , β(χ) ∈

∧k−1 U , γ(χ) ∈
∧k−1 U and δ(χ) ∈

∧k U . [Here,∧0
U = F and

∧2m−1
U = 0.] Let θ denote the linear map from W1 ⊆

∧k
V to∧k−1

U mapping χ to γ(χ). Then by the rank-nullity theorem,

dim(W1) = dim(ker(θ)) + dim(Im(θ)).(3.1)

Lemma 3.2. We have dim(ker(θ)) ≥
(
2m−2

k−2

)
+
(
2m−1

k

)
− 2 ·

(
m
k

)
.

Proof. (a) If v̄3, . . . , v̄k are k−2 linearly independent vectors of U , then 〈ē1, f̄1, v̄3,

. . . , v̄k〉′ meets π and hence ē1∧f̄1∧v̄3∧· · ·∧v̄k ∈W1. It follows that ē1∧f̄1∧
∧k−2

U ⊆

ker(θ).

(b) Let Z1 denote the subspace of
∧k−1

U generated by all vectors v̄2∧ v̄3∧· · ·∧ v̄k
where v̄2, . . . , v̄k are k − 1 linearly independent vectors of U such that 〈v̄2, . . . , v̄k〉′

meets 〈ē2 + δf̄2, . . . , ēm+ δf̄m〉. By the induction hypothesis, dim(Z1) ≥
(
2m−2

k−1

)
− 2 ·(

m−1

k−1

)
. Clearly, ē1 ∧ Z1 ⊆ ker(θ).

(c) Suppose k ≤ 2m − 2. Let Z2 denote the subspace of
∧k U generated by all

vectors v̄1 ∧ v̄2 ∧ · · · ∧ v̄k, where v̄1, v̄2, . . . , v̄k are k linearly independent vectors of U

such that 〈v̄1, v̄2, . . . , v̄k〉′ meets 〈ē2+δf̄2, . . . , ēm+δf̄m〉. By the induction hypothesis,

dim(Z2) ≥
(
2m−2

k

)
− 2 ·

(
m−1

k

)
. Clearly, Z2 ⊆ ker(θ).

By (a), (b), (c) and the decomposition
∧k V =

(
ē1 ∧ f̄1 ∧

∧k−2 U
)
⊕

(
ē1 ∧

∧k−1
U
)
⊕
(
f̄1 ∧

∧k−1
U
)
⊕
(∧k

U
)
, we have dim(ker(θ)) ≥

(
2m−2

k−2

)
+
(
2m−2

k−1

)
− 2 ·

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 354-366, July 2010



ELA

Some Subspaces of PG(
∧k V ) Related to Regular Spreads 359

(
m−1

k−1

)
+
(
2m−2

k

)
− 2 ·

(
m−1

k

)
=

(
2m−2

k−2

)
+
(
2m−1

k

)
− 2 ·

(
m
k

)
. Notice that this inequality

remains valid if k = 2m− 1 since
(
2m−2

k

)
− 2 ·

(
m−1

k

)
= 0 in this case.

Lemma 3.3. We have Im(θ) =
∧k−1

U . Hence, dim(Im(θ)) =
(
2m−2

k−1

)
.

Proof. It suffices to prove that every vector of the form ḡ2∧ ḡ3∧· · ·∧ ḡk belongs to

Im(θ), where ḡ2, ḡ3, . . . , ḡk are k−1 distinct elements of {ē2, f̄2, . . . , ēm, f̄m}. Without

loss of generality, we may suppose that ḡ2 ∈ {ē2, f̄2}. Since 〈(ē1 + ē2) + δ(f̄1 + f̄2)〉

belongs to π, (ē1+ē2)∧(f̄1+f̄2)∧ḡ3∧· · ·∧ḡk ∈ W1 and hence ē2∧ḡ3∧· · ·∧ḡk ∈ Im(θ).

Since 〈(ē1 + δf̄1) + δ(ē2 + δf̄2)〉 = 〈(ē1 + µ2f̄2) + δ(f̄1 + ē2 + µ1f̄2)〉 belongs to π,

(ē1+µ2f̄2)∧ (f̄1 + ē2+µ1f̄2)∧ ḡ3 ∧ · · · ∧ ḡk ∈W1 and hence f̄2 ∧ ḡ3 ∧ · · · ∧ ḡk ∈ Im(θ)

(recall µ2 6= 0).

Corollary 3.4. We have dim(W1) ≥
(
2m
k

)
− 2 ·

(
m
k

)
.

