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LINEAR MAPS THAT PRESERVE PARTS OF THE SPECTRUM ON PAIRS OF

SIMILAR MATRICES∗

CONSTANTIN COSTARA†

Abstract. In this paper, we characterize linear bijective maps φ on the space of all n × n matrices over an algebraically

closed field F having the property that the spectrum of φ(A) and φ(B) have at least one common eigenvalue for each similar

matrices A and B. Using this result, we characterize linear bijective maps having the property that the spectrum of φ(A) and

φ(B) have common elements for each matrices A and B having the same spectrum. As a corollary, we also characterize linear

bijective maps preserving the equality of the spectrum.
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1. Introduction and statement of the main results. Let F be an algebraically closed field, let

n ≥ 2 be a natural number, and let us denote by Mn the algebra of all n×n matrices over F. For T ∈ Mn,

we shall denote by σ (T ) its spectrum, that is the set of all its eigenvalues without taking into account

multiplicities. Also, tr (T ) ∈ F shall denote the trace and T t ∈ Mn the transpose of the matrix T ∈ Mn,

and by In ∈ Mn, we shall denote the n× n identity matrix. By sln, we shall denote the set of all matrices

in Mn with zero trace, that is the linear subspace of Mn generated by nilpotent matrices. For two matrices

A and B in Mn, we shall write A ∼ B if they are similar; that is, there exists an invertible U ∈ Mn such

that B = UAU−1.

When F is the complex field C, the general form of linear maps on Mn preserving the similarity of

matrices was obtained by Hiai in [5]. It is proved at [5, Theorem 1.1] that a linear map φ : Mn → Mn has

the property that A ∼ B in Mn implies φ (A) ∼ φ (B) in Mn if and only if either there exist c, d ∈ C and

an invertible U ∈ Mn such that φ is either of the form φ (T ) = cUTU−1 + d(tr (T ))In for each T ∈ Mn,

or φ (T ) = cUT tU−1 + d(tr (T ))In for each T ∈ Mn, or there exists a fixed matrix X ∈ Mn such that

φ (T ) = (tr (T ))X for each T ∈ Mn. The result was further generalized by Lim in [6]: it is proved at [6,

Theorem 2] that [5, Theorem 1.1] remains true with the same statement if F is an arbitrary infinite field

such that char(F) = 0 or char(F) does not divide n and with a slightly different formulation for the case

when char(F) divides n [6, Theorem 3]. Hiai obtained his result by relating the rank of each matrix to the

dimension of the tangent space of its similarity orbit, which allowed him to use a result of Marcus and Moyls

[7] on rank one preservers to obtain the general form for the map φ. Lim obtained his result by relating the

study of similarity preserving linear maps to the study of bijective linear maps on sln preserving nilpotency,

which allowed him to use a result of Botta, Pierce, and Watkins [3] giving the general form of such preserving

maps.

The main purpose of the present paper is to obtain a corresponding result where instead of supposing
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that φ (A) ∼ φ (B) if A ∼ B, we merely suppose that φ (A) and φ (B) have at least one common eigenvalue.

When φ preserves similarity, Hiai proved at [5, Lemma 1.2] that either kerφ ⊆ CIn or sln ⊆ kerφ. Therefore,

either kerφ is quite small or quite big. In our case, we cannot hope to obtain a nice characterization for

the map φ with no bijectivity assumption on it: for example, any linear map φ on Mn such that its range

contains only singular matrices has the property that σ (φ(A)) ∩ σ (φ(B)) ̸= ∅ for any matrices A and B.

Theorem 1.1. Let φ : Mn → Mn be a bijective linear map such that

(1.1) A ∼ B =⇒ σ (φ(A)) ∩ σ (φ(B)) ̸= ∅ (A,B ∈ Mn).

Then, there exist c ∈ F\{0} and d ∈ F with c+ dn ̸= 0 and an invertible matrix U ∈ Mn such that either

(1.2) φ (T ) = cUTU−1 + d(tr (T ))In (T ∈ Mn),

or

(1.3) φ (T ) = cUT tU−1 + d(tr (T ))In (T ∈ Mn).

Conversely, any map φ of the form (1.2) or (1.3) is linear and bijective on Mn and satisfies (1.1),

provided that c, d, and U satisfy the above conditions.

