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HYPOCOERCIVITY AND HYPOCONTRACTIVITY CONCEPTS FOR LINEAR

DYNAMICAL SYSTEMS∗
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Abstract. For linear dynamical systems (in continuous-time and discrete-time), we revisit and extend the concepts of

hypocoercivity and hypocontractivity and give a detailed analysis of the relations of these concepts to (asymptotic) stability,

as well as (semi-)dissipativity and (semi-)contractivity, respectively. On the basis of these results, the short-time behavior of

the propagator norm for linear continuous-time and discrete-time systems is characterized by the (shifted) hypocoercivity index

and the (scaled) hypocontractivity index, respectively.
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1. Introduction. In this paper, we discuss different concepts that characterize the short- and long-time

behavior of linear continuous-time ordinary differential equations (ODEs)

(1.1) x′(t) = Acx(t) = −Bx(t) , x(0) = x0, t ≥ 0,

and discrete-time difference equations (DDEs)

(1.2) xk+1 = Adxk , x0 = x0, k ∈ N0,

with matrices Ac,Ad ∈ Cn×n.

It is well-known that the long-time behavior of solutions of (1.1) and (1.2) can be characterized via

the spectral properties of the matrices Ac,Ad or the solutions of Lyapunov equations [5, 13, 18, 19]. To

understand the short-time behavior of continuous-time systems, much progress has recently been made for

systems with a semi-dissipative structure, that is, systems where Ac has a semidefinite symmetric part.

For this subclass, it has recently been observed in [2, 3] that the short- and long-time behavior can be

characterized via the concept of hypocoercivity and the hypocoercivity index. For this subclass also the

analysis of the long-time behavior becomes simpler and more elegant.

In this paper, we show that a similar concept of hypocontractivity and a hypocontractivity index is

analogously available in the discrete-time case and that it can be characterized via the polar decomposition

of Ad.
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For both, the continuous- and discrete-time we present a systematic review and analysis of the different

concepts and show the subtle differences and similarities to the classical spectral concepts and illustrate

these with numerous examples. Furthermore, we present the close relationship of these concepts to classical

controllability and observability concepts in control theory.

Note that we switch in the discussion of (1.1) between the classical notation with Ac as is common in

dynamical systems and the notation with −B as is common in evolution equations.

In Section 2, we recall the concepts of (asymptotic) stability, (semi-)dissipativity, and hypocoercivity

for continuous-time systems that have been discussed in [3]. To better understand the decay behavior of

solutions, we extend the concept of hypocoercivity to shifted hypocoercivity. We also show under which linear

transformations of the system these properties stay invariant.

In the second part of the paper, in Section 3 we derive the corresponding results for discrete-time

systems and, in particular, analyze the relation between (asymptotic) stability, (semi-)contractivity, and

hypocontractivity as well as scaled hypocontractivity.

The third part in Section 4 studies how the discussed properties are related under Cayley transforma-

tions that map between continuous-time and discrete-time systems. We show that many properties including

the hypocoercivity index and hypocontractivity index map appropriately. However, in general, the shifted

hypocoercivity and scaled hypocontractivity indices are not mapped into each other. Computationally feasi-

ble staircase forms to check hypocoercivity for accretive matrices and hypocontractivity for semi-contractive

matrices, and to determine the associated indices are discussed in the Appendix.

We use the following notation: The conjugate transpose of a matrix C ∈ Cn×n is denoted by CH.

Positive definiteness (semi-definiteness) of a Hermitian matrix C is denoted by C > 0 (C ≥ 0).

2. Stability, semi-dissipativity, and hypocoercivity for continuous-time systems. In this sec-

tion, we recall some properties of linear continuous-time systems and their relationship. Let us give a

simplified definition of stability, for the general definition, see, for example, [5, 13].

Definition 1. The trivial solution x ≡ 0 of (1.1) is called (Lyapunov) stable if all solutions of (1.1)

are bounded for t ≥ 0, and it is called asymptotically stable if it is stable and all solutions of (1.1) converge

to 0 for t → ∞.

For linear systems (1.1), a solution is (asymptotically) stable if and only if the trivial solution x ≡ 0 is

(asymptotically) stable. Therefore, if the trivial solution x ≡ 0 of (1.1) is (asymptotically) stable, then we

call the system (1.1) (asymptotically) stable.

It is well-known, see, for example, [5, 13], that (1.1) is (Lyapunov) stable if all eigenvalues of Ac have

non-positive real part and the eigenvalues on the imaginary axis are semi-simple, and it is asymptotically

stable if all eigenvalues of Ac have negative real part.

A concept closely related to stability is that of (semi-)dissipativity. Writing Ac as the sum of its

Hermitian part AH := (Ac +AH
c )/2 and skew-Hermitian part AS := (Ac −AH

c )/2, we have the following

definition, [8, Definition 4.1.1].

Definition 2. A matrix Ac ∈ Cn×n is called dissipative (resp. semi-dissipative) if the Hermitian

part AH is negative definite (resp. negative semi-definite). For a (semi-)dissipative matrix Ac ∈ Cn×n,
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the associated ODE (1.1) is called (semi-)dissipative Hamiltonian ODE. Alternatively, a matrix B = −Ac ∈
Cn×n is called accretive (or positive semi-dissipative) if its Hermitian part BH is positive semi-definite.

A nice property of a semi-dissipative Hamiltonian ODE (1.1) is that it is (Lyapunov) stable, since for

all solutions of (1.1) we have

(2.3)
d

dt
∥x(t)∥2 = ⟨Acx(t) , x(t)⟩+ ⟨x(t) , Acx(t)⟩ = ⟨x(t) , (AH

c +Ac)x(t)⟩ ≤ 0, t ≥ 0,

that is, the Euclidean norm (which may serve as a Lyapunov function) is non-increasing.

The converse is in general not true, because the Hermitian part of a matrix Ac associated with a stable

system (1.1) does not have to be negative semi-definite, as the following example shows:

Example 3. Consider the matrix

B =

[
3 3

−3 −1

]

so that Ac = −B has eigenvalues λ = −1 ± i
√
5, but the Hermitian part AH is indefinite with eigenvalues

λAH

min = 1 and λAH
max = −3. Hence, the norm of solutions of (1.1) may increase initially at the rate et.

Remark 4 (Logarithmic Norm). Since the flow generated by (1.1) is given by the matrix exponential eAct,

the long-time behavior of the propagator norm ∥eAct∥, or to be precise—its exponential rate—is determined

by the spectral abscissa

(2.4) α(Ac) := max{ℜ(λ) | λ is an eigenvalue of Ac} ,

see, for example, [28].

In contrast, the exponential rate of the short-time behavior of ∥eAct∥ is determined by the logarithmic

norm: The logarithmic norm of a matrix Ac ∈ Cn×n with respect to an inner product is defined as

(2.5) µ(Ac) := sup
∥x∥=1

ℜ(⟨x , Acx⟩) = max
∥x∥=1

ℜ(⟨x , Acx⟩) ,

that is, µ(Ac) is the maximal real part of the numerical range of Ac. Thus, the solutions x(t) of (1.1) satisfy
d
dt∥x(t)∥2 = ⟨x , (AH

c +Ac)x⟩ ≤ 2µ(Ac) ∥x(t)∥2, which implies that

(2.6) ∥x(t)∥ ≤ eµ(Ac) t∥x0∥ for t ≥ 0 .

In particular, a matrix Ac ∈ Cn×n is semi-dissipative if and only if µ(Ac) ≤ 0.

A third related concept is that of hypocoercivity for matrices and the associated hypocoercivity index,

which was introduced originally in the context of linear operators, see [1, 6, 29].

Definition 5 (Definition 2.5 of [2]). A matrix C ∈ Cn×n is called coercive (or strictly accretive) if

its Hermitian part CH is positive definite, and it is called hypocoercive if the spectrum of C lies in the open

right half plane. A matrix Ac ∈ Cn×n is called negative hypocoercive if the spectrum of Ac lies in the open

left half plane.

The relationship between positive semi-dissipativity and hypocoercivity is characterized by the following

result.
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Proposition 6 ([20, Lemma 3.1], [1, Lemma 2.4 with Proposition 1(B2), (B4)]). Let B ∈ Cn×n be

(positive) semi-dissipative. Then, B has an eigenvalue on the imaginary axis if and only if BHv = 0 for

some eigenvector v of BS.

