SOME SUBSPACES OF THE PROJECTIVE SPACE PG $\left(\bigwedge^{K} V\right)$ RELATED TO REGULAR SPREADS OF PG($V)^{*}$

BART DE BRUYN ${ }^{\dagger}$

Abstract

Let V be a $2 m$-dimensional vector space over a field $\mathbb{F}(m \geq 2)$ and let $k \in$ $\{1, \ldots, 2 m-1\}$. Let $A_{2 m-1, k}$ denote the Grassmannian of the $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$ and let $e_{g r}$ denote the Grassmann embedding of $A_{2 m-1, k}$ into $\mathrm{PG}\left(\bigwedge^{k} V\right)$. Let S be a regular spread of $\mathrm{PG}(V)$ and let X_{S} denote the set of all $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$ which contain at least one line of S. Then we show that there exists a subspace Σ of $\mathrm{PG}\left(\bigwedge^{k} V\right)$ for which the following holds: (1) the projective dimension of Σ is equal to $\binom{2 m}{k}-2 \cdot\binom{m}{k}-1$; (2) a $(k-1)$-dimensional subspace α of $\mathrm{PG}(V)$ belongs to X_{S} if and only if $e_{g r}(\alpha) \in \Sigma$; (3) Σ is generated by all points $e_{g r}(p)$, where p is some point of X_{S}.

Key words. Regular spread, Grassmannian, Grassmann embedding, Klein correspondence.

AMS subject classifications. 15A75, 51A45.

1. The main result. Let V be a $2 m$-dimensional vector space over a field \mathbb{F} ($m \geq 2$) and let $\mathrm{PG}(V)$ denote the projective space associated to V. For every $k \in\{1, \ldots, 2 m-1\}$, let $A_{2 m-1, k}$ denote the following point-line geometry.

- The points of $A_{2 m-1, k}$ are the $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$.
- The lines of $A_{2 m-1, k}$ are the sets $L\left(\pi_{1}, \pi_{2}\right)$ of $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$ which contain a given $(k-2)$-dimensional subspace π_{1} and are contained in a given k-dimensional subspace $\pi_{2}\left(\pi_{1} \subseteq \pi_{2}\right)$.
- Incidence is containment.

The geometry $A_{2 m-1, k}$ is called the Grassmannian of the ($k-1$)-dimensional subspaces of $\mathrm{PG}(V)$. Obviously, $A_{2 m-1, k} \cong A_{2 m-1,2 m-k}$ and the geometry $A_{2 m-1,1} \cong$ $A_{2 m-1,2 m-1}$ is isomorphic to the (point-line system of) the projective space $\mathrm{PG}(2 m-$ $1, \mathbb{F})$.

For every point $p=\left\langle\bar{v}_{1}, \ldots, \bar{v}_{k}\right\rangle$ of $A_{2 m-1, k}$, let $e_{g r}(p)$ denote the point $\left\langle\bar{v}_{1} \wedge \bar{v}_{2} \wedge\right.$ $\left.\cdots \wedge \bar{v}_{k}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{k} V\right)$. The map $e_{g r}$ defines an embedding of the geometry $A_{2 m-1, k}$ into the projective space $\operatorname{PG}\left(\bigwedge^{k} V\right)$ which is called the Grassmann embedding of $A_{2 m-1, k}$. The image of $e_{g r}$ is a so-called Grassmann variety $\mathcal{G}_{2 m-1, k}$ of $\operatorname{PG}\left(\bigwedge^{k} V\right)$.

[^0]A spread of $\mathrm{PG}(V)$ is a set of lines of $\mathrm{PG}(V)$ partitioning the point-set of $\mathrm{PG}(V)$. In Section 2, we will define a nice class of spreads of $\mathrm{PG}(V)$ which are called regular spreads.

The following is the main result of this note.
THEOREM 1.1. Let S be a regular spread of the projective space $\operatorname{PG}(V)$. Let $k \in\{1, \ldots, 2 m-1\}$. Let X_{S} denote the set of all $(k-1)$-dimensional subspaces of $\operatorname{PG}(V)$ which contain at least one line of S. Then there exists a subspace Σ of $\operatorname{PG}\left(\bigwedge^{k} V\right)$ for which the following holds:
(1) The projective dimension of Σ is equal to $\binom{2 m}{k}-2 \cdot\binom{m}{k}-1$.
(2) A $(k-1)$-dimensional subspace α of $\mathrm{PG}(V)$ belongs to X_{S} if and only if $e_{g r}(\alpha) \in \Sigma$.
(3) Σ is generated by all points $e_{g r}(p)$, where p is some element of X_{S}.

In Theorem 1.1 and elsewhere in this paper, we take the convention that $\binom{n}{z}=0$ for every $n \in \mathbb{N}$ and every $z \in \mathbb{Z} \backslash\{0, \ldots, n\}$.

Some special cases. (1) If $k=1$, then by Theorem $1.1(1), \Sigma=\emptyset$. Indeed, in this case we have $X_{S}=\emptyset$.
(2) If $k=2$, then by Theorem 1.1, $\operatorname{dim}(\Sigma)=m^{2}-1$ and $X_{S}=S$ consists of all lines L of $\mathrm{PG}(V)$ for which $e_{g r}(L) \in \Sigma \cap \mathcal{G}_{2 m-1,2}$. For a discussion of the special case $k=m=2$, see Section 4 .
(3) If $k=m$, then by Theorem $1.1(1), \Sigma$ has co-dimension 2 in $\operatorname{PG}\left(\bigwedge^{m} V\right)$.
(4) If $k \in\{m+1, \ldots, 2 m-1\}$, then by Theorem 1.1, $\Sigma=\operatorname{PG}\left(\bigwedge^{k} V\right)$ and X_{S} consists of all $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$.

2. Regular spreads.

2.1. Definition. Let $\operatorname{PG}(3, \mathbb{F})$ be a 3-dimensional projective space over a field \mathbb{F}. A regulus of $\operatorname{PG}(3, \mathbb{F})$ is a set \mathcal{R} of mutually disjoint lines of $\operatorname{PG}(3, \mathbb{F})$ satisfying the following two properties:

- If a line L of $\mathrm{PG}(3, \mathbb{F})$ meets three distinct lines of \mathcal{R}, then L meets every line of \mathcal{R};
- If a line L of $\mathrm{PG}(3, \mathbb{F})$ meets three distinct lines of \mathcal{R}, then every point of L is incident with (exactly) one line of \mathcal{R}.

Any three mutually disjoint lines L_{1}, L_{2}, L_{3} of $\operatorname{PG}(3, \mathbb{F})$ are contained in a unique regulus which we will denote by $\mathcal{R}\left(L_{1}, L_{2}, L_{3}\right)$.