For a nonzero scalar c and an invertible matrix U , if the scalar d satisfies the fact that c+ dn = 0, then

the map φ given by either (1.2) or (1.3) is linear on Mn and satisfies (1.1). Also, the kernel of φ is exactly

FIn. Thus, φ satisfies (1.1) and is not bijective on Mn, and its image contains also nonsingular matrices:

for example, any invertible matrix with zero trace belongs to the image of the map φ.

For linear bijective maps φ having the property that φ (A) and φ (B) have always at least one common

eigenvalue for every matrices A and B with the same spectrum, we have the following characterization.

Theorem 1.2. Let φ : Mn → Mn be a bijective linear map such that

(1.4) σ (A) = σ (B) =⇒ σ (φ(A)) ∩ σ (φ(B)) ̸= ∅ (A,B ∈ Mn).

i) If n = 2, there exist c, d ∈ F with c ̸= 0 and c + 2d ̸= 0 and an invertible matrix U ∈ M2 such that φ is

either of the form (1.2) or (1.3).

ii) If n = 3, there exist a nonzero c ∈ F, a scalar d ∈ {0,−c, c} with c + 3d ̸= 0 and an invertible U ∈ M3

such that φ is either of the form (1.2) or (1.3).

iii) If n = 4 and char(F) ∈ {2, 3}, there exist a nonzero c ∈ F, a scalar d ∈ {0, c} and an invertible U ∈ M4

such that φ is either of the form (1.2) or (1.3).

iv) If either n = 4 and char(F) /∈ {2, 3}, or n ≥ 5, then there exist c ∈ F\{0} and U ∈ Mn invertible such

that either

(1.5) φ (T ) = cUTU−1 (T ∈ Mn),

or

(1.6) φ (T ) = cUT tU−1 (T ∈ Mn).

Conversely, any map φ of the above forms, with the corresponding properties for n, F, c, d, and U , is

linear and bijective and satisfies (1.4).
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As another corollary of Theorem 1.1, we obtain a characterization of linear bijective maps on Mn

preserving the equality of the spectrum.

Theorem 1.3. Let φ : Mn → Mn be a bijective linear map such that

(1.7) σ (A) = σ (B) =⇒ σ (φ(A)) = σ (φ(B)) (A,B ∈ Mn).

i) If n = 2, there exist c, d ∈ F with c ̸= 0 and c + 2d ̸= 0 and an invertible matrix U ∈ M2 such that φ is

either of the form (1.2) or (1.3).

ii) If n ≥ 3, then there exist a nonzero c ∈ F and an invertible U ∈ Mn such that φ is either of the form

(1.5) or (1.6).

Conversely, any map φ of the above forms, with the corresponding properties for n, c, d, and U , is linear

and bijective and satisfies (1.7).

In the case of linear maps φ preserving pairs of matrices having at least one common element in their

spectrum, if the image of φ in Mn contains at least one invertible matrix, the bijectivity of φ is automatic.

(See also [2, Theorem 1].)

Theorem 1.4. Let φ : Mn → Mn be a linear map having the property that

(1.8) σ(A) ∩ σ(B) ̸= ∅ =⇒ σ(φ(A)) ∩ σ(φ(B)) ̸= ∅ (A,B ∈ Mn).

Suppose also that there exists A0 ∈ Mn such that φ (A0) ∈ Mn is invertible.

i) If n = 2, there exist c ̸= 0 and d ∈ {0,−c} in F and U ∈ M2 invertible such that φ is either of the form

(1.2) or (1.3).

ii) If n ≥ 3, then there exist a nonzero c ∈ F and an invertible U ∈ Mn such that φ is either of the form

(1.5) or (1.6).

Any map φ of the above forms, with the corresponding properties for n, c, d, and U , is linear and bijective

on Mn and satisfies (1.8).

2. Proofs. Let us start by obtaining the characterization of linear bijective maps which preserve at

least one element in the spectrum of images of similar matrices.

Proof of Theorem 1.1. Let X ∈ Mn be an invertible matrix, and define the linear map φX : Mn → Mn

by putting

φX (T ) = φ
(
Xφ−1 (T )X−1

)
(T ∈ Mn).