Note that, due to the assumptions, purely imaginary eigenvalues of semi-dissipative matrices are nec-

essarily semi-simple, see also [21, 22]. Therefore, an accretive matrix B is hypocoercive if and only if no

eigenvector of the skew-Hermitian part lies in the kernel of the Hermitian part. The latter condition is well

known in control theory, and equivalent to the following statements:

Lemma 7. Let B ∈ Cn×n be accretive. Then the following are equivalent:

(B1) There exists m ∈ N0 such that

(2.7) rank[BH ,BSBH , . . . , (BS)
mBH ] = n .

(B2) There exists m ∈ N0 such that

(2.8) Tm :=

m∑

j=0

Bj
SBH((BS)

H)j > 0 .

(B3) No eigenvector of BS lies in the kernel of BH .

(B4) rank[λI−BS ,BH ] = n for every λ ∈ C , in particular for every eigenvalue λ of BS.

Moreover, the smallest possible m ∈ N0 in (B1) and (B2) coincide.

Proof. The equivalence of (B1), (B3), and (B4) and its proof are classical, see, for example, [9, Theo-

rem 6.2.1] for real matrices, but its proof extends verbatim to complex matrices; see also [1, Proposition 1].

The equivalence of (B1) and (B2) follows from Lemma 59 in the Appendix, setting D := BH and C := BS .

Remark 8. In Lemma 7, we could have alternatively stated the equivalence of the following conditions

that are equivalent to the corresponding ones in Lemma 7.

(B1’) There exists m ∈ N0 such that

rank[BH ,BBH , . . . ,BmBH ] = n .

(B2’) There exists m ∈ N0 such that
m∑

j=0

BjBH(BH)j > 0 .

(B2”) There exists m ∈ N0 such that

(2.9)

m∑

j=0

(BH)jBHBj > 0 .

(B3’) No eigenvector of B lies in the kernel of BH .

(B4’) rank[λI−B,BH ] = n for every λ ∈ C , in particular for every eigenvalue λ of B.

This is easily seen, since every eigenvector of B that is in the kernel of BH is immediately an eigenvector

of BS ; and conversely, every eigenvector of BS that is in the kernel of BH is also an eigenvector of B, see

[21]. It also follows directly from the staircase forms presented in [3].
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Remark 9. The equivalence of properties stated in Proposition 6, Lemma 7, and Remark 8 show that,

for example, also the coercivity of the associated matrix Tm in (2.8) could have been used to define hypoco-

ercivity for accretive matrices (in the finite-dimensional setting). Only future research of bounded and

unbounded accretive operators on infinite-dimensional Hilbert spaces will decide which is the appropriate

characterization for accretive operators to be hypocoercive, that is, to generate a uniformly exponentially

stable C0-semigroup.

Definition 10 ([2, Definition 3.1]). Suppose that B ∈ Cn×n is accretive and hypocoercive. The hypo-

coercivity index (HC-index) mHC of the matrix B is defined as the smallest integer m ∈ N0 such that (2.8)

holds.

Note that for B ∈ Cn×n (by the Cayley–Hamilton theorem applied to (B1’)) it follows immediately that

the hypocoercivity index (if it exists) is bounded by n− 1. More precisely, for a finite hypocoercivity index

we even have mHC ≤ dimker(BH) ≤ n− 1 (see Remark 4(b) in [1]). Furthermore, a hypocoercive matrix B

is coercive if and only if mHC = 0.

Remark 11. Hypocoercive matrices are often called positively stable, whereas negative hypocoercive ma-

trices are often called stable. Note also that in [3, Definition 3], the HC-index for a semi-dissipative ma-

trix Ac ∈ Cn×n is defined as the HC-index of its accretive counterpart B = −Ac. We do not make use of

this convention here.

Phenomenologically, the HC-index of an accretive matrix B describes the structural complexity of the

intertwining of the Hermitian part BH and skew-Hermitian part BS (see [1] for illustrating examples).

Moreover, for a semi-dissipative Hamiltonian ODE (1.1), the HC-index characterizes the short-time decay

of the spectral norm of the propagator of the associated semigroup S(t) := e−Bt ∈ Cn×n, t ≥ 0.

Proposition 12 ([2, Theorem 2.7]). Let the ODE system (1.1) be semi-dissipative Hamiltonian with

(accretive) matrix B ∈ Cn×n.

(a) The (accretive) matrix B is hypocoercive (with hypocoercivity index mHC ∈ N0) if and only if

(2.10) ∥e−Bt∥2 = 1− cta +O(ta+1) for t ∈ [0, ϵ),

for some a, c, ϵ > 0. In this case, necessarily a = 2mHC + 1.

(b) Consider the ODE (1.1) with ϵ-dependent system matrix B = ϵA + C where ϵ ∈ R. If B = ϵA + C is

hypocoercive for ϵ ̸= 0, then the coefficient c = cϵ in the Taylor expansion of the propagator norm (2.10)

satisfies

(2.11) 0 < c̃2 ϵ
2mHC ≤ c = cϵ ≤ c̃1 ϵ

2mHC ,

for some positive constants c̃1, c̃2 > 0 independent of ϵ ̸= 0.

Remark 13. • For genuine semi-dissipative Hamiltonian ODE systems (1.1) (such that µ(Ac) =

0), the estimate (2.6) based on the logarithmic norm µ(Ac) yields only ∥x(t)∥ ≤ ∥x0∥ for t ≥ 0.

• For semi-dissipative Hamiltonian ODE systems (1.1), (a lower bound for) the characterization of

the HC-index via the short-time behavior of the propagator norm in (2.10) may also be derived

by considering a suitable energy-preserving system, see, for example, [25]. However, the proof of

Proposition 12 in [2] yields quantitative lower and upper bounds for the multiplicative constant c

in (2.10). These explicit bounds allow to conclude the structural result in Proposition 12 b.

In Figure 1, we illustrate the relationship between the different concepts that we have discussed so far.
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B ∈ Cn×n x′ = −Bx is stable

[
9 −3
3 −1

]

λ1 = 0
λ2 = 8

[
1/2 −1
1 −1/2

]

λ± = ±i
√
3
2

B is hypocoercive

x′ = −Bx is asymptotically stable

[
19 −6
6 −1

]

λ1 = 1
λ2 = 17

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

BH ≥ 0

[
0 0
0 0

][
0 −1
1 0

]

λ± = ±i
−B is semi-dissipative

BH > 0
B is coercive

[
1 0
0 1

]

−B is dissipative

Fig. 1. Illustration of the relationship between sets of matrices B ∈ Cn×n which are (hypo)coercive (circular discs), have

a positive semi-definite Hermitian part (region within smaller ellipse), and those for which the solutions of the ODE system

x′ = −Bx are stable (region within bigger ellipse), respectively.

Remark 14. As one of the main applications of the analysis of the three discussed concepts is the study

of (semi-)dissipative Hamiltonian systems, a natural concept that could be added to the description of the

dynamical system is that of a Hamiltonian or energy function. In the abstract setting that we have discussed

so far, the natural energy function is the Euclidean norm of the solution. Further energy functions will be

discussed below.

Remark 15 (logarithmically optimal norms). For a Hermitian matrix Ac ∈ Cn×n, its logarithmic norm

µ(Ac) and its spectral abscissa α(Ac) are equal, µ(Ac) = α(Ac). In general, however, only the inequality

α(Ac) ≤ µ(Ac) holds, see, for example, [26, Lemma 1c]. A norm is logarithmically optimal with respect to

a matrix Ac if its spectral abscissa α(Ac) and logarithmic norm µ(Ac) are equal, that is, α(Ac) = µ(Ac).

Thus, the Euclidean norm is logarithmically optimal for all Hermitian matrices.

To analyze the relationship between the different concepts further, in the next section we first discuss

the question by which transformations of (1.1) we can switch between the different concepts and which

transformations leave the different properties invariant.

2.1. Linear transformations that preserve stability, semi-dissipativity, and hypocoercivity.

In this section, we discuss the classes of linear transformations that preserve the concepts of stability, semi-

dissipativity, and hypocoercivity, and also those that map between the different concepts, see, for example,

[15, 16] for some references. The natural classes of linear transformations that preserve the different properties
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and the HC-index (in case of accretive matrices) are conjugate transposition B → BH, due to Definition 10

and Lemma 7; unitary congruence transformations B → UBUH for a unitary matrix U, due to Definition 10

and Lemma 7; scaling B → tB for any t ∈ R+, due to Definition 10 and Lemma 7; and, as we will show in

Lemma 20 below, the inversion of accretive hypocoercive matrices.

It is a classical result, see, for example, [5], how to construct a similarity transformation of a “stable”

matrix B such that the transformed matrix is accretive: The origin x ≡ 0 is a stable state of system (1.1)

if and only if there exists a positive definite matrix P = PH ∈ Cn×n that satisfies the Lyapunov matrix

inequality

(2.12) BHP+PB ≥ 0 .