Proof. By equation (3.1) and Lemmas 3.2, 3.3, we have that dim(W1) ≥
(
2m−2

k−1

)
+(

2m−2

k−2

)
+
(
2m−1

k

)
− 2 ·

(
m
k

)
=

(
2m−1

k−1

)
+
(
2m−1

k

)
− 2 ·

(
m
k

)
=

(
2m
k

)
− 2 ·

(
m
k

)
.

3.2. Proof of Theorem 1.1. We continue with the notation introduced in

Section 3.1. We suppose here that m ≥ 2 and k ∈ {1, . . . , 2m − 1}. Let S be the

spread of PG(V ) induced by the points of π (recall Proposition 2.2(a)) and let XS

denote the set of all (k − 1)-dimensional subspaces of PG(V ) which contain at least

one line of S.

Lemma 3.5. A (k − 1)-dimensional subspace α of PG(V ) contains a line of S if

and only if α′ meets π.

Proof. Suppose α contains a line L of S. Since α′ contains the line L′ which

meets π, α′ must also meet π.

Conversely, suppose that α′ meets π and let p be an arbitrary point in the in-

tersection α′ ∩ π. Then in the subspace α′ there exists a unique line L′ through p

which meets α in a line L (recall Lemma 2.1). Since L is a line of PG(V ), we must

necessarily have L ∈ S. So, α contains a line of S.

Corollary 3.6. If k ∈ {m + 1,m + 2, . . . , 2m − 1}, then XS consists of all

(k − 1)-dimensional subspaces of PG(V ).

Let W2 denote the subspace of
∧k V consisting of all vectors χ ∈

∧k V satisfying

(ē1 + δf̄1) ∧ (ē2 + δf̄2) ∧ · · · ∧ (ēm + δf̄m) ∧ χ = 0.

Lemma 3.7.

(1) The subspace PG(W1) is generated by all points egr(α) where α is some ele-

ment of XS.
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(2) A (k − 1)-dimensional subspace α of PG(V ) belongs to XS if and only if

egr(α) ∈ PG(W2).

(3) PG(W1) ⊆ PG(W2).

Proof. Claim (1) is an immediate corollary of Lemma 3.5 and the definition of

the subspace W1. By Lemma 3.5, a (k− 1)-dimensional subspace α = 〈v̄1, v̄2, . . . , v̄k〉

of PG(V ) belongs to XS if and only if π meets α′ = 〈v̄1, v̄2, . . . , v̄k〉′, i.e. if and only

if (ē1 + δf̄1) ∧ (ē2 + δf̄2) ∧ · · · ∧ (ēm + δf̄m) ∧ v̄1 ∧ v̄2 ∧ · · · ∧ v̄k = 0, i.e. if and only if

egr(α) ∈ PG(W2). Claim (3) follows directly from Claims (1) and (2).

Lemma 3.8. We have dim(W2) ≤
(
2m
k

)
− 2 ·

(
m
k

)
.

Proof. If k ∈ {m+1, . . . , 2m−1}, then W2 =
∧k

V and hence dim(W2) =
(
2m
k

)
=(

2m
k

)
− 2 ·

(
m
k

)
. We may therefore suppose that k ∈ {1, . . . ,m}.

Let T denote the set of all (m − k)-tuples (i1, . . . , im−k), where i1, . . . , im−k

∈ {1, . . . ,m} satisfies i1 < i2 < · · · < im−k. We take the convention here that if

k = m, then |T | = 1 and T consists of the unique “0-tuple”. If τ ∈ T , then χ ∈ W2

implies that

ēi1 ∧ · · · ∧ ēim−k
∧ (ē1 + δf̄1) ∧ · · · ∧ (ēm + δf̄m) ∧ χ = 0.(3.2)

We can write (3.2) as

(ατ + δβτ ) ∧ χ = 0,(3.3)

where

ατ + δβτ =
ēi1 ∧ · · · ∧ ēim−k

∧ (ē1 + δf̄1) ∧ · · · ∧ (ēm + δf̄m)

δm−k
,

ατ , βτ ∈
∧2m−k

V.

Equation (3.3) is equivalent with

{
ατ ∧ χ = 0,

βτ ∧ χ = 0.
(3.4)

Consider now a basis B of
∧2m−k

V which consists only of vectors of the form ḡ1 ∧

ḡ2 ∧ · · · ∧ ḡ2m−k, where ḡ1, ḡ2, . . . , ḡ2m−k ∈ {ē1, f̄1, . . . , ēm, f̄m}.