Since Xφ−1 (T )X−1 ∼ φ−1 (T ), then (1.1) gives σ(φX (T )) ∩ σ (T ) ̸= ∅ for each T ∈ Mn. As a result of

Akbari and Aryapoor (see [1, Theorem 2]), the map φX preserves the whole spectrum of matrices in Mn,

and there exists an invertible matrix VX ∈ Mn such that either φX (T ) = VXTV −1
X for each T ∈ Mn,

or φX (T ) = VXT tV −1
X for each T ∈ Mn. Thus, either φ

(
XWX−1

)
= VXφ (W )V −1

X for each W ∈ Mn,

or φ
(
XWX−1

)
= VX(φ (W ))tV −1

X for each W ∈ Mn. In particular, for each pair of similar matrices

A,B ∈ Mn we have that either φ (A) is similar to φ (B) or φ (A) is similar to φ (B)
t
. By a general result

(see, for example, [8, Lemma 2.1]), any matrix in Mn is similar to its transpose. Therefore, A ∼ B in Mn

implies φ (A) ∼ φ (B) in Mn. Since φ is bijective on Mn, then [6, Theorem 2 and Theorem 3] imply the

existence of scalars c and d and an invertible matrix U ∈ Mn such that φ is either of the form (1.2) or (1.3).

The bijectivity of φ implies that c ̸= 0. Also, since φ (In) = (c+ dn)In, we also have that c+ dn ̸= 0.
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Conversely, given any c, d ∈ F with c ̸= 0 and c+ dn ̸= 0 and an invertible U ∈ Mn, for φ on Mn given

by either (1.2) or (1.3) we have that φ is linear and bijective, and A ∼ B in Mn implies φ (A) ∼ φ (B) in

Mn. In particular, A ∼ B in Mn implies σ (φ(A)) = σ (φ(B)). Since the field F is algebraically closed, the

spectrum cannot be empty, and therefore, σ(φ(A)) ∩ σ(φ(B)) ̸= ∅. Thus, (1.1) holds.

Since σ (A) = σ (B) for every similar matrices A and B, then (1.4) gives more information on the map

φ than (1.1). Thus, in this case we can deduce further properties on the scalar d.

Proof of Theorem 1.2. Since A ∼ B implies σ (A) = σ (B), then (1.4) true implies that (1.1) is true. By

Theorem 1.1, there exist scalars c and d with c ̸= 0 and c+ dn ̸= 0 and an invertible matrix U ∈ Mn such

that φ is either of the form (1.2) or (1.3).

- Suppose that n = 2. Then, σ (A) = σ (B) implies that tr (A) = tr (B). This implies that if φ is of

the form (1.2) or (1.3), with c ̸= 0, c + 2d ̸= 0 and U invertible, then φ is a bijective linear map satisfying

σ (φ(A)) = σ (φ(B)) for every such A and B. In particular, σ (φ(A))∩σ (φ(B)) ̸= ∅ for every A and B with

σ (A) = σ (B).

- Suppose that n = 3. If d = 0, then φ is either of the form (1.5) or (1.6). This again implies that φ is a

bijective linear map such that σ (φ(A)) = σ (φ(B)) for every A and B having the same spectrum. Suppose

now that d is a nonzero scalar. Let A ∈ M3 be a diagonal matrix having two times 0 and one time 1 on

the main diagonal, and let B ∈ M3 be a diagonal matrix having two times 1 and one time 0 on the main

diagonal. Then, σ (A) = σ (B) = {0, 1} and tr (A) = 1, while tr (B) = 2. By (1.4), we have that

{d, c+ d} ∩ {2d, c+ 2d} ≠ ∅.

Since d ̸= 0, then d ̸= 2d and c + d ̸= c + 2d, and therefore either c + d = 2d or c + 2d = d. Thus, either

c = d or c = −d.

Let us prove now that if d = c, for φ : M3 → M3 given by

φ (T ) = c(UTU−1 + (tr (T ))I3) (T ∈ M3),

with 4 ̸= 0 and U ∈ M3 invertible, we have that φ is a bijective linear map on M3 satisfying (1.4). (The

same reasoning works also in the case when φ (T ) = c(UT tU−1 + (tr (T ))I3) for each T ∈ M3.) So let

A,B ∈ M3 such that σ (A) = σ (B). If the common set has only one element, then tr (A) = tr (B) , and

thus, σ (φ(A)) = σ (φ(B)). The same is true if the common set has exactly 3 elements. Suppose now that

σ (A) = σ (B) = {α, β} for some α ̸= β in F. If tr (A) = tr (B), then again σ (φ(A)) = σ (φ(B)). If tr (A) ̸=
tr (B), then for example tr (A) = 2α+ β and tr (B) = α+ 2β. This gives σ (φ (A)) = {(3α+ β)c, 2(α+ β)c}
and σ (φ (B)) = {2(α+ β)c, (α+ 3β)c}, and therefore, σ (φ(A)) ∩ σ (φ(B)) ̸= ∅.