A congruence transformation with the Hermitian matrix P−1/2, that is, the inverse of the positive definite

square root of P, yields

(2.13) 0 ≤ P−1/2(BHP+PB)P−1/2 = P−1/2BHP1/2 +P1/2BP−1/2 = 2
(
P1/2BP−1/2

)
H
.

Hence, the matrix

(2.14) B̂ := P1/2BP−1/2

is accretive. Moreover, the change of basis x̃(t) := P1/2x(t) transforms (1.1) into a semi-dissipative Hamil-

tonian ODE system of the form

(2.15) x̃′(t) = −
(
P1/2BP−1/2

)
x̃(t) = −B̂ x̃(t) .

Although similarity transformations B → SBS−1 for invertible matrices S ∈ Cn×n preserve the spec-

trum (and hence (negative) hypocoercivity), they may change the HC-index of accretive matrices:

Example 16. The matrix

(2.16) B :=

[
1 −1

1 0

]

is accretive and hypocoercive with mHC = 1 (having eigenvalues λ± = (1 ± i
√
3)/2). The positive definite

Hermitian matrix P = [ 2 −1
−1 2 ] satisfies the continuous-time Lyapunov equation BHP+PB = 2ℜ(λ)P = P.

The similarity transformation (2.14) yields a coercive matrix

B̂ = P1/2BP−1/2 = 1
2

[
1 −

√
3√

3 1

]
,

hence mHC(B̂) = 0.

In a similar way, non-unitary congruence transformations B → QBQH for some nonsingular matrix Q ∈
Cn×n may change the HC-index as the following example demonstrates.

Example 17. Consider the accretive matrix

B =

[
i 0

0 1

]
.
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The matrix B has an eigenvalue i, hence it is not hypocoercive. A congruence transformation with the

(non-unitary) matrix

Q =

[
1 0

1 1

]
yields QBQH =

[
i i

i 1 + i

]
=

[
0 0

0 1

]
+ i

[
1 1

1 1

]
,

which is again accretive (due to Sylvester’s inertia theorem, see, for example, [10]). However, the matrix

QBQH has eigenvalues 1
2 + i (1±

√
3
2 ) and is hypocoercive with HC-index mHC = 1.

As we have already discussed, changing the HC-index also changes the short-time behavior of the solu-

tions of the dynamical system (1.1).

Example 18. Consider the matrix B in Example 3. In agreement with Proposition 12, (the norm

of) solutions of the ODE (1.1) may have horizontal tangents (at any point t0 ≥ 0) with local behavior

∥x(t)∥ = ∥x(t0)∥ − c(t− t0)
3 +O((t− t0)

4) for some c > 0. Proceeding as in [6, Lemma 4.3], the similarity

transformation (2.14) with

P =

[
3 2

2 3

]
yields a coercive matrix B̂ = P1/2BP−1/2 =

[
1

√
5

−
√
5 1

]
.

Accordingly, (the norm of) solutions of the associated ODE (2.15) cannot have horizontal tangents (see

Figure 2).

Remark 19. We note that solutions P to the Lyapunov inequality (2.12) are typically not unique, and

one can use this freedom to determine solutions that optimize certain robustness measures like the distance

to instability, see, for example, [7, 12, 23].

It is an important observation that semi-dissipativity, hypocoercivity, and the HC-index stay invariant

when the inverse of a matrix is taken:

Lemma 20. Let B ∈ Cn×n.

1. If B is hypocoercive, then B is invertible and B−1 is hypocoercive.

2. If B is accretive and invertible, then it follows that

a. If v ∈ ker(BH) ⊂ Cn then Bv ∈ ker((B−1)H).

b. B−1 is accretive.

c. dimker(BH) = dimker((B−1)H).

3. If B is accretive and hypocoercive, then B and B−1 have the same HC-index.

Proof. 1. A matrix B is hypocoercive if all eigenvalues have positive real-part. Hence, the matrix B is

invertible, and since the eigenvalues of the inverse of B−1 are the inverses of the eigenvalues of B, they have

positive real-part and B−1 is hypocoercive.

2a. Writing B as B = BH +BS , it follows that if v ∈ ker(BH) then Bv = BSv = −BHv. Thus,

(2.17) (B−1)H(Bv) = 1
2

(
B−1(Bv) + (B−1)H(Bv)

)
= 1

2

(
v − (BH)−1(BHv)

)
= 0 .

2b. To prove that B−1 is again accretive, we show the following identity: For all vectors w ∈ Cn, define

v := B−1w, such that

⟨w , (B−1)Hw⟩ = 1
2 ⟨w , (B−1 + (B−1)H)w⟩ = 1

2 ⟨Bv , (B−1 +B−H)Bv⟩
= 1

2 ⟨v , BH(B−1 +B−H)Bv⟩ = 1
2 ⟨v , (BH +B)v⟩ = ⟨v , BHv⟩ ≥ 0 ,

(2.18)
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0 1 2 3 4 5 6 7 8 9 10

t

0

0.5

1

1.5

2

2.5

x
(t

)

||x(t)||
2

||x(t)||
P

Fig. 2. For a solution x(t) of the ODE (1.1) with B =

[
1 −1

1 0

]
, the Euclidean norm ∥x(t)∥2 (blue line) and the weighted

Euclidean norm ∥x(t)∥P with P =

[
2 −1

−1 2

]
(orange line) are plotted. The norm of the solution ∥x(t)∥2 has horizontal

tangents (at some point t0), whereas the weighted norm ∥x(t)∥P does not have horizontal tangents (due to our choice of P).

since B is accretive. Hence, B−1 is accretive as well.

2c. Due to part 2a. and a similar statement with the roles of B and B−1 exchanged, B is a bijection

from ker(BH) to ker((B−1)H).

3. By assumption, the matrix B has a finite HC-index mHC which is the smallest integer such that (2.7)

holds or equivalently, due to (2.9), that

mHC⋂

j=0

ker
(
BHBj

)
= {0}

holds, see also [1, Remark 4]. Hence, there exists a vector v0 ̸= 0 such that

(2.19) Bjv0 ∈ ker(BH) , j ∈ {0, . . . ,mHC − 1} and BmHCv0 /∈ ker(BH) .
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Due to 2b., it follows that

(2.20) Bj+1v0 ∈ ker((B−1)H) , j ∈ {0, . . . ,mHC − 1} and BmHC+1v0 /∈ ker((B−1)H) .

The matrix B−1 is hypocoercive and accretive with finite HC-index m̃HC := mHC(B
−1) and hence, there

exists a vector w0 ̸= 0 such that

(2.21) (B−1)jw0 ∈ ker((B−1)H) , j ∈ {0, . . . , m̃HC − 1} and (B−1)m̃HCw0 /∈ ker((B−1)H) .

To show thatmHC = mHC(B) = mHC(B
−1) = m̃HC , suppose that v0 is a vector in Cn satisfying (2.20) with

mHC = mHC(B). Then w0 := BmHCv0 satisfies w0 ̸= 0, hence, (2.21) implies that mHC(B
−1) ≥ mHC(B).

Exchanging the roles of B and B−1 shows that mHC(B
−1) ≤ mHC(B). Altogether, mHC(B) = mHC(B

−1)

holds.

In this section, we have discussed linear transformations and their effects on the concepts of hypocoer-

civity, stability, and semi-dissipativity. In the next section, we discuss how the (concept of the) HC-index

for accretive matrices can be transferred to general matrices.

2.2. Shifted hypocoercivity index for general matrices. A possibility to turn a general system

(1.1) into a semi-dissipative Hamiltonian system is to shift the spectrum. Consider the transformation

(2.22) v(t) := exp(λBH

mint)x(t) ,

where λBH

min is the minimal (real) eigenvalue of the Hermitian matrix BH . Then, v(t) satisfies the ODE

v′(t) = − (B− λBH

minI)︸ ︷︷ ︸
=:B̃

v(t) ,

where the Hermitian part B̃H of B̃ = B−λBH

minI is indeed positive semi-definite. Of course, the hypocoercivity

index of matrix B̃ is typically modified by the shift parameter λ.

Remark 21. The transformation (2.22) can be motivated as follows: The propagator for ODE (1.1) with

Ac = −B satisfies estimate (2.6) based on the logarithmic norm µ(Ac). Therefore, for t ≥ 0,

1 ≥ ∥eAct∥e−µ(Ac) t = ∥e(Ac−µ(Ac)I) t∥ = ∥e−(B−λ
BH
minI) t∥,

since the logarithmic norm µ(Ac) can also be characterized as

µ(Ac) := sup
∥x∥=1

ℜ(⟨x , Acx⟩) = sup
∥x∥=1

⟨x , 1
2 (A

H
c +Ac)x⟩ = λAH

max = −λBH

min ,

where λAH
max is the maximal (real) eigenvalue of the Hermitian matrix AH .