Let $n \in \mathbb{N} \backslash\{0,1,2\}$ and \mathbb{F} a field. Recall that a spread of the projective space $\mathrm{PG}(n, \mathbb{F})$ is a set of lines which determines a partition of the point set of $\mathrm{PG}(n, \mathbb{F})$. A spread S is called regular if the following two conditions are satisfied:
(R1) If π is a 3 -dimensional subspace of $\operatorname{PG}(n, \mathbb{F})$ containing two distinct elements of S, then the elements of S contained in π determine a spread of π;
(R2) If L_{1}, L_{2} and L_{3} are three distinct lines of S which are contained in some 3-dimensional subspace, then $\mathcal{R}\left(L_{1}, L_{2}, L_{3}\right) \subseteq S$.
2.2. Classification of regular spreads. Let $n \in \mathbb{N} \backslash\{0,1\}$ and let $\mathbb{F}, \mathbb{F}^{\prime}$ be fields such that \mathbb{F}^{\prime} is a quadratic extension of \mathbb{F}. Let V^{\prime} be an n-dimensional vector space over \mathbb{F}^{\prime} with basis $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$. We denote by V the set of all \mathbb{F}-linear combinations of the elements of $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$. Then V can be regarded as an n-dimensional vector space over \mathbb{F}. We denote the projective spaces associated with V and V^{\prime} by $\mathrm{PG}(V)$ and $\mathrm{PG}\left(V^{\prime}\right)$, respectively. Since every 1-dimensional subspace of V is contained in a unique 1-dimensional subspace of V^{\prime}, we can regard the points of $\operatorname{PG}(V)$ as points of $\mathrm{PG}\left(V^{\prime}\right)$. So, $\mathrm{PG}(V)$ can be regarded as a sub-(projective)-geometry of $\mathrm{PG}\left(V^{\prime}\right)$. Any subgeometry of $\mathrm{PG}\left(V^{\prime}\right)$ which can be obtained in this way is called a Baer- \mathbb{F} subgeometry of $\mathrm{PG}\left(V^{\prime}\right)$. Notice also that every subspace π of $\mathrm{PG}(V)$ generates a subspace π^{\prime} of $\mathrm{PG}\left(V^{\prime}\right)$ of the same dimension as π.

The following lemma is known (and easy to prove).
Lemma 2.1. Every point p of $\mathrm{PG}\left(V^{\prime}\right)$ not contained in $\mathrm{PG}(V)$ is contained in a unique line of $\mathrm{PG}\left(V^{\prime}\right)$ which intersects $\mathrm{PG}(V)$ in a line of $\mathrm{PG}(V)$, i.e. there exists a unique line L of $\mathrm{PG}(V)$ for which $p \in L^{\prime}$.

The line L in Lemma 2.1 is called the line of $\mathrm{PG}(V)$ induced by p.

Suppose now that \mathbb{F}^{\prime} is a separable (and hence also Galois) extension of \mathbb{F} and let ψ denote the unique nontrivial element in $\operatorname{Gal}\left(\mathbb{F}^{\prime} / \mathbb{F}\right)$. For every vector $\bar{x}=\sum_{i=1}^{n} k_{i} \bar{e}_{i}$ of V^{\prime}, we define $\bar{x}^{\psi}:=\sum_{i=1}^{n} k_{i}^{\psi} \bar{e}_{i}$. For every point $p=\langle\bar{x}\rangle$ of $\operatorname{PG}\left(V^{\prime}\right)$, we define $p^{\psi}:=\left\langle\bar{x}^{\psi}\right\rangle$ and for every subspace π of $\mathrm{PG}\left(V^{\prime}\right)$ we define $\pi^{\psi}:=\left\{p^{\psi} \mid p \in \pi\right\}$. The subspace π^{ψ} is called conjugate to π with respect to ψ. Notice that if π is a subspace of $\operatorname{PG}(V)$, then $\pi^{\prime \psi}=\pi^{\prime}$.

The following proposition is taken from Beutelspacher and Ueberberg [1, Theorem 1.2] and generalizes a result from Bruck [2]. See also the discussion in Section 4.

Proposition 2.2 ([1]).
(a) Let $t \in \mathbb{N} \backslash\{0,1\}$ and let $\mathbb{F}, \mathbb{F}^{\prime}$ be fields such that \mathbb{F}^{\prime} is a quadratic extension of \mathbb{F}. Regard $\mathrm{PG}(2 t-1, \mathbb{F})$ as a Baer- \mathbb{F}-subgeometry of $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$. Let π be
$a(t-1)$-dimensional subspace of $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$ disjoint from $\mathrm{PG}(2 t-1, \mathbb{F})$. Then the set S_{π} of all lines of $\mathrm{PG}(2 t-1, \mathbb{F})$ which are induced by the points of π is a regular spread of $\mathrm{PG}(2 t-1, \mathbb{F})$.
(b) Suppose $t \in \mathbb{N} \backslash\{0,1\}$ and that \mathbb{F} is a field. If S is a regular spread of the projective space $\operatorname{PG}(2 t-1, \mathbb{F})$, then there exists a quadratic extension \mathbb{F}^{\prime} of \mathbb{F} such that the following holds if we regard $\mathrm{PG}(2 t-1, \mathbb{F})$ as a Baer- \mathbb{F} subgeometry of $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$:
(i) If \mathbb{F}^{\prime} is a separable field extension of \mathbb{F}, then there are precisely two $(t-$ $1)$-dimensional subspaces π of $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$ disjoint from $\mathrm{PG}(2 t-1, \mathbb{F})$ for which $S=S_{\pi}$.
(ii) If \mathbb{F}^{\prime} is a non-separable field extension of \mathbb{F}, then there is exactly one $(t-1)$-dimensional subspace π of $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$ disjoint from $\mathrm{PG}(2 t-1, \mathbb{F})$ for which $S=S_{\pi}$.

Remark 2.3. In Proposition $2.2(\mathrm{bi})$, the two $(t-1)$-dimensional subspaces π_{1} and π_{2} of $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$ disjoint from $\mathrm{PG}(2 t-1, \mathbb{F})$ for which $S=S_{\pi_{1}}=S_{\pi_{2}}$ are conjugate with respect to the unique nontrivial element ψ of $\operatorname{Gal}\left(\mathbb{F}^{\prime} / \mathbb{F}\right)$. For, a line L of $\mathrm{PG}(2 t-1, \mathbb{F})$ belongs to $S_{\pi_{1}}$ if and only if L^{\prime} intersects π_{1}, i.e., if and only if $L^{\prime}=L^{\prime \psi}$ intersects π_{1}^{ψ}.

3. Proof of the Main Theorem.

3.1. An inequality. Let \mathbb{F} and \mathbb{F}^{\prime} be two fields such that \mathbb{F}^{\prime} is a quadratic extension of \mathbb{F}. Let δ be an arbitrary element of $\mathbb{F}^{\prime} \backslash \mathbb{F}$ and let μ_{1}, μ_{2} be the unique elements of \mathbb{F} such that $\delta^{2}=\mu_{1} \delta+\mu_{2}$. Then $\mu_{2} \neq 0$. Let $m \geq 1$ and let V^{\prime} be a $2 m$-dimensional vector space over \mathbb{F}^{\prime} with basis $\left\{\bar{e}_{1}^{*}, \bar{e}_{2}^{*}, \ldots, \bar{e}_{2 m}^{*}\right\}$. We denote by V the set of all \mathbb{F}-linear combinations of the elements of $\left\{\bar{e}_{1}^{*}, \bar{e}_{2}^{*}, \ldots, \bar{e}_{2 m}^{*}\right\}$. Then V can be regarded as a $2 m$-dimensional vector space over \mathbb{F}. We denote the projective spaces associated with V and V^{\prime} by $\mathrm{PG}(V)$ and $\mathrm{PG}\left(V^{\prime}\right)$, respectively. The projective space $\mathrm{PG}(V)$ can be regarded in a natural way as a subgeometry of $\mathrm{PG}\left(V^{\prime}\right)$. Every subspace α of $\mathrm{PG}(V)$ then generates a subspace α^{\prime} of $\mathrm{PG}\left(V^{\prime}\right)$ of the same dimension as α.

Now, let π be an ($m-1$)-dimensional subspace of $\mathrm{PG}\left(V^{\prime}\right)$ disjoint from $\mathrm{PG}(V)$. Then there exist vectors $\bar{e}_{1}, \bar{f}_{1}, \ldots, \bar{e}_{m}, \bar{f}_{m}$ such that $\pi=\left\langle\bar{e}_{1}+\delta \bar{f}_{1}, \bar{e}_{2}+\delta \bar{f}_{2}, \ldots, \bar{e}_{m}+\right.$ $\left.\delta \bar{f}_{m}\right\rangle$.