Analogously, we obtain for d = −c that if 2 ̸= 0, then T 7→ c(UTU−1− (tr (T ))I3) and T 7→ c(UT tU−1−
(tr (T ))I3) are both linear bijective maps satisfying (1.4).

- Suppose that n ≥ 4. If d = 0, then again φ of the form (1.5) or (1.6) is a bijective linear map such

that σ (φ(A)) = σ (φ(B)) for every A and B having the same spectrum. Suppose for the remaining that

d ̸= 0. As above, there exist matrices in Mn having the spectrum equal to {0, 1} and the trace any of the

elements from {1, ..., n− 1} ⊆ F. Since (1.4) holds, then given any j and k in {1, ..., n− 1} we have that

{dj, c+ dj} ∩ {dk, c+ dk} ≠ ∅.
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For j = 1 and k = 2, since d ̸= 0, then dj ̸= dk and c + dj ̸= c + dk, and therefore either c + dj = dk or

dj = c+ dk. Thus, either d = c or d = −c. For j = 1 and k = 3, we have that {d, c+ d}∩ {3d, c+3d} ≠ ∅. If
d = c, this means that {c, 2c} ∩ {3c, 4c} ≠ ∅, and since c ̸= 0, this means that either 2 = 0, or 3 = 0 in F. If
d = −c, this means that {−c, 0} ∩ {−3c,−2c} ≠ ∅, and we arrive to the same conclusion. Thus d ∈ {−c, c}
and char(F) ∈ {2, 3}.

Suppose now that n = 4, char(F) = 2, and d = c. Then, c + 4d ̸= 0, and let us prove that maps

φ of form (1.2) or (1.3) satisfy (1.4). If σ (A) = σ (B) and the common set has either one element or four

elements, then tr (A) = tr (B) , and therefore, σ (φ(A)) = σ (φ(B)). Suppose that σ (A) = σ (B) = {α, β},
for some α ̸= β in F. Then, tr (A) , tr (B) ∈ {α + β, 0}, and therefore, σ (φ(A)) = σ (φ(B)). Suppose

now that σ (A) = σ (B) = {α, β, γ}, for some pairwise distinct α, β, and γ in F. Then, tr (A) and tr (B)

both belong to {α + β, α + γ, β + γ}, and therefore, σ (φ(A)) and σ (φ(B)) belong to {c{β, α, α + β + γ},
c{γ, α+ β + γ, α}, c{α+ β + γ, γ, β}}. Thus, σ (φ(A)) ∩ σ (φ(B)) ̸= ∅.

Suppose now that n = 4 and char(F) = 3. Since c + 4d ̸= 0, then d cannot be −c. Then, d = c,

in which case the condition c + 4d ̸= 0 clearly holds. Let us prove that maps φ of form (1.2) or (1.3)

satisfy (1.4). Again, if σ (A) = σ (B) and the common set has either one element or four elements, then

tr (A) = tr (B) , and therefore, σ (φ(A)) = σ (φ(B)). If σ (A) = σ (B) = {α, β} for some α ̸= β in F,
then tr (A) and tr (B) belong to the set {α, β, 2(α + β)}, and therefore, σ (φ(A)) and σ (φ(B)) belong to

{c{2α, α + β}, c{α + β, 2β}, c{2β, 2α}}. Thus, σ (φ(A)) ∩ σ (φ(B)) ̸= ∅. Suppose now that σ (A) =

σ (B) = {α, β, γ}, for some pairwise distinct α, β, and γ in F. Then, tr (A) and tr (B) both belong to

{α+β+2γ, α+2β+γ, 2α+β+γ}. Thus, σ (φ(A)) and σ (φ(B)) belong to {c{2α+β+2γ, α+2β+2γ, α+

β}, c{2α + 2β + γ, α + γ, α + 2β + 2γ}, c{β + γ, 2α + 2β + γ, 2α + β + 2γ}}. Again, in all possible cases,

we have that σ (φ(A)) ∩ σ (φ(B)) ̸= ∅.