In view of this shifting property, for general linear time-invariant ODE systems (1.1) with matrix B ∈
Cn×n, we will define a shifted hypocoercivity index which characterizes “the algebraic factor“ in the decay

of its propagator norm for short time, see Corollary 26 below. As a first step, we decompose the matrix

B ∈ Cn×n.

Lemma 22. Let B ∈ Cn×n with Hermitian part BH , and let λBH

min be the minimal (real) eigenvalue of

the Hermitian matrix BH (which could be negative or non-negative). Then, the matrix
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(2.23) B̃ := B− λBH

minI

is accretive and, if B̃ is hypocoercive, has an HC-index mHC(B̃) greater than 0.

In particular, B̃ is hypocoercive if and only if no eigenvector of BH associated with λBH

min is an eigenvector

of the skew-Hermitian part BS of B.

Proof. If we decompose B = BH + BS into its Hermitian part BH and its skew-Hermitian part BS ,

then BH has only real eigenvalues. Consider the matrix B̃ := B− λI for λ ∈ R. Then λ = λBH

min is the only

value for which the Hermitian part of B̃ is positive semi-definite and singular (hence, if B̃ is hypocoercive

then mHC(B̃) > 0).

The hypocoercivity condition for B̃ follows from Lemma 7, (B3): Matrix B̃ fails to be hypocoercive if and

only if an eigenvector v of BS (which is not changed by the shift) is in the kernel of (B̃+B̃H)/2 = BH−λBH

minI,

or equivalently v is an eigenvector of BH to the eigenvalue λBH

min.

Definition 23. Let B ∈ Cn×n with Hermitian part BH , and let λBH

min be the minimal (real) eigenvalue of

the Hermitian matrix BH . If the accretive matrix B̃ := B−λBH

minI is hypocoercive, then its HC-index mHC ∈ N
is called the shifted hypocoercivity index (SHC-index) mSHC of B.

By definition, an accretive matrix has a (finite) HC-index mHC if and only if it is positively stable, see

also [2, 3]. However, a general (constant) matrix can have a finite SHC-index mSHC without being positively

stable, see the following example and Figure 1.

Example 24. Consider the matrix

B :=

[
9 −3

3 −1

]

which has the eigenvalues λ1 = 0 and λ2 = 8 and hence is not positively stable. Its Hermitian part

BH = diag(9,−1) has the minimal eigenvalue λBH

min = −1. Then, in (2.23) we have

B̃ = B− λBH

minI =

[
10 −3

3 0

]

which has eigenvalues 1 and 9. Therefore, mSHC(B) = mHC(B̃) = 1.

We have the following characterization for accretive matrices to have a (finite) SHC-index.

Corollary 25. Let J,R ∈ Cn×n satisfy R = RH and J = −JH and let λmin be the minimal eigenvalue

of R. Define R̃ := R− λminI. Then the following conditions are equivalent:

(B1) There exists m ∈ N0 such that

(2.24) rank([R,JR, . . . ,JmR]− λmin[I,J, . . . ,J
m]) = n .

(B2) There exists m ∈ N0 such that

(2.25)

m∑

j=0

JjR(JH)j > λmin

m∑

j=0

Jj(JH)j .

(B3) No eigenvector of J is an eigenvector to λmin of R.

(B4) rank[λI− J,R− λminI] = n for every λ ∈ C, in particular for every eigenvalue λ of J.

Moreover, the smallest possible m ∈ N0 in (B1) and (B2) coincide.
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Proof. The Hermitian matrix R̃ = R − λminI is positive semi-definite. Hence, the statement (which is

stated for the original matrix R using R̃ = R− λminI) follows from Lemma 7.

In the following result, we show that we can use the SHC-index to characterize the short-time behavior

of the propagator norm for general linear time-invariant systems of ODEs. For this, we denote the solution

semigroup pertaining to (1.1) by S(t) := e−Bt ∈ Cn×n, t ≥ 0.

Corollary 26. Consider an ODE (1.1) with system matrix B ∈ Cn×n. If B has a finite SHC-

index mSHC(B), then

(2.26) ∥e−Bt∥2 = e−λ
BH
min t

(
1− cta +O(ta+1)

)
for t → 0+ ,

where λBH

min is the smallest eigenvalue of the Hermitian matrix BH , a = 2mSHC(B) + 1 (≥ 3), and c > 0.

Proof. Write B as in (2.23) and compute the HC-index mHC(B̃) (≥ 1) of the accretive matrix B̃ =

B− λBH

minI. Using the decomposition (2.23) yields

(2.27) e−Bt = e−(λ
BH
minI+B̃)t = e−λ

BH
min t e−B̃t , such that ∥e−Bt∥2 = e−λ

BH
min t ∥e−B̃t∥2 .

If an accretive matrix, B̃ is hypocoercive, that is, having a finite HC-index mHC(B̃) (or equivalently B has

a finite SHC-index mSHC(B)) then (2.26) follows from Proposition 12.

In this section, we have gathered and extended results about stable, hypocoercive, and semi-dissipative

matrices. These results have analoga for discrete-time systems that are studied in the next section.

3. Stability, semi-contractivity, and hypocontractivity for discrete-time systems. In this

section, we study the analogous concepts for linear discrete-time systems

(3.28) xk+1 = Adxk , k ∈ N0 ,

for a given matrix Ad ∈ Cn×n.

Remark 27. While the stability analysis in discrete-time systems is well studied in linear algebra and

operator theory [19] using spectral properties and discrete-time Lyapunov equations, we proceed by studying

hypocontractivity—the analogon to the concept of hypocoercivity in continuous time—and relating to these

classical concepts.

Definition 28. The trivial solution x ≡ 0 of the discrete-time system (3.28) is called stable if all

solutions of (3.28) are bounded for k ∈ N0, and it is called asymptotically stable if it is stable and all

solutions of (3.28) converge to 0 for k → ∞.

For linear systems (3.28), a solution is (asymptotically) stable if and only if the trivial solution x ≡ 0 is

(asymptotically) stable. Therefore, if the trivial solution x ≡ 0 of (3.28) is (asymptotically) stable, then the

linear system (3.28) is called (asymptotically) stable.

It is well-known that (3.28) is stable if all eigenvalues of Ad have modulus less or equal than one and

the eigenvalues of modulus one are semi-simple (see [13, Theorem 3.3.11]); and it is asymptotically stable if

all eigenvalues of Ad have modulus strictly less than one.

Definition 29. Let Ad ∈ Cn×n have eigenvalues λj, j = 1, . . . , n. The spectral radius of Ad is defined

as ρ(Ad) := max{|λ1| , . . . , |λn|}, that is, as the largest absolute value of its eigenvalues.
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Hence, a discrete-time system (3.28) is asymptotically stable if the spectral radius of Ad is strictly less

than one, ρ(Ad) < 1.

An alternative characterization of (asymptotic) stability can be given via the discrete-time Lyapunov

( or Stein) equation: System (3.28) is asymptotically stable if and only if, for all positive definite Hermitian

matrices Q

(3.29) AH
dPAd −P = −Q

has a solution P = PH > 0, see [13, Theorem 3.3.49] which is formally given by

(3.30) P =

∞∑

j=0

(AH
d )

jQAj
d ,

see [13, (89b) in Section 3.3.5]. In the discrete-time case, the concept of hypocoercivity is replaced by that

of hypocontractivity, which we introduce in the next subsection.

3.1. Hypocontractive matrices and the hypocontractivity index. For Ad ∈ Cn×n, the spectral

norm satisfies

(3.31) ∥Ad∥2 =
√

∥AH
dAd∥2 =

√
λmax

(
AH

dAd

)
= σmax(Ad) ,

where λmax

(
AH

dAd

)
denotes the largest eigenvalue of the positive semi-definite Hermitian matrix AH

dAd and

σmax(Ad) is the largest singular value of Ad. Then, the estimate ∥An
d∥2 ≤ ∥Ad∥n2 for n ∈ N yields that

σmax(Ad) ≤ 1 is a sufficient condition for the stability of (3.28). However, σmax(Ad) ≤ 1 is not a necessary

condition for (3.28) to be stable.

Example 30. The eigenvalues of

(3.32) Ad(α) = α

[
1 −2

0 −1

]
, α ∈ R ,

are ±α. Hence, the discrete-time system (3.28) with matrix Ad in (3.32) is stable if and only if α ∈ [−1, 1].