Lemma 3.1. $\left\{\bar{e}_{1}, \bar{f}_{1}, \bar{e}_{2}, \bar{f}_{2}, \ldots, \bar{e}_{m}, \bar{f}_{m}\right\}$ is a basis of V.
Proof. If this were not the case, then there exist $a_{1}, b_{1}, \ldots, a_{m}, b_{m} \in \mathbb{F}$ with $\left(a_{1}, b_{1}, \ldots, a_{m}, b_{m}\right) \neq(0,0, \ldots, 0,0)$ such that $a_{1} \bar{e}_{1}+b_{1} \bar{f}_{1}+\cdots+a_{m} \bar{e}_{m}+b_{m} \bar{f}_{m}=\bar{o}$. Now, put $k_{i}:=a_{i}+\frac{b_{i}}{\mu_{2}} \delta$ for every $i \in\{1, \ldots, m\}$. Then $\left(k_{1}, \ldots, k_{m}\right) \neq(0, \ldots, 0)$
since $\left(a_{1}, b_{1}, \ldots, a_{m}, b_{m}\right) \neq(0,0, \ldots, 0,0)$. Since $k_{1}\left(\bar{e}_{1}+\delta \bar{f}_{1}\right)+\cdots+k_{m}\left(\bar{e}_{m}+\delta \bar{f}_{m}\right)=$ $\delta\left(a_{1} \bar{f}_{1}+\frac{b_{1}}{\mu_{2}} \bar{e}_{1}+\frac{\mu_{1}}{\mu_{2}} b_{1} \bar{f}_{1}+\cdots+a_{m} \bar{f}_{m}+\frac{b_{m}}{\mu_{2}} \bar{e}_{m}+\frac{\mu_{1}}{\mu_{2}} b_{m} \bar{f}_{m}\right)$, the subspace π is not disjoint from $\operatorname{PG}(V)$, a contradiction. So, $\left\{\bar{e}_{1}, \bar{f}_{1}, \ldots, \bar{e}_{m}, \bar{f}_{m}\right\}$ is a basis of V.

Now, let $k \in\{1, \ldots, 2 m\}$. Let W_{1} denote the subspace of $\bigwedge^{k} V$ generated by all vectors $\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k}$ where $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}$ are k linearly independent vectors of V such that $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}\right\rangle^{\prime}$ meets π. (If there are no such vectors $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}$, then $W_{1}=0$.) We will prove by induction on m that $\operatorname{dim}\left(W_{1}\right) \geq\binom{ 2 m}{k}-2 \cdot\binom{m}{k}$.

If $k=1$, then $W_{1}=0$ since $\pi \cap \mathrm{PG}(V)=\emptyset$. Hence, $\operatorname{dim}\left(W_{1}\right)=0=\binom{2 m}{1}-2 \cdot\binom{m}{1}$.
Suppose $k=2 m$. Since $\pi \subseteq\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{2 m}\right\rangle^{\prime}$ for every $2 m$ linearly independent vectors $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{2 m}$ of V, we have $W_{1}=\bigwedge^{2 m} V$ and hence $\operatorname{dim}\left(W_{1}\right)=1=\binom{2 m}{2 m}-$ $2 \cdot\binom{m}{2 m}$.

In the sequel, we may suppose that $m \geq 2$ and $k \in\{2, \ldots, 2 m-1\}$. Put $U=$ $\left\langle\bar{e}_{2}, \bar{f}_{2}, \ldots, \bar{e}_{m}, \bar{f}_{m}\right\rangle$. Every vector χ of $\bigwedge^{k} V$ can be written in a unique way as

$$
\bar{e}_{1} \wedge \bar{f}_{1} \wedge \alpha(\chi)+\bar{e}_{1} \wedge \beta(\chi)+\bar{f}_{1} \wedge \gamma(\chi)+\delta(\chi)
$$

where $\alpha(\chi) \in \bigwedge^{k-2} U, \beta(\chi) \in \bigwedge^{k-1} U, \gamma(\chi) \in \bigwedge^{k-1} U$ and $\delta(\chi) \in \bigwedge^{k} U$. [Here, $\bigwedge^{0} U=\mathbb{F}$ and $\bigwedge^{2 m-1} U=0$.] Let θ denote the linear map from $W_{1} \subseteq \bigwedge^{k} V$ to $\bigwedge^{k-1} U$ mapping χ to $\gamma(\chi)$. Then by the rank-nullity theorem,

$$
\begin{equation*}
\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}(\operatorname{ker}(\theta))+\operatorname{dim}(\operatorname{Im}(\theta)) \tag{3.1}
\end{equation*}
$$

Lemma 3.2. We have $\operatorname{dim}(k e r(\theta)) \geq\binom{ 2 m-2}{k-2}+\binom{2 m-1}{k}-2 \cdot\binom{m}{k}$.
Proof. (a) If $\bar{v}_{3}, \ldots, \bar{v}_{k}$ are $k-2$ linearly independent vectors of U, then $\left\langle\bar{e}_{1}, \bar{f}_{1}, \bar{v}_{3}\right.$, $\left.\ldots, \bar{v}_{k}\right\rangle^{\prime}$ meets π and hence $\bar{e}_{1} \wedge \bar{f}_{1} \wedge \bar{v}_{3} \wedge \cdots \wedge \bar{v}_{k} \in W_{1}$. It follows that $\bar{e}_{1} \wedge \bar{f}_{1} \wedge \bigwedge^{k-2} U \subseteq$ $\operatorname{ker}(\theta)$.
(b) Let Z_{1} denote the subspace of $\bigwedge^{k-1} U$ generated by all vectors $\bar{v}_{2} \wedge \bar{v}_{3} \wedge \cdots \wedge \bar{v}_{k}$ where $\bar{v}_{2}, \ldots, \bar{v}_{k}$ are $k-1$ linearly independent vectors of U such that $\left\langle\bar{v}_{2}, \ldots, \bar{v}_{k}\right\rangle^{\prime}$ meets $\left\langle\bar{e}_{2}+\delta \bar{f}_{2}, \ldots, \bar{e}_{m}+\delta \bar{f}_{m}\right\rangle$. By the induction hypothesis, $\operatorname{dim}\left(Z_{1}\right) \geq\binom{ 2 m-2}{k-1}-2$. $\binom{m-1}{k-1}$. Clearly, $\bar{e}_{1} \wedge Z_{1} \subseteq \operatorname{ker}(\theta)$.
(c) Suppose $k \leq 2 m-2$. Let Z_{2} denote the subspace of $\bigwedge^{k} U$ generated by all vectors $\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k}$, where $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}$ are k linearly independent vectors of U such that $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}\right\rangle^{\prime}$ meets $\left\langle\bar{e}_{2}+\delta \bar{f}_{2}, \ldots, \bar{e}_{m}+\delta \bar{f}_{m}\right\rangle$. By the induction hypothesis, $\operatorname{dim}\left(Z_{2}\right) \geq\binom{ 2 m-2}{k}-2 \cdot\binom{m-1}{k}$. Clearly, $Z_{2} \subseteq \operatorname{ker}(\theta)$.