If n = 5, char(F) = 2 and d = c, then c + nd = 0. Then maps φ of the form (1.2) or (1.3)

are not bijective. Let us show now that if n ≥ 6 and char(F) = 2, then no map of the form (1.2) or

(1.3) with c nonzero and d = c can satisfy (1.4). Let µ1 ∈ F\{0}, and pick inductively µj ∈ F for j =

2, .., n − 2 such that µj /∈ {
∑j−1

s=1 εsµs : εs ∈ {0, 1}, s = 1, j − 1} for j = 2, n− 2. Consider the matrix

A = diag(µ1, ..., µn−2, µn−3, µn−4) and put B = diag(µ1, ..., µn−2, µn−2, µn−5). Then, σ (A) = σ (B) =

{µ1, ..., µn−2} and t := tr (A) − tr (B) equals µn−2 + µn−3 + µn−4 + µn−5. That σ (φ (A)) ∩ σ (φ (B)) ̸= ∅
means that (c{σ(A) + tr (A)})∩ (c{σ(B) + tr (B)}) ̸= ∅, and this implies the existence of i, j ∈ {1, ..., n− 2}
such that t = µi−µj . We deduce the existence of ε1, ..., εn−2 ∈ {0, 1}, not all zero, such that

∑n−2
s=1 εsµs = 0,

and this contradicts our construction of the µj ’s.

To finish the proof, let us show now that if n ≥ 5 and char(F) = 3, again there is no map of the

form (1.2) or (1.3) with c nonzero and d ∈ {−c,+c} satisfying (1.4). Let µ1 ∈ F\{0} and consider µj ∈ F
for j = 2, .., n − 2 such that µj /∈ {

∑j−1
s=1 εsµs : εs ∈ {0, 1, 2}, s = 1, j − 1} for j = 2, n− 2. Consider the

matrices A = diag(µ1, ...µn−2, µn−3, µn−4) and B = diag(µ1, ..., µn−2, µn−2, µn−2). Then, σ (A) = σ (B) =

{µ1, ..., µn−2} and t := tr (A)− tr (B) equals µn−2 + µn−3 + µn−4. Since σ (φ (A)) ∩ σ (φ (B)) ̸= ∅, for both
cases d = c and d = −c we deduce the existence of i, j ∈ {1, ..., n − 2} such that t = µi − µj . Thus, there

exist ε1, ..., εn−2 ∈ {0, 1, 2}, not all zero, such that
∑n−2

s=1 εsµs = 0, and we arrive again at a contradiction.

In the case of maps preserving the equality of the spectrum, there are less possible forms for the preserving

map φ.

Proof of Theorem 1.3. Since A ∼ B implies σ (A) = σ (B) and the spectrum is always non-empty, then

(1.7) true implies that (1.1) is also true. Thus, we can use once again Theorem 1.1 to deduce the existence
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of two scalars c and d with c ̸= 0 and c+ nd ̸= 0 and an invertible matrix U ∈ Mn such that φ is either of

the form (1.2) or (1.3).

- If n = 2, then σ (A) = σ (B) implies that tr (A) = tr (B). Thus, for φ of the form (1.2) or (1.3),

with c ̸= 0 and c + 2d ̸= 0 in F and U invertible, we have that φ is a bijective linear map satisfying

σ (φ(A)) = σ (φ(B)) for every such A and B. That is, (1.7) holds.

- Let now n ≥ 3, and suppose that d ̸= 0. There are matrices A and B such that σ (A) = σ (B) = {0, 1}
and tr (A) = 1 while tr (B) = 2. That σ (φ(A)) = σ (φ(B)) gives {d, d+ c} = {2d, 2d+ c}. Since d ̸= 2d and

d+c ̸= 2d+c, then d+c = 2d and d = 2d+c. This gives d = c and d = −c, and therefore, 2c = 0. Thus, d = c

and char(F) = 2. If n = 3, since c+3d ̸= 0 we arrive to a contradiction. If n ≥ 4, consider a scalar λ /∈ {0, 1}
and let A = diag(0, 1, λ, λ, 0, ..., 0) and B = diag(0, 1, λ, 1, 0, ..., 0) such that σ (A) = σ (B) = {0, 1, λ} and

tr (A) = 1 while tr (B) = λ. We then have σ (φ (A)) = c({0, 1, λ}+ 1) and σ (φ (B)) = c({0, 1, λ}+ λ), and

therefore, {1, 0, λ+ 1} = {λ, λ+ 1, 0}. Since λ /∈ {0, 1}, we arrive again at a contradiction.