But the matrix

(3.33) AH
dAd = α2

[
1 −2

−2 5

]

has positive eigenvalues µ± = α2(3 ±
√
8) and singular values σ± =

√
µ± with σmax(Ad) = σ+. Thus,

σmax(Ad) ≤ 1 holds if |α| ≤ (3 +
√
8)−1/2 ≤ 1/2 which is strictly less than one. Hence in this example, the

condition σmax(Ad) ≤ 1 is sufficient but not necessary to ensure the stability of (3.28).

In the following, we will need a result relating singular values and eigenvalues.

Proposition 31. Let Ad ∈ Cn×n have singular values σ1 ≥ . . . ≥ σn ≥ 0 (such that σmax(Ad) = σ1)

and eigenvalues λj, j = 1, . . . , n being ordered as |λ1| ≥ . . . ≥ |λn|. Then, |λ1| ≤ σ1. Moreover, if Ad is

nonsingular, then |λn| ≥ σn > 0.

Proof. The statements follow from the bounds in [14, Theorem 5.6.9].

We then have the following discrete-time analogon of semi-dissipativity.
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Definition 32 ([8, Definition 4.1.2]). Let Ad ∈ Cn×n and let σmax(Ad) be the largest singular value

(the spectral norm) of Ad. We call Ad contractive if σmax(Ad) < 1, and we call Ad semi-contractive if

σmax(A) ≤ 1.

Note that sometimes Ad is called contractive if σmax(Ad) ≤ 1, and Ad is called strictly contractive if

σmax(Ad) < 1, see, for example, [14, p. 493]. Other related notions are (semi-)convergent matrices and

power-bounded matrices, see [14, p. 180].

In the following, we consider the class of semi-contractive matrices Ad and present a characterization

when (3.28) is (asymptotically) stable. For this, we need a concept that corresponds to hypocoercivity in

the continuous-time case.

Definition 33. A matrix Ad ∈ Cn×n is called hypocontractive if all eigenvalues of Ad have modulus

strictly less than one.

Consequently, a discrete-time system (3.28) is asymptotically stable if and only if the system matrix Ad

is hypocontractive. We can also characterize those semi-contractive matrices A which are actually hypocon-

tractive:

Proposition 34. Let Ad ∈ Cn×n be semi-contractive. Then, Ad has an eigenvalue of modulus one if

and only if some eigenvector v of Ad satisfies v ∈ ker(I−AH
dAd).

Proof. Since Ad is semi-contractive, the Hermitian matrix I−AH
dAd is positive semi-definite. Moreover,

if Ad has an eigenvalue λ of modulus |λ| = 1 with eigenvector v ̸= 0, then

0 ≤ ⟨v , (I−AH
dAd)v⟩ = ∥v∥2 − ∥Adv∥2 = ∥v∥2(1− |λ|2) = 0 .

Therefore, v is in the kernel of the positive semi-definite Hermitian matrix I−AH
dAd.

Conversely, if some eigenvector v of Ad (associated to an eigenvalue λ) satisfies v ∈ ker(I−AH
dAd), then

0 = ⟨v , (I−AH
dAd)v⟩ = ∥v∥2 − ∥Adv∥2 = ∥v∥2(1− |λ|2) ,

and hence, the eigenvalue λ has modulus one.

Remark 35. In the operator theory setting, the matrix (I−AH
dAd)

1/2 is often called the defect operator

of the semi-contractive Ad and the closure of its image is the defect space with its dimension being called

the defect index d(Ad). The defect operator and its index are a measure for the distance of an operator

from being unitary. See, for example, [27].

We again have an equivalent characterization in terms of properties from control theory:

Lemma 36. Let Ad ∈ Cn×n be semi-contractive. Then the following conditions are equivalent:

(D1) There exists m ∈ N0 such that

(3.34) rank[(I−AH
dAd),A

H
d (I−AH

dAd), . . . , (A
H
d )

m(I−AH
dAd)] = n .

(D2) There exists m ∈ N0 such that

(3.35) Dm :=

m∑

j=0

(AH
d )

j(I−AH
dAd)A

j
d > 0 .
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(D3) No eigenvector of Ad lies in the kernel of (I−AH
dAd).

(D4) rank[λI−AH
d , I−AH

dAd] = n for every λ ∈ C, in particular for every eigenvalue λ of AH
d .

Moreover, the smallest possible m ∈ N0 in (D1) and (D2) coincide.

Proof. Like Lemma 7, this result follows from Theorem 6.2.1 of [9] and Lemma 59 in the Appendix.

Remark 37. In control theory, conditions (D1), (D3), and (D4) in Lemma 36 are equivalent characteri-

zations of the controllability of the pair (AH
d , I−AH

dAd), or the dynamical system

xk+1 = AH
dxk + (I−AH

dAd)uk.

There is always also the dual concept of observability which in this case would correspond to the controllability

of (Ad, I −AdA
H
d ). A dual result to Lemma 36 can then be formulated with this pair. Based on this pair,

in [25] a similar result has been derived (in different terminology). A similar result for the continuous-time

case follows from [24].

If we compare Lemma 36 with Lemma 7, then we need to substituteBS withAH
d , andBH with I−AH

dAd,

respectively. Using Lemma 36 (D2), we then define the hypocontractivity index.

Definition 38. For semi-contractive matrices Ad ∈ Cn×n, we define the hypocontractivity index or

discrete HC-index (dHC-index) mdHC as the smallest integer m ∈ N0 (if it exists) such that (3.35) holds.

Remark 39. The hypocontractivity index is sometimes also called the norm-one index, see [11], where

it is shown that this index is finite if and only if the spectral radius of Ad is strictly smaller than one.

Clearly, a semi-contractive matrix Ad is contractive if and only if mdHC = 0. Since (3.35) is a tele-

scopic sum, we have that Dm = I − (AH
d )

m+1Am+1
d and thus if a semi-contractive matrix Ad ∈ Cn×n is

hypocontractive with index mdHC ∈ N0, then AmdHC+1
d is contractive. Conversely, if a semi-contractive

matrix Ad ∈ Cn×n satisfies that Am
d is contractive for some m ∈ N, then Ad is hypocontractive with index

mdHC ≤ m− 1.

The following result may be considered as a discrete counterpart of the short-time decay behavior from

Proposition 12.

Theorem 40. Let Ad ∈ Cn×n be semi-contractive and hypocontractive. Its (finite) hypocontractivity

index is mdHC ∈ N0 if and only if

(3.36) ∥Aj
d∥2 = 1 for all j = 1, . . . ,mdHC , and ∥AmdHC+1

d ∥2 < 1 .

Proof. The spectral norm ∥C∥2 of a matrix C ∈ Cn×n, that is, the operator norm induced by the

Euclidean norm on Cn, is given by ∥C∥2 = maxw∈Cn: ∥w∥=1 ∥Cw∥2. If a matrix Ad is semi-contractive,

then the estimates ∥Ad∥2 ≤ 1 and ∥Aj
d∥2 ≤ ∥Ad∥j2 ≤ 1 hold for all j ∈ N. Thus, for vectors w ∈ Cn with

∥w∥2 = 1, we have

⟨w , (AH
d )

jAj
dw⟩ = ⟨Aj

dw , Aj
dw⟩ = ∥Aj

dw∥22 ≤ 1 = ⟨w , w⟩ ,

such that 0 ≤ ⟨w , (I− (AH
d )

jAj
d)w⟩. Therefore, for all m ∈ N0,

Dm =

m∑

j=0

(AH
d )

j(I−AH
dAd)A

j
d = I− (AH

d )
m+1Am+1

d ≥ 0
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Ad ∈ Cn×n

[
1 2
0 1

]

λ± = 1

xk+1 = Adxk is stable

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

σ1 = 3
2 +

√
5
2

Ad is hypocontractive

xk+1 = Adxk is asymptotically stable

[
0 2
0 0

]

λ± = 0
σ1 = 2

[
0 1
0 0

]

λ± = 0
σ1 = 1

AH
dAd ≤ I

[
1 0
0 1

]

Ad is semi-contractive

AH
dAd < I

[
0 0
0 0

]

Ad is contractive

Fig. 3. Relationship between sets of matrices Ad ∈ Cn×n which are (hypo)contractive (circular discs), semi-contractive

(region within smaller ellipse), and those for which the discrete-time system xk+1 = Adxk is stable (region within bigger

ellipse), respectively.

and hence, the semi-contractive matrix Ad has (finite) hypocontractivity index mdHC if and only if (3.36)

holds.

We summarize the relationship between the different concepts discussed in this section in Figure 3.