By (a), (b), (c) and the decomposition $\bigwedge^{k} V=\left(\bar{e}_{1} \wedge \bar{f}_{1} \wedge \bigwedge^{k-2} U\right) \oplus\left(\bar{e}_{1} \wedge\right.$ $\left.\bigwedge^{k-1} U\right) \oplus\left(\bar{f}_{1} \wedge \bigwedge^{k-1} U\right) \oplus\left(\bigwedge^{k} U\right)$, we have $\operatorname{dim}(k e r(\theta)) \geq\binom{ 2 m-2}{k-2}+\binom{2 m-2}{k-1}-2$.
$\binom{m-1}{k-1}+\binom{2 m-2}{k}-2 \cdot\binom{m-1}{k}=\binom{2 m-2}{k-2}+\binom{2 m-1}{k}-2 \cdot\binom{m}{k}$. Notice that this inequality remains valid if $k=2 m-1$ since $\binom{2 m-2}{k}-2 \cdot\binom{m-1}{k}=0$ in this case. \square

Lemma 3.3. We have $\operatorname{Im}(\theta)=\bigwedge^{k-1} U$. Hence, $\operatorname{dim}(\operatorname{Im}(\theta))=\binom{2 m-2}{k-1}$.
Proof. It suffices to prove that every vector of the form $\bar{g}_{2} \wedge \bar{g}_{3} \wedge \cdots \wedge \bar{g}_{k}$ belongs to $\operatorname{Im}(\theta)$, where $\bar{g}_{2}, \bar{g}_{3}, \ldots, \bar{g}_{k}$ are $k-1$ distinct elements of $\left\{\bar{e}_{2}, \bar{f}_{2}, \ldots, \bar{e}_{m}, \bar{f}_{m}\right\}$. Without loss of generality, we may suppose that $\bar{g}_{2} \in\left\{\bar{e}_{2}, \bar{f}_{2}\right\}$. Since $\left\langle\left(\bar{e}_{1}+\bar{e}_{2}\right)+\delta\left(\bar{f}_{1}+\bar{f}_{2}\right)\right\rangle$ belongs to $\pi,\left(\bar{e}_{1}+\bar{e}_{2}\right) \wedge\left(\bar{f}_{1}+\bar{f}_{2}\right) \wedge \bar{g}_{3} \wedge \cdots \wedge \bar{g}_{k} \in W_{1}$ and hence $\bar{e}_{2} \wedge \bar{g}_{3} \wedge \cdots \wedge \bar{g}_{k} \in \operatorname{Im}(\theta)$. Since $\left\langle\left(\bar{e}_{1}+\delta \bar{f}_{1}\right)+\delta\left(\bar{e}_{2}+\delta \bar{f}_{2}\right)\right\rangle=\left\langle\left(\bar{e}_{1}+\mu_{2} \bar{f}_{2}\right)+\delta\left(\bar{f}_{1}+\bar{e}_{2}+\mu_{1} \bar{f}_{2}\right)\right\rangle$ belongs to π, $\left(\bar{e}_{1}+\mu_{2} \bar{f}_{2}\right) \wedge\left(\bar{f}_{1}+\bar{e}_{2}+\mu_{1} \bar{f}_{2}\right) \wedge \bar{g}_{3} \wedge \cdots \wedge \bar{g}_{k} \in W_{1}$ and hence $\bar{f}_{2} \wedge \bar{g}_{3} \wedge \cdots \wedge \bar{g}_{k} \in \operatorname{Im}(\theta)$ (recall $\mu_{2} \neq 0$).

Corollary 3.4. We have $\operatorname{dim}\left(W_{1}\right) \geq\binom{ 2 m}{k}-2 \cdot\binom{m}{k}$.
Proof. By equation (3.1) and Lemmas 3.2, 3.3, we have that $\operatorname{dim}\left(W_{1}\right) \geq\binom{ 2 m-2}{k-1}+$ $\binom{2 m-2}{k-2}+\binom{2 m-1}{k}-2 \cdot\binom{m}{k}=\binom{2 m-1}{k-1}+\binom{2 m-1}{k}-2 \cdot\binom{m}{k}=\binom{2 m}{k}-2 \cdot\binom{m}{k}$.
3.2. Proof of Theorem 1.1. We continue with the notation introduced in Section 3.1. We suppose here that $m \geq 2$ and $k \in\{1, \ldots, 2 m-1\}$. Let S be the spread of $\mathrm{PG}(V)$ induced by the points of π (recall Proposition 2.2(a)) and let X_{S} denote the set of all $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$ which contain at least one line of S.

Lemma 3.5. $A(k-1)$-dimensional subspace α of $\mathrm{PG}(V)$ contains a line of S if and only if α^{\prime} meets π.

Proof. Suppose α contains a line L of S. Since α^{\prime} contains the line L^{\prime} which meets π, α^{\prime} must also meet π.

Conversely, suppose that α^{\prime} meets π and let p be an arbitrary point in the intersection $\alpha^{\prime} \cap \pi$. Then in the subspace α^{\prime} there exists a unique line L^{\prime} through p which meets α in a line L (recall Lemma 2.1). Since L is a line of $\operatorname{PG}(V)$, we must necessarily have $L \in S$. So, α contains a line of S.

Corollary 3.6. If $k \in\{m+1, m+2, \ldots, 2 m-1\}$, then X_{S} consists of all $(k-1)$-dimensional subspaces of $\mathrm{PG}(V)$.

Let W_{2} denote the subspace of $\bigwedge^{k} V$ consisting of all vectors $\chi \in \bigwedge^{k} V$ satisfying $\left(\bar{e}_{1}+\delta \bar{f}_{1}\right) \wedge\left(\bar{e}_{2}+\delta \bar{f}_{2}\right) \wedge \cdots \wedge\left(\bar{e}_{m}+\delta \bar{f}_{m}\right) \wedge \chi=0$.

Lemma 3.7.
(1) The subspace $\mathrm{PG}\left(W_{1}\right)$ is generated by all points $e_{g r}(\alpha)$ where α is some element of X_{S}.
(2) A $(k-1)$-dimensional subspace α of $\mathrm{PG}(V)$ belongs to X_{S} if and only if $e_{g r}(\alpha) \in \mathrm{PG}\left(W_{2}\right)$.
(3) $\mathrm{PG}\left(W_{1}\right) \subseteq \mathrm{PG}\left(W_{2}\right)$.

Proof. Claim (1) is an immediate corollary of Lemma 3.5 and the definition of the subspace W_{1}. By Lemma 3.5, a $(k-1)$-dimensional subspace $\alpha=\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}\right\rangle$ of $\mathrm{PG}(V)$ belongs to X_{S} if and only if π meets $\alpha^{\prime}=\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}\right\rangle^{\prime}$, i.e. if and only if $\left(\bar{e}_{1}+\delta \bar{f}_{1}\right) \wedge\left(\bar{e}_{2}+\delta \bar{f}_{2}\right) \wedge \cdots \wedge\left(\bar{e}_{m}+\delta \bar{f}_{m}\right) \wedge \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k}=0$, i.e. if and only if $e_{g r}(\alpha) \in \mathrm{PG}\left(W_{2}\right)$. Claim (3) follows directly from Claims (1) and (2).

Lemma 3.8. We have $\operatorname{dim}\left(W_{2}\right) \leq\binom{ 2 m}{k}-2 \cdot\binom{m}{k}$.
Proof. If $k \in\{m+1, \ldots, 2 m-1\}$, then $W_{2}=\bigwedge^{k} V$ and hence $\operatorname{dim}\left(W_{2}\right)=\binom{2 m}{k}=$ $\binom{2 m}{k}-2 \cdot\binom{m}{k}$. We may therefore suppose that $k \in\{1, \ldots, m\}$.