The 2 ·
(
m

m−k

)
= 2 ·

(
m
k

)
equations determined by (3.4) are linearly independent if

and only if the 2 ·
(
m
k

)
vectors ατ , βτ (τ ∈ T ) are linearly independent.

Suppose there exist kτ , lτ ∈ F (τ ∈ T ) such that
∑

τ∈T

(kτατ + lτβτ ) = 0.(3.5)
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Take an arbitrary τ∗ = (i1, i2, . . . , im−k) of T . If we write the left hand side of

equation (3.5) as a linear combination of the elements of the basis B of
∧2m−k

V ,

then the sum of all terms which contain the factor (ēi1 ∧ f̄i1) ∧ (ēi2 ∧ f̄i2) ∧ · · · ∧

(ēim−k
∧ f̄im−k

) must be 0. This implies that kτ∗ατ∗ + lτ∗βτ∗ = 0. Now, the two

vectors ατ∗ and βτ∗ are linearly independent: ατ∗ contains a term which is a multiple

of ē1 ∧ ē2 ∧ · · · ∧ ēm ∧ f̄i1 ∧ f̄i2 ∧ · · · ∧ f̄im−k
, while βτ∗ does not contain such a term;

for every j ∈ {1, . . . ,m} \ {i1, . . . , im−k}, βτ∗ contains a term which is a multiple of

ē1 ∧ · · · ∧ ēj−1 ∧ ̂̄ej ∧ ēj+1 ∧ · · · ∧ ēm ∧ f̄j ∧ f̄i1 ∧ f̄i2 ∧ · · · ∧ f̄im−k
, while ατ∗ does not

contain such a term. We conclude that kτ∗ = lτ∗ = 0. Since τ∗ was an arbitrary

element of T , we can indeed conclude that the vectors ατ , βτ (τ ∈ T ) are linearly

independent.

Since the vectors χ of W2 satisfy a linear system of 2 ·
(
m
k

)
linearly independent

equations (recall (3.4)), we can indeed conclude that dim(W2) ≤
(
2m
k

)
− 2 ·

(
m
k

)
.

Theorem 1.1 is now an immediate consequence of Corollary 3.4 and Lemmas 3.7, 3.8.

4. On the classification of the regular spreads of PG(3,F). Proposition

2.2(b) plays an essential role in this paper. The proof of Proposition 2.2(b) given in

[1] consists of two parts. In [1, Section 3], the case t = 2 was treated and subsequently

this classification was used in [1, Section 5] to obtain also a classification in the case

t ≥ 3. In the proof for the case t = 2, a gap seems to occur. Indeed, in [1, Section 3]

the authors tacitly assume that the lines and reguli of a given regular spread determine

a Möbius plane. This fact is trivial in the finite case, where one could use a simple

counting argument to prove it, but not at all obvious in the infinite case.

The aim of this section is to fill this apparent gap. We give a proof for Proposition

2.2(b) in the case that t is equal to 2. The methods used here will be different

from the ones of [1]. Our treatment will be more geometric and based on the Klein

correspondence. A discussion of regular spreads of finite 3-dimensional projective

spaces can also be found in [3, Section 17.1]. Some of the tools we need here are

already in [3], either explicitly or implicitly.

Let V be a 4-dimensional vector space over a field F. For every line L = 〈ū1, ū2〉

of PG(V ), let κ(L) denote the point 〈ū1 ∧ ū2〉 of PG(
∧2

V ). The image Q of κ is a

nonsingular quadric of Witt index 3 of PG(
∧2

V ). If {ē1, ē2, ē3, ē4} is a basis of V ,

then the equation of Q with respect to the ordered basis B∗ := (ē1 ∧ ē2, ē1 ∧ ē3, ē1 ∧

ē4, ē2 ∧ ē3, ē2 ∧ ē4, ē3 ∧ ē4) of
∧2

V is equal to X1X6 − X2X5 + X3X4 = 0. The

bijective correspondence κ between the set of lines of PG(V ) and the set of points of

Q is often referred to as the Klein correspondence. For every point x of PG(V ), let

Lx denote the set of lines of PG(V ) containing x and for every plane π of PG(V ), let
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Lπ denote the set of lines of PG(V ) contained in π. The sets κ(Lx) and κ(Lπ) are

generators of Q. Let M+ [respectively, M−] denote the set of generators of Q of the

form κ(Lx) [respectively, κ(Lπ)] for some point x [respectively, plane π] of PG(V ).