3.2. Polar decomposition. In [3], a computationally feasible procedure has been presented to check

the conditions of Lemma 7 in the continuous-time case via a staircase form under unitary congruence trans-

formations. A similar procedure can be derived in the discrete-time case. It is based on polar decomposition,

see, for example, [14, Theorem 7.3.1], which is the discrete-time analogon of the additive splitting of a matrix

into its Hermitian and skew-Hermitian part:

Proposition 41 (Polar decomposition). Let Ad ∈ Cn×n.

(a) There exist positive semi-definite Hermitian matrices Pd,Qd ∈ Cn×n and a unitary matrix Ud ∈
Cn×n such that

(3.37) Ad = PdUd = UdQd .

The factors Pd, Qd are uniquely determined as Pd = (AdA
H
d )

1/2 and Qd = (AH
dAd)

1/2. If Ad is

nonsingular, then Ud = P−1
d Ad = AdQ

−1
d is uniquely determined (as well).

(b) If Ad is real, then the factors Pd, Qd, and Ud may be taken to be real.
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Consider a stable discrete-time system (3.28) with matrix Ad. Hence, all eigenvalues of matrix Ad have

modulus less or equal than one. Then, the polar decomposition (3.37) yields that the (largest) singular

values of Ad, Pd, and Qd are the same, since AdA
H
d = PdP

H
d and AH

dAd = QH
dQd.

An immediate consequence is that a matrix Ad ∈ Cn×n with polar decomposition (3.37) is semi-

contractive if and only if the spectra of Pd and Qd (which coincide) are contained in [0, 1]. We can rephrase

the statement of Proposition 34 as follows:

Proposition 42. Let Ad ∈ Cn×n be semi-contractive with polar decomposition Ad = UdQd and Qd =

(AH
dAd)

1/2. Then, Ad has an eigenvalue of modulus one (and hence Ad is not hypocontractive) if and only

if some eigenvector v of Ud satisfies v ∈ ker(I−Qd).

Proof. For the forward direction, we assume that the eigenvalue equationAdv = λv holds for some λ with

|λ| = 1 and v ∈ Cn \ {0}. Then, Proposition 34 implies that v ∈ ker(I−AH
dAd), that is, 0 = (I−AH

dAd)v =

(I+Qd)(I−Qd)v which holds if and only if 0 = (I−Qd)v, such that 0 = Ud(I−Qd)v = Udv− λv. Hence,

v ∈ ker(I−Qd) is an eigenvector of Ud.

Conversely, let w be an eigenvector of Ud, that is, Udw = λw with |λ| = 1, that satisfies (I−Qd)w = 0.

Then 0 = Ud(I−Qd)w = λw −Adw.

Note that, for semi-contractive matrices Ad, eigenvalues with modulus one are necessarily semi-simple.

Therefore, a semi-contractive matrix Ad (with polar decomposition Ad = UdQd) is hypocontractive if and

only if no eigenvector of Ad lies in the kernel of the positive semi-definite Hermitian matrix I−Qd.

Using this relationship, we formulate an analogous result to Lemma 36, in terms of matrices appearing

in polar decompositions. It follows again from Theorem 6.2.1 of [9] and Lemma 59:

Lemma 43. Let Ad ∈ Cn×n be semi-contractive with polar decomposition Ad = UdQd (that is, with Ud

unitary, Qd semi-contractive Hermitian, and Q2
d = AH

dAd). Then the following conditions are equivalent:

(D1’) There exists m ∈ N0 such that

(3.38) rank[(I−Q2
d),U

H
d (I−Q2

d), . . . , (U
H
d )

m(I−Q2
d)] = n .

(D2’) There exists m ∈ N0 such that

(3.39) D̂m :=

m∑

j=0

(UH
d )

j(I−Q2
d)U

j
d > 0 .

(D3’) No eigenvector of Ud lies in the kernel of I−Q2
d.

(D4’) rank[λI−UH
d , I−Q2

d] = n for every λ ∈ C, in particular for every eigenvalue λ of UH
d .

Moreover, the smallest possible m ∈ N0 in (D1’) and (D2’) coincide.

Note that (D3) and (D3’) are equivalent, due to Proposition 42 and since ker(I − Qd) = ker(I − Q2
d).

Consequently, all conditions of the Lemmata 36 and 43 are equivalent and the smallest possible values of m

coincide.

3.3. Scaled hypocontractivity index. The analogon to the shifted hypocoercivity index is obtained

by scaling.
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Lemma 44. Let Ad ∈ Cn×n be a nonzero matrix, and let σmax(Ad) be the maximal singular value of Ad.

Then, the matrix

(3.40) Ãd := (σmax(Ad))
−1Ad

is semi-contractive and, if Ãd is hypocontractive, has a discrete HC-index mdHC(Ãd) greater than 0.

Furthermore, Ãd is hypocontractive if and only if the matrices in the polar decomposition of Ad = UdQd

satisfy that no eigenvector of Qd = (AH
dAd)

1/2 associated with the eigenvalue σmax(Ad) is an eigenvector of

Ud.

Proof. Consider the matrix Ãd(σ) := σ−1Ad for σ > 0. Then σ = σmax(Ad) is the only value such that

the largest singular value of Ãd(σ) is one, since

σmax(Ãd) =

√
λmax(Ã

H
d Ãd) =

√
λmax(A

H
dAd)/σmax(Ad) = 1 .

Consequently, if the scaled matrix Ãd is hypocontractive, then its discrete HC-index mdHC(Ãd) is greater

than 0.

To prove the final statement, we consider the polar decomposition of Ad in the form Ad = UdQd. Then,

Ãd = (σmax(Ad))
−1Ad has the polar decomposition Ãd = UdQ̃d with the same unitary matrix Ud, and

Q̃d := (σmax(Ad))
−1Qd. Due to Proposition 42, Ãd is hypocontractive if and only if no eigenvector v of Ud

is in the kernel of I− Q̃d. The latter is equivalent to v being an eigenvector of Q̃d to the eigenvalue one, or

v being an eigenvector of Qd to the eigenvalue σmax(Ad).

Definition 45. Consider a nonzero matrix Ad ∈ Cn×n, and let σmax(Ad) be the maximal (positive)

singular value of Ad. If the semi-contractive matrix Ãd := (σmax(Ad))
−1Ad is hypocontractive with discrete

HC-index mdHC(Ãd), then we define the scaled hypocontractivity index or discrete SHC-index (dSHC-

index) mdSHC of Ad as mdSHC(Ad) := mdHC(Ãd).

In analogy to Theorem 40, we then have the following characterization when Ãd has a finite scaled

hypocontractivity index.

Theorem 46. Let Ad ∈ Cn×n be nonzero, and let σmax(Ad) be the maximal (positive) singular value

of Ad. If Ad has a finite discrete SHC-index mdSHC , then

(3.41) ∥Aj
d∥2 = (σmax(Ad))

j for all j = 1, . . . ,mdSHC , and ∥AmdSHC+1
d ∥2 < (σmax(Ad))

mdSHC+1 .

Proof. We scale Ad as in (3.40) and compute the discrete HC-index mdHC(Ãd) (≥ 1) of the semi-

contractive matrix Ãd = (σmax(Ad))
−1Ad so that mdSHC(Ad) := mdHC(Ãd). Using the scaling (3.40)

yields

(3.42) ∥Aj
d∥2 =

∥∥(σmax(Ad)Ãd

)j∥∥
2
=

(
σmax(Ad)

)j∥Ãj
d∥2 for all j ∈ N.

If the semi-contractive matrix Ãd has a (finite) discrete HC-indexmdHC(Ãd) (or equivalently the discrete

SHC-index mdSHC(Ad) of Ad is finite), then (3.41) follows from Theorem 40.

We summarize the analogy between discrete-time and continuous-time systems in Table 1.

In this section, we have given characterizations for the concepts of stability, semi-contractivity, and

hypocontractivity for linear discrete-time systems. In the next section, we relate the continuous-time and

discrete-time concepts.
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Table 1

Relation between concepts for continuous-time and discrete-time systems, see also Figures 1 and 3. Λ(A) denotes here

the spectrum of a matrix A ∈ Cn×n.