Let T denote the set of all $(m-k)$-tuples $\left(i_{1}, \ldots, i_{m-k}\right)$, where i_{1}, \ldots, i_{m-k} $\in\{1, \ldots, m\}$ satisfies $i_{1}<i_{2}<\cdots<i_{m-k}$. We take the convention here that if $k=m$, then $|T|=1$ and T consists of the unique " 0 -tuple". If $\tau \in T$, then $\chi \in W_{2}$ implies that

$$
\begin{equation*}
\bar{e}_{i_{1}} \wedge \cdots \wedge \bar{e}_{i_{m-k}} \wedge\left(\bar{e}_{1}+\delta \bar{f}_{1}\right) \wedge \cdots \wedge\left(\bar{e}_{m}+\delta \bar{f}_{m}\right) \wedge \chi=0 \tag{3.2}
\end{equation*}
$$

We can write (3.2) as

$$
\begin{equation*}
\left(\alpha_{\tau}+\delta \beta_{\tau}\right) \wedge \chi=0 \tag{3.3}
\end{equation*}
$$

where

$$
\begin{gathered}
\alpha_{\tau}+\delta \beta_{\tau}=\frac{\bar{e}_{i_{1}} \wedge \cdots \wedge \bar{e}_{i_{m-k}} \wedge\left(\bar{e}_{1}+\delta \bar{f}_{1}\right) \wedge \cdots \wedge\left(\bar{e}_{m}+\delta \bar{f}_{m}\right)}{\delta^{m-k}} \\
\alpha_{\tau}, \beta_{\tau} \in \bigwedge^{2 m-k} V
\end{gathered}
$$

Equation (3.3) is equivalent with

$$
\left\{\begin{array}{l}
\alpha_{\tau} \wedge \chi=0 \tag{3.4}\\
\beta_{\tau} \wedge \chi=0
\end{array}\right.
$$

Consider now a basis B of $\bigwedge^{2 m-k} V$ which consists only of vectors of the form $\bar{g}_{1} \wedge$ $\bar{g}_{2} \wedge \cdots \wedge \bar{g}_{2 m-k}$, where $\bar{g}_{1}, \bar{g}_{2}, \ldots, \bar{g}_{2 m-k} \in\left\{\bar{e}_{1}, \bar{f}_{1}, \ldots, \bar{e}_{m}, \bar{f}_{m}\right\}$.

The $2 \cdot\binom{m}{m-k}=2 \cdot\binom{m}{k}$ equations determined by (3.4) are linearly independent if and only if the $2 \cdot\binom{m}{k}$ vectors $\alpha_{\tau}, \beta_{\tau}(\tau \in T)$ are linearly independent.

Suppose there exist $k_{\tau}, l_{\tau} \in \mathbb{F}(\tau \in T)$ such that

$$
\begin{equation*}
\sum_{\tau \in T}\left(k_{\tau} \alpha_{\tau}+l_{\tau} \beta_{\tau}\right)=0 \tag{3.5}
\end{equation*}
$$

Take an arbitrary $\tau^{*}=\left(i_{1}, i_{2}, \ldots, i_{m-k}\right)$ of T. If we write the left hand side of equation (3.5) as a linear combination of the elements of the basis B of $\bigwedge^{2 m-k} V$, then the sum of all terms which contain the factor $\left(\bar{e}_{i_{1}} \wedge \bar{f}_{i_{1}}\right) \wedge\left(\bar{e}_{i_{2}} \wedge \bar{f}_{i_{2}}\right) \wedge \cdots \wedge$ $\left(\bar{e}_{i_{m-k}} \wedge \bar{f}_{i_{m-k}}\right)$ must be 0 . This implies that $k_{\tau^{*}} \alpha_{\tau^{*}}+l_{\tau^{*}} \beta_{\tau^{*}}=0$. Now, the two vectors $\alpha_{\tau^{*}}$ and $\beta_{\tau^{*}}$ are linearly independent: $\alpha_{\tau^{*}}$ contains a term which is a multiple of $\bar{e}_{1} \wedge \bar{e}_{2} \wedge \cdots \wedge \bar{e}_{m} \wedge \bar{f}_{i_{1}} \wedge \bar{f}_{i_{2}} \wedge \cdots \wedge \bar{f}_{i_{m-k}}$, while $\beta_{\tau^{*}}$ does not contain such a term; for every $j \in\{1, \ldots, m\} \backslash\left\{i_{1}, \ldots, i_{m-k}\right\}, \beta_{\tau^{*}}$ contains a term which is a multiple of $\bar{e}_{1} \wedge \cdots \wedge \bar{e}_{j-1} \wedge \widehat{\hat{e}_{j}} \wedge \bar{e}_{j+1} \wedge \cdots \wedge \bar{e}_{m} \wedge \bar{f}_{j} \wedge \bar{f}_{i_{1}} \wedge \bar{f}_{i_{2}} \wedge \cdots \wedge \bar{f}_{i_{m-k}}$, while $\alpha_{\tau^{*}}$ does not contain such a term. We conclude that $k_{\tau^{*}}=l_{\tau^{*}}=0$. Since τ^{*} was an arbitrary element of T, we can indeed conclude that the vectors $\alpha_{\tau}, \beta_{\tau}(\tau \in T)$ are linearly independent.

Since the vectors χ of W_{2} satisfy a linear system of $2 \cdot\binom{m}{k}$ linearly independent equations (recall (3.4)), we can indeed conclude that $\operatorname{dim}\left(W_{2}\right) \leq\binom{ 2 m}{k}-2 \cdot\binom{m}{k}$. प

Theorem 1.1 is now an immediate consequence of Corollary 3.4 and Lemmas 3.7, 3.8.
4. On the classification of the regular spreads of $\mathrm{PG}(3, \mathbb{F})$. Proposition 2.2(b) plays an essential role in this paper. The proof of Proposition 2.2(b) given in [1] consists of two parts. In [1, Section 3], the case $t=2$ was treated and subsequently this classification was used in [1, Section 5] to obtain also a classification in the case $t \geq 3$. In the proof for the case $t=2$, a gap seems to occur. Indeed, in [1, Section 3] the authors tacitly assume that the lines and reguli of a given regular spread determine a Möbius plane. This fact is trivial in the finite case, where one could use a simple counting argument to prove it, but not at all obvious in the infinite case.

The aim of this section is to fill this apparent gap. We give a proof for Proposition $2.2(\mathrm{~b})$ in the case that t is equal to 2 . The methods used here will be different from the ones of [1]. Our treatment will be more geometric and based on the Klein correspondence. A discussion of regular spreads of finite 3-dimensional projective spaces can also be found in [3, Section 17.1]. Some of the tools we need here are already in [3], either explicitly or implicitly.