Then M+ and M− are the two families of generators of Q, i.e. (i) M+ ∩M− = ∅,

(ii) M+ ∪M− consists of all generators of Q, and (iii) two generators of Q belong to

the same family Mǫ for some ǫ ∈ {+,−} if and only if they intersect in a subspace

of even co-dimension. Every line of Q is contained in precisely two generators, one

generator of M+ and one generator of M−.

The following three lemmas are known and their proofs are straightforward.

Lemma 4.1. Let R be a regulus of PG(V ). Then there exists a 2-dimensional

subspace α of PG(
∧2

V ) such that κ(R) = α ∩ Q is a nonsingular quadric of Witt

index 1 of α.

Lemma 4.2. Suppose α is a 3-dimensional subspace of PG(
∧2

V ) which intersects

Q in a nonsingular quadric of Witt index 1 of α. Then the set S of all lines L of

PG(V ) for which κ(L) ∈ α is a regular spread of PG(V ).

Lemma 4.3. Suppose α is a 3-dimensional subspace of PG(
∧2

V ) and that S is

a spread of PG(V ) such that α ∩ Q ⊆ κ(S). Then α intersects Q in a nonsingular

quadric of Witt index 1 of α. Moreover, α ∩Q = κ(S).

Lemma 4.4. Suppose F = F2. Then PG(V ) = PG(3, 2). The following hold:

(1) Every spread of PG(V ) is regular.

(2) Every regulus of PG(V ) can be extended to a unique spread of PG(V ).

(3) If S is a regular spread of PG(V ), then there exists a unique subspace α of

dimension 3 of PG(
∧2

V ) such that κ(S) = α ∩ Q is a nonsingular quadric

of Witt index 1 of α.

Proof. Claims (1) and (2) are well known and easy to prove. So, we will only

give a proof for Claim (3). Suppose S is a (regular) spread of PG(V ) and R a

regulus contained in S. Then by Lemma 4.1 there exists a 2-dimensional subspace

β of PG(
∧2

V ) such that κ(R) = β ∩ Q is a nonsingular conic of β. Now, by an

easy counting argument there are three 3-dimensional subspaces γ1 through β which

intersect Q in a singular quadric of γ1 (namely the subspaces 〈β, κ(M)〉 where M is

one of the three lines of PG(V ) meeting each line ofR), three 3-dimensional subspaces

γ2 through β which intersect Q in a nonsingular hyperbolic quadric of γ2 and one 3-

dimensional subspace α through β which intersects Q in a nonsingular elliptic quadric

of α. Since κ−1(α∩Q) is a spread containing R, κ−1(α∩Q) = S by Claim (2). Hence,

α ∩Q = κ(S).

Lemma 4.5. Suppose |F| ≥ 3. If S is a regular spread of PG(V ), then there
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exists a unique subspace α of dimension 3 of PG(
∧2 V ) such that κ(S) = α ∩Q is a

nonsingular quadric of Witt index 1 of α.

Proof. Let L1, L2, L3 and L4 be four distinct lines of S such that L4 6∈

R(L1, L2, L3). Put R1 = R(L1, L2, L3) and R2 = R(L1, L2, L4). By Lemma 4.1,

there exists a 2-dimensional subspace αi, i ∈ {1, 2}, of PG(
∧2

V ) such that κ(Ri) =

αi ∩Q. Since R1 6= R2, we have α1 6= α2. Since κ(L1) and κ(L2) are contained in α1

and α2, α1 ∩ α2 is a line and α := 〈α1, α2〉 is a 3-dimensional subspace of PG(
∧2

V ).

We prove that every point x of α∩Q belongs to κ(S). Clearly, α1∩Q = κ(R1) ⊆

κ(S) and α2 ∩Q = κ(R2) ⊆ κ(S). So, we may assume that x ∈ (α ∩Q) \ (α1 ∪ α2).

Let M denote a line through x which meets α1 in a point y1 of (α1 ∩Q) \ α2 and let

y2 be the intersection of M with α2. Since |F| ≥ 3, we may suppose that we have

chosen M in such a way that y2 is not the kernel of the quadric α2 ∩ Q of α2 in the

case the characteristic of F is equal to 2. Then there exists a line N ⊆ α2 through y2
which intersects Q∩ α2 in two points, say u and v. The plane α3 := 〈M,N〉 through

M is contained in α and contains the points y1, u and v of κ(R1 ∪ R2). So, there

exist three distinct lines U , V and W of R1 ∪ R2 such that κ(U), κ(V ) and κ(W )

belong to α3. If R3 denotes the unique regulus of PG(V ) containing U , V and W ,

then κ(R3) = α3 ∩Q by Lemma 4.1. Now, R3 ⊆ S since S is regular and x ∈ α3 ∩Q.