To conclude the proof in this case too, let us remark that if c is a nonzero scalar and U an invertible

matrix, then φ of the form (1.5) or (1.6) has the property that σ (φ (T )) = cσ (T ) for each matrix T , and

therefore (1.7) holds.

Since any map φ satisfying (1.8) clearly satisfies (1.1), the main part of the proof of Theorem 1.4 will

be to obtain the bijectivity of φ.

Proof of Theorem 1.4. Let T0 ∈ Mn such that φ (T0) = 0 ∈ Mn. Given an arbitrary T ∈ Mn, we have

that λ 7→ det (φ (A0) + λφ (T )) is a nonzero polynomial of degree at most n and therefore has at most n

distinct roots in F. Thus, there exists a finite subset KT ⊆ F such that φ (A0) + λφ (T ) ∈ Mn is invertible

for each λ ∈ F\KT . Thus, σ(φ(A0+µT0+λT ))∩σ(φ(0)) = ∅ for each µ ∈ F and λ ∈ F\KT , and then, (1.8)

implies that σ(A0 +µT0 + λT )∩ σ(0) = ∅ for each µ ∈ F and λ ∈ F\KT . Thus, det (A0 + µT0 + λT ) ̸= 0 for

each µ ∈ F and λ ∈ F\KT . Fixing λ ∈ F\KT , we have that the polynomial µ 7→ det (A0 + µT0 + λT ) has

no roots in F. This means that it is a constant nonzero polynomial with respect to µ, and therefore, for any

λ ∈ F\KT we have that

det(A0 + µT0 + λT ) = det (A0 + λT ) (µ ∈ F),

with det (A0 + λT ) ̸= 0. In particular,

det(A0 + λ(T0 + T )) = det (A0 + λT ) (λ ∈ F\KT ).

Therefore, there exists an infinite subset ST ⊆ F such that det(µA0 + (T0 + T )) = det (µA0 + T ) for each

µ ∈ ST . Since µ 7→ det(µA0 + (T0 + T )) and µ 7→ det (µA0 + T ) are both polynomials with respect to µ, we

deduce that det(µA0 + (T0 + T )) = det (µA0 + T ) for each µ ∈ F. In particular, det(T0 + T ) = detT . Since

this holds for every T ∈ Mn, by [4, Lemma 2.1] we deduce that T0 = 0, as needed.

By Theorem 1.1, there exist scalars c and d with c ̸= 0 and c + nd ̸= 0 and U ∈ Mn invertible such

that φ is either of the form (1.2) or (1.3). If d = 0, then φ is of the form (1.5) or (1.6). Suppose now that

d ̸= 0. For A ∈ Mn with σ (A) = {0, 1} and tr (A) = 1 and B = 0 ∈ Mn, that σ(A) ∩ σ(B) ̸= ∅ implies

{c{0, 1} + d} ∩ {0} ≠ ∅. That is, d = −c. This gives σ (φ (T )) = c{σ (T ) − tr (T )} for each T ∈ Mn. If

n ≥ 3, then let α, β ∈ F such that α, β, and α + β are all nonzero. For A = diag(α, β, 0, ..., 0) ∈ Mn,

since σ(A) ∩ σ(0) ̸= ∅ then σ (φ (A)) contains 0 ∈ F. That is, 0 ∈ {−β,−α,−(α + β)}, and we arrive to a

contradiction.
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To finish the proof, let us show that for n = 2, if c ̸= 0 in F and U ∈ M2 is invertible, then for φ of

the form T 7→ c(UTU−1 − (tr (T ))I2) and T 7→ c(UT tU−1 − (tr (T ))I2) we have that (1.8) holds. Indeed, let

A,B ∈ M2 such that σ(A) ∩ σ(B) ̸= ∅. Say, σ (A) = {α, β} and σ (B) = {α, γ} for some scalars α, β, and

γ. Then, σ (φ (A)) = c{−β,−α} and σ (φ (B)) = c{−γ,−α}, and therefore, σ(φ (A)) ∩ σ(φ (B)) ̸= ∅. One

can also easily check that the maps φ of the above two forms are also bijective.
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