Properties Continuous-time system Discrete-time system

Evolution x′ = Acx for t ≥ 0 xk+1 = Adxk for k ∈ N0

Condition for ℜ(λ) < 0 for all λ ∈ Λ(Ac), |λ| < 1 for all λ ∈ Λ(Ad),

asymptotic stability that is, negative hypocoercive that is, hypocontractive

Matrix decomposition Ac = AS +AH polar: Ad = PdUd = UdQd

Sufficient stability AH ≤ 0, σmax(Ad) ≤ 1 ⇔ Λ(Qd) ⊂ [0, 1],

condition that is, semi-dissipative that is, semi-contractive

Kalman rank condition rank[AH , . . . , ((AS)
H)mAH ] rank[(I−Q2

d), . . . , (U
H
d )

m(I−Q2
d)]

= n = n

HC-condition

m∑

j=0

((AS)
H)j(−AH)Aj

S > 0

m∑

j=0

(UH
d )

j(I−Q2
d)U

j
d > 0

Eigenvector condition no EV of AS in ker(AH) no EV of Ud in ker(I−Q2
d)

4. Transformation between discrete-time and continuous-time systems. We have seen the

close analogy between the results for the continuous-time and discrete-time case. In this section, we recall that

the typical bilinear transformations between continuous-time and discrete-time systems such as the Cayley

transformation (in fact of −Ac) relate hypocoercive with hypocontractive systems (see, for example, [13]),

and semi-dissipative with semi-contractive systems (see, for example, [27]). Moreover, we show that the

Cayley transformation (of −Ac) directly relates the hypocoercivity and hypocontractivity indices.

Lemma 47. Let Ac ∈ Cn×n be a matrix such that (1.1) is (Lyapunov) stable. Then, the Cayley transform

(4.43) Ad := (I+Ac)(I−Ac)
−1

is well-defined and the following properties hold:

(i) If Ac is negative hypocoercive, then Ad is hypocontractive.

(ii) If Ac is semi-dissipative, then Ad is semi-contractive. Let AH := 1
2 (Ac+AH

c ), then the matrix (I−
Ac) is a bijection from ker(AH) to ker(I−AH

dAd). Consequently, dimker(AH) = dimker(I−AH
dAd).

Proof. If the continuous-time system (1.1) with system matrix Ac is (Lyapunov) stable, then all eigenval-

ues of Ac have non-positive real part and the eigenvalues on the imaginary axis are semi-simple. Hence, the

matrices (I−Ac), (I−AH
c ) are invertible, and the Cayley transform Ad = (I+Ac)(I−Ac)

−1 is well-defined.

(i) If Ac ∈ Cn×n is negative hypocoercive, then all eigenvalues of Ad have absolute value less than one,

hence, Ad is hypocontractive.

(ii) If Ac ∈ Cn×n is semi-dissipative, then I−Ac is positive dissipative (hence I−Ac is invertible). It

follows that

I−AH
dAd = I− (I−Ac)

−H(I+Ac)
H(I+Ac)(I−Ac)

−1(4.44)

= (I−Ac)
−H

(
(I−Ac)

H(I−Ac)− (I+Ac)
H(I+Ac)

)
(I−Ac)

−1

= −2(I−Ac)
−H(AH

c +Ac)(I−Ac)
−1

= −4(I−Ac)
−HAH(I−Ac)

−1 .
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Hence, the matrices −AH and (I −AH
dAd) are related via a congruence transformation. Therefore, Ad is

semi-contractive (or equivalently, (I−AH
dAd) is positive semi-definite) if Ac is semi-dissipative.

Due to (4.44), if v ∈ ker(AH), then (I−Ac)v ∈ ker(I−AH
dAd). Thus, (I−Ac) ker(AH) ⊆ ker(I−AH

dAd).

Conversely, if w ∈ ker(I−AH
dAd), then (I−Ac)

−1w ∈ ker(AH). Thus, (I−Ac)
−1 ker(I−AH

dAd) ⊆ ker(AH).

Altogether, (I−Ac) is a bijection from ker(AH) to ker(I−AH
dAd), and dimker(AH) = dimker(I−AH

dAd).

Remark 48. As a consequence of Lemma 47(ii), we have that rank(AH) = rank(I −AH
dAd) =: d(Ad),

the defect index of Ad, see Remark 35. As a follow-up consequence (using also Theorem 51 below), we find

that the lower bound on the hypocontractivity index of Ad from [11], that is, mdHC(Ad) ≥ n−d(Ad)
d(Ad)

equals

our lower bound on the hypocoercivity index of Ac, that is, mHC(Ac) ≥ n−rank(AH)
rank(AH) .

The inverse Cayley transform leads to a similar result for the mapping from the discrete-time to the

continuous-time problem:

Lemma 49. Let Ad ∈ Cn×n be such that xk+1 = Adxk, k ∈ N0 is stable and that −1 is not an eigenvalue

of Ad. Then, the inverse Cayley transform

(4.45) Ac := (Ad − I)(Ad + I)−1

is well-defined and the following properties hold.

(i) If Ad is hypocontractive, then Ac is negative hypocoercive.

(ii) If Ad is semi-contractive, then Ac is semi-dissipative. Moreover, with AH = 1
2 (Ac+AH

c ), the matrix

(Ad + I) is a bijection from ker(I−AH
dAd) to ker(AH) and dimker(AH) = dimker(I−AH

dAd).

Proof. Since −1 is not an eigenvalue of Ad then the matrices (Ad+ I), (Ad+ I)H are invertible, and the

inverse Cayley transform (4.45) is well-defined.

(i) If Ad is hypocontractive, then all eigenvalues of Ad have modulus less than one; hence, all eigenvalues

of Ac have negative real part. Thus, Ac is negative hypocoercive.

(ii) If Ad ∈ Cn×n is semi-contractive, then xk+1 = Adxk, k ∈ N0 is stable (due to Proposition 31). Then

AH = 1
2 (Ac +AH

c )

= 1
2

(
(Ad − I)(Ad + I)−1 + (Ad + I)−H(Ad − I)H

)

= 1
2 (Ad + I)−H

(
(Ad + I)H(Ad − I) + (Ad − I)H(Ad + I)

)
(Ad + I)−1

= −(Ad + I)−H(I−AH
dAd)(Ad + I)−1 .

(4.46)

Thus, the matrices −AH and (I − AH
dAd) are related via a congruence transformation, and hence Ad is

semi-contractive (or equivalently, (I−AH
dAd) is positive semi-definite) if Ac is semi-dissipative.

Due to (4.46), if v ∈ ker(AH), then (Ad + I)−1v ∈ ker(I − AH
dAd). Thus, (Ad + I)−1 ker(AH) ⊆

ker(I − AH
dAd). Conversely, if w ∈ ker(I − AH

dAd), then (Ad + I)w ∈ ker(AH). Thus, (Ad + I) ker(I −
AH

dAd) ⊆ ker(AH). Altogether, (Ad + I) is a bijection from ker(I−AH
dAd) to ker(AH) which implies that

dimker(AH) = dimker(I−AH
dAd).

Remark 50. The assumption in Lemma 49 that −1 is not an eigenvalue of Ad can be relaxed by con-

sidering Ac = (Ad − αI)(Ad + αI)−1, where −α ∈ C (with |α| = 1) is not an eigenvalue of Ad. Such an α

clearly exists in the complex case, but this will not work in the real case if both 1 and −1 are eigenvalues of

Ad and one wants to stay within the class of real matrices.
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The Cayley transformation also gives a direct relation between the hypocoercivity and hypocontractivity

indices.

Theorem 51. (i) Let Ac ∈ Cn×n be semi-dissipative and negative hypocoercive and let Ad :=

(I + Ac)(I − Ac)
−1. Then the hypocoercivity index mHC ∈ N0 of Ac and the hypocontractivity

index mdHC of Ad are the same, that is, mdHC(Ad) = mHC(Ac).

(ii) Let Ad ∈ Cn×n be semi-contractive and hypocontractive and let Ac := (Ad−I)(Ad+I)−1. Then the

hypocontractivity index mdHC ∈ N0 of Ad and the hypocoercivity index mHC of Ac are the same,

that is, mHC(Ac) = mdHC(Ad).

Proof. (i) Due to the assumptions and Lemma 47, Ad = 2(I − Ac)
−1 − I is semi-contractive and

hypocontractive. Thus, by Lemma 49, the inverse Cayley transform (Ad − I)(Ad + I)−1 is well-defined and

satisfies (Ad − I)(Ad + I)−1 = I− 2(Ad + I)−1 = Ac.

By assumption, the matrix Ac = AH+AS has a finite HC-index mHC = mHC(Ac) which is the smallest

integer such that, due to (2.9),
mHC⋂

j=0

ker
(
AHAj

c

)
= {0}.

Hence, there exists a vector v0 ∈ Cn \ {0} such that

(4.47) Aj
cv0 ∈ ker(AH) , j ∈ {0, . . . ,mHC − 1} and AmHC

c v0 /∈ ker(AH) .