Let V be a 4-dimensional vector space over a field \mathbb{F}. For every line $L=\left\langle\bar{u}_{1}, \bar{u}_{2}\right\rangle$ of $\operatorname{PG}(V)$, let $\kappa(L)$ denote the point $\left\langle\bar{u}_{1} \wedge \bar{u}_{2}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{2} V\right)$. The image Q of κ is a nonsingular quadric of Witt index 3 of $\mathrm{PG}\left(\bigwedge^{2} V\right)$. If $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right\}$ is a basis of V, then the equation of Q with respect to the ordered basis $B^{*}:=\left(\bar{e}_{1} \wedge \bar{e}_{2}, \bar{e}_{1} \wedge \bar{e}_{3}, \bar{e}_{1} \wedge\right.$ $\left.\bar{e}_{4}, \bar{e}_{2} \wedge \bar{e}_{3}, \bar{e}_{2} \wedge \bar{e}_{4}, \bar{e}_{3} \wedge \bar{e}_{4}\right)$ of $\bigwedge^{2} V$ is equal to $X_{1} X_{6}-X_{2} X_{5}+X_{3} X_{4}=0$. The bijective correspondence κ between the set of lines of $\operatorname{PG}(V)$ and the set of points of Q is often referred to as the Klein correspondence. For every point x of $\operatorname{PG}(V)$, let \mathcal{L}_{x} denote the set of lines of $\mathrm{PG}(V)$ containing x and for every plane π of $\mathrm{PG}(V)$, let
\mathcal{L}_{π} denote the set of lines of $\operatorname{PG}(V)$ contained in π. The sets $\kappa\left(\mathcal{L}_{x}\right)$ and $\kappa\left(\mathcal{L}_{\pi}\right)$ are generators of Q. Let \mathcal{M}^{+}[respectively, \mathcal{M}^{-}] denote the set of generators of Q of the form $\kappa\left(\mathcal{L}_{x}\right)$ [respectively, $\kappa\left(\mathcal{L}_{\pi}\right)$] for some point x [respectively, plane π] of $\mathrm{PG}(V)$. Then \mathcal{M}^{+}and \mathcal{M}^{-}are the two families of generators of Q, i.e. (i) $\mathcal{M}^{+} \cap \mathcal{M}^{-}=\emptyset$, (ii) $\mathcal{M}^{+} \cup \mathcal{M}^{-}$consists of all generators of Q, and (iii) two generators of Q belong to the same family \mathcal{M}^{ϵ} for some $\epsilon \in\{+,-\}$ if and only if they intersect in a subspace of even co-dimension. Every line of Q is contained in precisely two generators, one generator of \mathcal{M}^{+}and one generator of \mathcal{M}^{-}.

The following three lemmas are known and their proofs are straightforward.
Lemma 4.1. Let \mathcal{R} be a regulus of $\mathrm{PG}(V)$. Then there exists a 2-dimensional subspace α of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $\kappa(\mathcal{R})=\alpha \cap Q$ is a nonsingular quadric of Witt index 1 of α.

Lemma 4.2. Suppose α is a 3-dimensional subspace of $\mathrm{PG}\left(\bigwedge^{2} V\right)$ which intersects Q in a nonsingular quadric of Witt index 1 of α. Then the set S of all lines L of $\mathrm{PG}(V)$ for which $\kappa(L) \in \alpha$ is a regular spread of $\mathrm{PG}(V)$.

Lemma 4.3. Suppose α is a 3-dimensional subspace of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ and that S is a spread of $\mathrm{PG}(V)$ such that $\alpha \cap Q \subseteq \kappa(S)$. Then α intersects Q in a nonsingular quadric of Witt index 1 of α. Moreover, $\alpha \cap Q=\kappa(S)$.

Lemma 4.4. Suppose $\mathbb{F}=\mathbb{F}_{2}$. Then $\mathrm{PG}(V)=\mathrm{PG}(3,2)$. The following hold:
(1) Every spread of $\mathrm{PG}(V)$ is regular.
(2) Every regulus of $\mathrm{PG}(V)$ can be extended to a unique spread of $\mathrm{PG}(V)$.
(3) If S is a regular spread of $\mathrm{PG}(V)$, then there exists a unique subspace α of dimension 3 of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $\kappa(S)=\alpha \cap Q$ is a nonsingular quadric of Witt index 1 of α.

Proof. Claims (1) and (2) are well known and easy to prove. So, we will only give a proof for Claim (3). Suppose S is a (regular) spread of $\mathrm{PG}(V)$ and \mathcal{R} a regulus contained in S. Then by Lemma 4.1 there exists a 2 -dimensional subspace β of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $\kappa(\mathcal{R})=\beta \cap Q$ is a nonsingular conic of β. Now, by an easy counting argument there are three 3 -dimensional subspaces γ_{1} through β which intersect Q in a singular quadric of γ_{1} (namely the subspaces $\langle\beta, \kappa(M)\rangle$ where M is one of the three lines of $\mathrm{PG}(V)$ meeting each line of $\mathcal{R})$, three 3-dimensional subspaces γ_{2} through β which intersect Q in a nonsingular hyperbolic quadric of γ_{2} and one 3dimensional subspace α through β which intersects Q in a nonsingular elliptic quadric of α. Since $\kappa^{-1}(\alpha \cap Q)$ is a spread containing $\mathcal{R}, \kappa^{-1}(\alpha \cap Q)=S$ by Claim (2). Hence, $\alpha \cap Q=\kappa(S)$.

Lemma 4.5. Suppose $|\mathbb{F}| \geq 3$. If S is a regular spread of $\operatorname{PG}(V)$, then there
exists a unique subspace α of dimension 3 of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $\kappa(S)=\alpha \cap Q$ is a nonsingular quadric of Witt index 1 of α.

Proof. Let L_{1}, L_{2}, L_{3} and L_{4} be four distinct lines of S such that $L_{4} \notin$ $\mathcal{R}\left(L_{1}, L_{2}, L_{3}\right)$. Put $\mathcal{R}_{1}=\mathcal{R}\left(L_{1}, L_{2}, L_{3}\right)$ and $\mathcal{R}_{2}=\mathcal{R}\left(L_{1}, L_{2}, L_{4}\right)$. By Lemma 4.1, there exists a 2-dimensional subspace $\alpha_{i}, i \in\{1,2\}$, of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $\kappa\left(\mathcal{R}_{i}\right)=$ $\alpha_{i} \cap Q$. Since $\mathcal{R}_{1} \neq \mathcal{R}_{2}$, we have $\alpha_{1} \neq \alpha_{2}$. Since $\kappa\left(L_{1}\right)$ and $\kappa\left(L_{2}\right)$ are contained in α_{1} and $\alpha_{2}, \alpha_{1} \cap \alpha_{2}$ is a line and $\alpha:=\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ is a 3 -dimensional subspace of $\operatorname{PG}\left(\bigwedge^{2} V\right)$.

We prove that every point x of $\alpha \cap Q$ belongs to $\kappa(S)$. Clearly, $\alpha_{1} \cap Q=\kappa\left(\mathcal{R}_{1}\right) \subseteq$ $\kappa(S)$ and $\alpha_{2} \cap Q=\kappa\left(\mathcal{R}_{2}\right) \subseteq \kappa(S)$. So, we may assume that $x \in(\alpha \cap Q) \backslash\left(\alpha_{1} \cup \alpha_{2}\right)$. Let M denote a line through x which meets α_{1} in a point y_{1} of $\left(\alpha_{1} \cap Q\right) \backslash \alpha_{2}$ and let y_{2} be the intersection of M with α_{2}. Since $|\mathbb{F}| \geq 3$, we may suppose that we have chosen M in such a way that y_{2} is not the kernel of the quadric $\alpha_{2} \cap Q$ of α_{2} in the case the characteristic of \mathbb{F} is equal to 2 . Then there exists a line $N \subseteq \alpha_{2}$ through y_{2} which intersects $Q \cap \alpha_{2}$ in two points, say u and v. The plane $\alpha_{3}:=\langle M, N\rangle$ through M is contained in α and contains the points y_{1}, u and v of $\kappa\left(\mathcal{R}_{1} \cup \mathcal{R}_{2}\right)$. So, there exist three distinct lines U, V and W of $\mathcal{R}_{1} \cup \mathcal{R}_{2}$ such that $\kappa(U), \kappa(V)$ and $\kappa(W)$ belong to α_{3}. If \mathcal{R}_{3} denotes the unique regulus of $\mathrm{PG}(V)$ containing U, V and W, then $\kappa\left(\mathcal{R}_{3}\right)=\alpha_{3} \cap Q$ by Lemma 4.1. Now, $\mathcal{R}_{3} \subseteq S$ since S is regular and $x \in \alpha_{3} \cap Q$. So, there exists a line $L \in S$ such that $x=\kappa(L)$. This is what we needed to prove.