So, there exists a line L ∈ S such that x = κ(L). This is what we needed to prove.

By the above, we know that α∩Q ⊆ κ(S). Lemma 4.3 then implies that α∩Q =

κ(S) is a nonsingular quadric of Witt index 1 of α.

Now, let F be an algebraic closure of F (which is unique, up to isomorphism) and let

V denote a 4-dimensional vector space over F which also has {ē1, ē2, ē3, ē4} as basis.

We will regard PG(V ) as a subgeometry of PG(V ) and PG(
∧2

V ) as a subgeometry

of PG(
∧2

V ).

Let K be an extension field of F which is contained in F. Let VK denote the

set of all K-linear combinations of the elements of {ē1, ē2, ē3, ē4}. Then VK can be

regarded as a vector space over K. We will regard PG(V ) as a subgeometry of

PG(VK) and PG(VK) as a subgeometry of PG(V ). Similarly, we will regard PG(
∧2

V )

as a subgeometry of PG(
∧2

VK) and PG(
∧2

VK) as a subgeometry of PG(
∧2

V ).

Every subspace α of PG(V ) (respectively PG(
∧2

V )) then generates a subspace αK

of PG(VK) (respectively PG(
∧2

VK)) with the same dimension as α. We define α := α
F

and αK := α
F
.

We denote by QK the quadric of PG(
∧2

VK) whose equation with respect to B∗

is equal to X1X6 −X2X5 +X3X4 = 0, and put Q := Q
F
. Then Q ⊆ Q

K
⊆ Q. The

Klein correspondence between the set of lines of PG(VK) and the points of QK will

be denoted by κK. We define κ := κ
F
. Notice that two distinct lines L1 and L2 of
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PG(V ) meet if and only if the points κ(L1) and κ(L2) are Q-collinear.

Now, suppose S is a regular spread of PG(V ). Then by Lemmas 4.4 and 4.5, there

exists a unique subspace α of dimension 3 of PG(
∧2

V ) such that κ(S) = α ∩Q is a

non-singular quadric of Witt index 1 of α. With respect to a suitable reference system

of α, the quadric α∩Q of α has equation f(X0, X1)+X2X3 = 0, where f(X0, X1) is an

irreducible quadratic polynomial of F[X0, X1]. Now, there exists a unique quadratic

extension K of F contained in F such that f(X0, X1) is reducible when regarded

as a polynomial of K[X0, X1]. This quadratic extension K is independent from the

reference system of α with respect to which the equation of α ∩ Q is of the form

f(X0, X1) +X2X3 = 0. Now, we can distinguish two cases.

(I) The quadratic extension K/F is a Galois extension. Let ψ denote the unique

element in Gal(K/F). Then f(X0, X1) = a(X0 + δX1)(X0 + δψX1) for a certain

a ∈ F \ {0} and a certain δ ∈ K \ F. It follows that αK ∩QK is a nonsingular quadric

of Witt index 2 of αK. If (X1, . . . , X6) are the coordinates of a point p of PG(
∧2

VK)

with respect to the ordered basis B∗, then pψ denotes the point of PG(
∧2

V ) whose

coordinates with respect to B∗ are equal to (Xψ
1 , . . . , X

ψ
6 ). Clearly, Q

ψ
K
= QK.

(II) The quadratic extension K/F is not a Galois extension. Then char(K) = 2

and f(X0, X1) = a(X0 + δX1)
2 for some a ∈ F \ {0} and some δ ∈ K \ F satisfying

δ2 ∈ F. It follows that αK ∩QK is a singular quadric of αK having a unique singular

point1.

Now, let X denote the set of all points x of Q which are Q-collinear with every

point of α ∩ Q. Notice that x ∈ X if and only if κ−1(x) meets every line L where

L ∈ S. We prove the following lemma which implies Proposition 2.2(b) in the case

t = 2.

Lemma 4.6.

(1) We have X ⊆ QK.

(2) If K/F is a Galois extension, then |X | = 2. Moreover, if X = {x1, x2}, then

x2 = xψ1 .

(3) If K/F is not a Galois extension, then |X | = 1.