By the above, we know that $\alpha \cap Q \subseteq \kappa(S)$. Lemma 4.3 then implies that $\alpha \cap Q=$ $\kappa(S)$ is a nonsingular quadric of Witt index 1 of α.

Now, let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} (which is unique, up to isomorphism) and let \bar{V} denote a 4-dimensional vector space over $\overline{\mathbb{F}}$ which also has $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right\}$ as basis. We will regard $\mathrm{PG}(V)$ as a subgeometry of $\mathrm{PG}(\bar{V})$ and $\mathrm{PG}\left(\bigwedge^{2} V\right)$ as a subgeometry of $\operatorname{PG}\left(\bigwedge^{2} \bar{V}\right)$.

Let \mathbb{K} be an extension field of \mathbb{F} which is contained in $\overline{\mathbb{F}}$. Let $V_{\mathbb{K}}$ denote the set of all \mathbb{K}-linear combinations of the elements of $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right\}$. Then $V_{\mathbb{K}}$ can be regarded as a vector space over \mathbb{K}. We will regard $\mathrm{PG}(V)$ as a subgeometry of $\operatorname{PG}\left(V_{\mathbb{K}}\right)$ and $\operatorname{PG}\left(V_{\mathbb{K}}\right)$ as a subgeometry of $\operatorname{PG}(\bar{V})$. Similarly, we will regard $\mathrm{PG}\left(\bigwedge^{2} V\right)$ as a subgeometry of $\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ and $\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ as a subgeometry of $\operatorname{PG}\left(\bigwedge^{2} \bar{V}\right)$. Every subspace α of $\operatorname{PG}(V)$ (respectively $\operatorname{PG}\left(\bigwedge^{2} V\right)$) then generates a subspace $\alpha_{\mathbb{K}}$ of $\operatorname{PG}\left(V_{\mathbb{K}}\right)\left(\right.$ respectively $\left.\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)\right)$ with the same dimension as α. We define $\bar{\alpha}:=\alpha_{\mathbb{F}}$ and $\overline{\alpha_{\mathbb{K}}}:=\alpha_{\overline{\mathbb{F}}}$.

We denote by $Q_{\mathbb{K}}$ the quadric of $\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ whose equation with respect to B^{*} is equal to $X_{1} X_{6}-X_{2} X_{5}+X_{3} X_{4}=0$, and put $\bar{Q}:=Q_{\overline{\mathbb{F}}}$. Then $Q \subseteq Q_{\overline{\mathbb{K}}} \subseteq \bar{Q}$. The Klein correspondence between the set of lines of $\operatorname{PG}\left(V_{\mathbb{K}}\right)$ and the points of $Q_{\mathbb{K}}$ will be denoted by $\kappa_{\mathbb{K}}$. We define $\bar{\kappa}:=\kappa_{\overline{\mathbb{F}}}$. Notice that two distinct lines L_{1} and L_{2} of
$\operatorname{PG}(\bar{V})$ meet if and only if the points $\bar{\kappa}\left(L_{1}\right)$ and $\bar{\kappa}\left(L_{2}\right)$ are \bar{Q}-collinear.

Now, suppose S is a regular spread of $\mathrm{PG}(V)$. Then by Lemmas 4.4 and 4.5, there exists a unique subspace α of dimension 3 of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $\kappa(S)=\alpha \cap Q$ is a non-singular quadric of Witt index 1 of α. With respect to a suitable reference system of α, the quadric $\alpha \cap Q$ of α has equation $f\left(X_{0}, X_{1}\right)+X_{2} X_{3}=0$, where $f\left(X_{0}, X_{1}\right)$ is an irreducible quadratic polynomial of $\mathbb{F}\left[X_{0}, X_{1}\right]$. Now, there exists a unique quadratic extension \mathbb{K} of \mathbb{F} contained in $\overline{\mathbb{F}}$ such that $f\left(X_{0}, X_{1}\right)$ is reducible when regarded as a polynomial of $\mathbb{K}\left[X_{0}, X_{1}\right]$. This quadratic extension \mathbb{K} is independent from the reference system of α with respect to which the equation of $\alpha \cap Q$ is of the form $f\left(X_{0}, X_{1}\right)+X_{2} X_{3}=0$. Now, we can distinguish two cases.
(I) The quadratic extension \mathbb{K} / \mathbb{F} is a Galois extension. Let ψ denote the unique element in $\operatorname{Gal}(\mathbb{K} / \mathbb{F})$. Then $f\left(X_{0}, X_{1}\right)=a\left(X_{0}+\delta X_{1}\right)\left(X_{0}+\delta^{\psi} X_{1}\right)$ for a certain $a \in \mathbb{F} \backslash\{0\}$ and a certain $\delta \in \mathbb{K} \backslash \mathbb{F}$. It follows that $\alpha_{\mathbb{K}} \cap Q_{\mathbb{K}}$ is a nonsingular quadric of Witt index 2 of $\alpha_{\mathbb{K}}$. If $\left(X_{1}, \ldots, X_{6}\right)$ are the coordinates of a point p of $\mathrm{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ with respect to the ordered basis B^{*}, then p^{ψ} denotes the point of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ whose coordinates with respect to B^{*} are equal to $\left(X_{1}^{\psi}, \ldots, X_{6}^{\psi}\right)$. Clearly, $Q_{\mathbb{K}}^{\psi}=Q_{\mathbb{K}}$.
(II) The quadratic extension \mathbb{K} / \mathbb{F} is not a Galois extension. Then $\operatorname{char}(\mathbb{K})=2$ and $f\left(X_{0}, X_{1}\right)=a\left(X_{0}+\delta X_{1}\right)^{2}$ for some $a \in \mathbb{F} \backslash\{0\}$ and some $\delta \in \mathbb{K} \backslash \mathbb{F}$ satisfying $\delta^{2} \in \mathbb{F}$. It follows that $\alpha_{\mathbb{K}} \cap Q_{\mathbb{K}}$ is a singular quadric of $\alpha_{\mathbb{K}}$ having a unique singular point ${ }^{1}$.

Now, let X denote the set of all points x of \bar{Q} which are \bar{Q}-collinear with every point of $\alpha \cap Q$. Notice that $x \in X$ if and only if $\bar{\kappa}^{-1}(x)$ meets every line \bar{L} where $L \in S$. We prove the following lemma which implies Proposition 2.2(b) in the case $t=2$.

Lemma 4.6.

(1) We have $X \subseteq Q_{\mathbb{K}}$.
(2) If \mathbb{K} / \mathbb{F} is a Galois extension, then $|X|=2$. Moreover, if $X=\left\{x_{1}, x_{2}\right\}$, then $x_{2}=x_{1}^{\psi}$.
(3) If \mathbb{K} / \mathbb{F} is not a Galois extension, then $|X|=1$.
(4) If $x \in X$, then the points of Q which are $Q_{\mathbb{K}}$-collinear with x are precisely the points of $\alpha \cap Q$, or equivalently, the lines of S are precisely those lines L of $\mathrm{PG}(V)$ for which $L_{\mathbb{K}}$ meets $\kappa_{\mathbb{K}}^{-1}(x)$. The line $\kappa_{\mathbb{K}}^{-1}(x)$ of $\mathrm{PG}\left(V_{\mathbb{K}}\right)$ is disjoint from $\mathrm{PG}(V)$.