(4) If x ∈ X, then the points of Q which are QK-collinear with x are precisely

the points of α ∩Q, or equivalently, the lines of S are precisely those lines L

of PG(V ) for which LK meets κ−1

K
(x). The line κ−1

K
(x) of PG(VK) is disjoint

from PG(V ).

1With a singular point of a quadric, we mean a point of the quadric with the property that every

line though it is a tangent line, i.e. a line which intersects the quadric in either a singleton or the

whole line. The tangent hyperplane in a singular point is not defined.
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Proof. (I) Suppose the quadratic extension K/F is a Galois extension. Let L1

and L2 be two disjoint lines of αK ∩ QK and let β1, β2 denote the two planes of QK

through L1. Then β1 and β2 are the two planes of Q through L1. Let xi, i ∈ {1, 2},

denote the unique point of βi QK-collinear with every point of L2. Then xi is also

the unique point of βi Q-collinear with every point of L2.

Let i ∈ {1, 2}. We prove that xi 6∈ PG(
∧2 V ), or equivalently, that xi 6∈ Q.

Suppose this is not the case and consider the hyperplane T of PG(
∧2

V ) which is

tangent to Q at the point xi. Then TK is the hyperplane of PG(
∧2

VK) which is

tangent to QK at the point xi. Since L1 ∪ L2 ⊆ TK, α is a hyperplane of T not

containing xi and hence α ∩Q would be a nonsingular quadric of Witt index 2 of α,

clearly a contradiction.

We prove that X = {x1, x2}. Clearly, {x1, x2} ⊆ X . Conversely, suppose that x

is a point of X . Since no point of L1 is Q-collinear with every point of L2, we have

x 6∈ L1. Since x is collinear with every point of L1, we have 〈x, Li〉 = βi for some

i ∈ {1, 2}. Since x is Q-collinear with every point of L2 ⊆ L2, we necessarily have

x = xi. Hence, X = {x1, x2} ⊆ QK. Since x1 is QK-collinear with every point of

α ∩Q, xψ1 6= x1 is QK-collinear with every point of (α ∩Q)ψ = α ∩Q. It follows that

x2 = xψ1 .

(II) Suppose the quadratic extension K/F is not a Galois extension. Then αK ∩ QK

is a singular quadric of αK with a unique singular point x∗. Clearly, x∗ 6∈ PG(
∧2

V )

and x∗ 6∈ Q.

We prove that X = {x∗}. Clearly, x∗ ∈ X . Suppose now that there exists a point

x ∈ X \ {x∗}. Then x is Q-collinear with every point of α ∩Q and hence cannot be

contained in α since x 6= x∗. The points of Q which are Q-collinear with x and x∗

are contained in a 3-dimensional subspace of PG(
∧2

V ), namely the intersection of

the tangent hyperplanes to Q at the points x and x∗. This 3-dimensional subspace

necessarily coincides with α and contains the points x and x∗, a contradiction, since

x 6∈ α. So, we have that X = {x∗} ⊆ QK.

Now, let x be an arbitrary point of X . Then x ∈ PG(
∧2

VK)\PG(
∧2

V ). By Lemma

2.1, there exist two distinct points x1 and x2 of PG(
∧2

V ) such that x ∈ x1x2. Let ζ

denote the orthogonal or symplectic polarity of PG(
∧2

VK) associated to the quadric

QK. We prove that the points of Q which are QK-collinear with x are precisely the

points of α∩Q. Since x ∈ X , every point of α∩Q is QK-collinear with x. Conversely,

suppose that y is a point of Q which is QK-collinear with x. Then x ∈ yζ. By Lemma

2.1 applied to the subspace yζ , we see that x1, x2 ∈ yζ and hence y ∈ xζ1 ∩ x
ζ
2. Now,

xζ1 ∩ xζ2 is a 3-dimensional subspace of PG(
∧2

VK) which necessarily coincides with

αK since every point of α∩Q is QK-collinear with x. So, y ∈ αK and hence y ∈ Q∩α.
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If p would be a point of PG(V ) contained in κ−1

K
(x), then every line of PG(V )

through p would be contained in the spread S, clearly a contradiction.

Remark 4.7. If we go back to Proposition 2.2(b) and regard PG(2t− 1,F) as a

subgeometry of PG(2t− 1,F), where F is a fixed algebraic closure of F, then Lemma

4.6 implies that there exists a unique quadratic extension F
′ of F contained in F for

which the corresponding subgeometry PG(2t − 1,F′) of PG(2t − 1,F) satisfies the

properties (i) or (ii) of Proposition 2.2(b).
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