[^1]Proof. (I) Suppose the quadratic extension \mathbb{K} / \mathbb{F} is a Galois extension. Let L_{1} and L_{2} be two disjoint lines of $\alpha_{\mathbb{K}} \cap Q_{\mathbb{K}}$ and let β_{1}, β_{2} denote the two planes of $Q_{\mathbb{K}}$ through L_{1}. Then $\overline{\beta_{1}}$ and $\overline{\beta_{2}}$ are the two planes of \bar{Q} through $\overline{L_{1}}$. Let $x_{i}, i \in\{1,2\}$, denote the unique point of $\beta_{i} Q_{\mathbb{K}}$-collinear with every point of L_{2}. Then x_{i} is also the unique point of $\overline{\beta_{i}} \bar{Q}$-collinear with every point of $\overline{L_{2}}$.

Let $i \in\{1,2\}$. We prove that $x_{i} \notin \operatorname{PG}\left(\bigwedge^{2} V\right)$, or equivalently, that $x_{i} \notin Q$. Suppose this is not the case and consider the hyperplane T of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ which is tangent to Q at the point x_{i}. Then $T_{\mathbb{K}}$ is the hyperplane of $\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ which is tangent to $Q_{\mathbb{K}}$ at the point x_{i}. Since $L_{1} \cup L_{2} \subseteq T_{\mathbb{K}}, \alpha$ is a hyperplane of T not containing x_{i} and hence $\alpha \cap Q$ would be a nonsingular quadric of Witt index 2 of α, clearly a contradiction.

We prove that $X=\left\{x_{1}, x_{2}\right\}$. Clearly, $\left\{x_{1}, x_{2}\right\} \subseteq X$. Conversely, suppose that x is a point of X. Since no point of $\overline{L_{1}}$ is \bar{Q}-collinear with every point of L_{2}, we have $x \notin \overline{L_{1}}$. Since x is collinear with every point of $\overline{L_{1}}$, we have $\left\langle x, \overline{L_{i}}\right\rangle=\overline{\beta_{i}}$ for some $i \in\{1,2\}$. Since x is \bar{Q}-collinear with every point of $L_{2} \subseteq \overline{L_{2}}$, we necessarily have $x=x_{i}$. Hence, $X=\left\{x_{1}, x_{2}\right\} \subseteq Q_{\mathbb{K}}$. Since x_{1} is $Q_{\mathbb{K}}$-collinear with every point of $\alpha \cap Q, x_{1}^{\psi} \neq x_{1}$ is $Q_{\mathbb{K}}$-collinear with every point of $(\alpha \cap Q)^{\psi}=\alpha \cap Q$. It follows that $x_{2}=x_{1}^{\psi}$.
(II) Suppose the quadratic extension \mathbb{K} / \mathbb{F} is not a Galois extension. Then $\alpha_{\mathbb{K}} \cap Q_{\mathbb{K}}$ is a singular quadric of $\alpha_{\mathbb{K}}$ with a unique singular point x^{*}. Clearly, $x^{*} \notin \operatorname{PG}\left(\bigwedge^{2} V\right)$ and $x^{*} \notin Q$.

We prove that $X=\left\{x^{*}\right\}$. Clearly, $x^{*} \in X$. Suppose now that there exists a point $x \in X \backslash\left\{x^{*}\right\}$. Then x is \bar{Q}-collinear with every point of $\bar{\alpha} \cap \bar{Q}$ and hence cannot be contained in $\bar{\alpha}$ since $x \neq x^{*}$. The points of \bar{Q} which are \bar{Q}-collinear with x and x^{*} are contained in a 3 -dimensional subspace of $\operatorname{PG}\left(\bigwedge^{2} \bar{V}\right)$, namely the intersection of the tangent hyperplanes to \bar{Q} at the points x and x^{*}. This 3 -dimensional subspace necessarily coincides with $\bar{\alpha}$ and contains the points x and x^{*}, a contradiction, since $x \notin \bar{\alpha}$. So, we have that $X=\left\{x^{*}\right\} \subseteq Q_{\mathbb{K}}$.

Now, let x be an arbitrary point of X. Then $x \in \operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right) \backslash \operatorname{PG}\left(\bigwedge^{2} V\right)$. By Lemma 2.1, there exist two distinct points x_{1} and x_{2} of $\operatorname{PG}\left(\bigwedge^{2} V\right)$ such that $x \in x_{1} x_{2}$. Let ζ denote the orthogonal or symplectic polarity of $\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ associated to the quadric $Q_{\mathbb{K}}$. We prove that the points of Q which are $Q_{\mathbb{K}}$-collinear with x are precisely the points of $\alpha \cap Q$. Since $x \in X$, every point of $\alpha \cap Q$ is $Q_{\mathbb{K}}$-collinear with x. Conversely, suppose that y is a point of Q which is $Q_{\mathbb{K}}$-collinear with x. Then $x \in y^{\zeta}$. By Lemma 2.1 applied to the subspace y^{ζ}, we see that $x_{1}, x_{2} \in y^{\zeta}$ and hence $y \in x_{1}^{\zeta} \cap x_{2}^{\zeta}$. Now, $x_{1}^{\zeta} \cap x_{2}^{\zeta}$ is a 3 -dimensional subspace of $\operatorname{PG}\left(\bigwedge^{2} V_{\mathbb{K}}\right)$ which necessarily coincides with $\alpha_{\mathbb{K}}$ since every point of $\alpha \cap Q$ is $Q_{\mathbb{K}}$-collinear with x. So, $y \in \alpha_{\mathbb{K}}$ and hence $y \in Q \cap \alpha$.

If p would be a point of $\operatorname{PG}(V)$ contained in $\kappa_{\mathbb{K}}^{-1}(x)$, then every line of $\mathrm{PG}(V)$ through p would be contained in the spread S, clearly a contradiction.

Remark 4.7. If we go back to Proposition 2.2(b) and regard $\mathrm{PG}(2 t-1, \mathbb{F})$ as a subgeometry of $\operatorname{PG}(2 t-1, \overline{\mathbb{F}})$, where $\overline{\mathbb{F}}$ is a fixed algebraic closure of \mathbb{F}, then Lemma 4.6 implies that there exists a unique quadratic extension \mathbb{F}^{\prime} of \mathbb{F} contained in $\overline{\mathbb{F}}$ for which the corresponding subgeometry $\mathrm{PG}\left(2 t-1, \mathbb{F}^{\prime}\right)$ of $\mathrm{PG}(2 t-1, \overline{\mathbb{F}})$ satisfies the properties (i) or (ii) of Proposition 2.2(b).

Acknowledgment. The author is a Postdoctoral Fellow of the Research Foundation - Flanders (Belgium).

REFERENCES
[1] A. Beutelspacher and J. Ueberberg. Bruck's vision of regular spreads or What is the use of a Baer superspace? Abh. Math. Sem. Univ. Hamburg, 63:37-54, 1993.
[2] Richard H. Bruck. Construction problems of finite projective planes. pp. 426-514 in Combinatorial Mathematics and its Applications, (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), Univ. North Carolina Press, Chapel Hill, 1969.
[3] James W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1985.

[^0]: *Received by the editors February 18, 2010. Accepted for publication July 13, 2010. Handling Editor: Raphael Loewy.
 ${ }^{\dagger}$ Department of Mathematics, Ghent University, Gent, Belgium (bdb@cage.ugent.be).

[^1]: ${ }^{1}$ With a singular point of a quadric, we mean a point of the quadric with the property that every line though it is a tangent line, i.e. a line which intersects the quadric in either a singleton or the whole line. The tangent hyperplane in a singular point is not defined.