Thus, by Lemma 47 (ii), we obtain that

(4.48) (I−Ac)A
j
cv0 ∈ ker(I−AH

dAd) , j ∈ {0, . . . ,mHC − 1}, and (I−Ac)A
mHC
c v0 /∈ ker(I−AH

dAd) .

Conversely, the existence of some v0 ̸= 0 satisfying the “first part” of (4.48) with some mHC ≥ 1 implies

that the HC-index of Ac is at least mHC .

The matrix Ad = (I+Ac)(I−Ac)
−1 is hypocontractive with HC-index mdHC := mdHC(Ad) ∈ N0. Due

to (3.35) this is the smallest integer such that

mdHC⋂

j=0

ker
(
(I−AH

dAd)A
j
d

)
= {0}.

Hence, there exists a vector w0 ∈ Cn \ {0} such that

(4.49) w0 ∈
mdHC−1⋂

j=0

ker
(
(I−AH

dAd)A
j
d

)
, and w0 /∈ ker

(
(I−AH

dAd)A
mdHC

d

)
,

or equivalently, there exists w0 ∈ Cn \ {0} such that

(4.50) Aj
dw0 ∈ ker(I−AH

dAd) , j ∈ {0, . . . ,mdHC − 1} and AmdHC

d w0 /∈ ker(I−AH
dAd).

Conversely, the existence of some w0 ̸= 0 satisfying the “first part” of (4.50) with some mdHC ≥ 1 implies

that the dHC-index of Ad is at least mdHC .

It remains to show thatmHC(Ac) = mdHC(Ad): IfmHC = 0, thenAc is dissipative such that ker(AH) =

{0}. Hence, ker(I−AH
dAd) = {0} due to Lemma 47 (ii) andAd is contractive, that is,mdHC = 0. Conversely,
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if mdHC(Ad) = 0, then ker(I − AH
dAd) = {0}. Hence, ker(AH) = {0} by Lemma 47 (ii) and thus Ac is

dissipative and mHC = 0.

If mHC ≥ 1, then let v0 ∈ Cn \ {0} satisfy (4.48) with mHC = mHC(Ac). Hence,

q(Ac)(I−Ac)v0 ∈ ker(I−AH
dAd)

for all polynomials q of order up to mHC − 1. In particular

w0 := (I−Ac)
mHCv0 ∈ ker(I−AH

dAd),

and w0 ̸= 0 since (I−Ac) is regular. Also, using (4.43) we find that

Aj
dw0 = (I+Ac)

j(I−Ac)
mHC−jv0 ∈ ker(I−AH

dAd) , j ∈ {0, . . . ,mdHC − 1} .

Hence, (4.50) implies mdHC(Ad) ≥ mHC(Ac).

Conversely, if mdHC ≥ 1, then let w0 ∈ Cn \ {0} satisfy (4.50) with mdHC = mdHC(Ad). Hence,

q(Ad)w0 ∈ ker(I−AH
dAd)

for all polynomials q of order up to mdHC −1. We define v0 := (Ad+I)mdHCw0 ̸= 0 since (Ad+I) is regular.

Using (4.45) and I−Ac = 2(Ad + I)−1 we compute

Aj
c(I−Ac)v0 = 2(Ad − I)j(Ad + I)mdHC−j−1w0 ∈ ker(I−AH

dAd) , j ∈ {0, . . . ,mdHC − 1} .

Hence, (4.48) implies mHC(Ac) ≥ mdHC(Ad). Altogether, we deduce that mdHC(Ad) = mHC(Ac), which

finishes the proof of statement (i).

(ii) The proof is analogous to that of (i).

Remark 52. It was pointed out to the authors that the results presented in Lemmas 47 and 49 as well as

Theorem 51 can be proved in an alternative way by using the characterization via unobservability subspaces,

see Remark 37. The results then can be proved via Lemmas 12.3.10 and 12.2.6 of [25].

Example 53. Consider the continuous-time system (1.1) with the coefficient matrix

(4.51) Ac =




0 −1 0 0

1 0 −1 0

0 1 −1 0

0 0 0 −1




which is semi-dissipative and B = −Ac has hypocoercivity index mHC = 2. Applying the Cayley transfor-

mation gives

(4.52) Ad = (I+Ac)(I−Ac)
−1 = 1

5




1 −4 2 0

4 −1 −2 0

2 2 −1 0

0 0 0 0




which is semi-contractive and has hypocontractivity index mdHC = 2.

Unfortunately, the Cayley transform does not relate the shifted hypocoercivity index mSHC and the

scaled hypocontractivity index mdSHC in the same way, as the following example illustrates.
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Table 2

Invariance of properties of continuous-time and discrete-time systems under Cayley transformation Ad = (I + Ac)(I −
Ac)−1 and inverse Cayley transformation Ac = (Ad − I)(Ad + I)−1

Continuous-time Discrete-time,

d
dtx = Acx for t ≥ 0 xk+1 = Adxk for k ∈ N0,

(asymptotically) stable (asymptotically) stable,

semi-dissipative semi-contractive,

(hypo)coercive (hypo)contractive,

mHC(Ac) mdHC(Ad),

Lyapunov solution Pc Lyapunov solution Pd.

Example 54. Consider the matrix

Ãd =



0 1 0

0 0 1

0 0 0




which is hypocontractive with hypocontractivity index mdHC = 2. The matrix Ad := 2Ãd is not semi-

contractive, since AH
dAd = diag(0, 4, 4), but it has scaled hypocontractivity index mdSHC = 2. For the

inverse Cayley transform of Ad, we obtain

Ac := (Ad − I)(Ad + I)−1 =



−1 4 −8

0 −1 4

0 0 −1


 , AH =



−1 2 −4

2 −1 2

−4 2 −1


 .

The eigenvalues of AH are λ = 3, λ± = −3 ±
√
12 and hence they are simple and the shifted HC-index of

Ac is mSHC = 1. This example shows that 2 = mdSHC(Ad) ̸= mSHC(Ac) = 1.

It is well-known, see, for example, [17, page 180], that the Cayley transformation also directly relates

the stabilizing solutions of the discrete-time and continuous-time Lyapunov equation. We summarize these

results in the following Lemma.

Lemma 55. Let Ac ∈ Cn×n be a matrix such that (1.1) is (Lyapunov) stable and let Ad = (I+Ac)(I−
Ac)

−1. Then P is the positive definite solution Pc = P of the continuous-time Lyapunov equation

AH
c Pc +PcAc = −Qc,

for some positive semidefinite matrix Qc if and only if P is the positive definite solution Pd = P of the

discrete-time Lyapunov equation

AH
dPdAd −Pd = −Qd

for positive semidefinite Qd, where the right-hand sides are related via Qd = 2(I−AH
c )

−1Qc(I−Ac)
−1.

In summary, we have an almost complete analogy between the properties of continuous-time and discrete-

time systems. We summarize these invariance properties under the Cayley transformation and the inverse

Cayley transformation (if it exists) in Table 2.
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Finally, we consider the scaled Cayley transform

(4.53) Ad(t) := (I+
t

2
Ac)(I−

t

2
Ac)

−1 for t > 0 ,

which can be considered as a short-time approximation of the matrix exponential for (1.1). Due to the

scaling invariance of the hypocoercivity (index) of a matrix Ac ∈ Cn×n (see Section 2.1), we readily obtain:

Corollary 56. Let Ac ∈ Cn×n be semi-dissipative and negative hypocoercive. Then, for all t >

0, the scaled Cayley transform Ad(t) is hypocontractive (due to Lemma 47 (i)), its dHC-index satisfies

mdHC(Ad(t)) = mHC(Ac) =: mdHC (due to Theorem 51 (i)), and the norms of its powers satisfy

∥Ad(t)
j∥2 = 1 for all j = 1, . . . ,mdHC , and ∥Ad(t)

mdHC+1∥2 < 1,

(due to Theorem 40).

Conclusions. In this paper, we have given a systematic analysis of different concepts related to the

stability and short-time behavior of solutions to linear constant coefficient continuous-time and discrete-

time systems. While many results for the continuous-time setting were already established in [3], we have

analyzed under which linear transformations the properties of asymptotic stability, semi-dissipativity, and

hypocoercivity stay invariant.

For linear time-invariant continuous-time systems, it is well-known that the exponential rate of the

short-time behavior of the propagator norm ∥eAct∥ is determined by the logarithmic norm of the system

matrix. In this work, we established that the shifted hypocoercivity index characterizes the (remaining)

algebraic decay of the propagator norm in the short-time regime.

For each of the continuous-time results, we have derived a corresponding result for the discrete-time

case. These include the relation between (asymptotic) stability, semi-contractivity, and hypocontractivity.

We have also introduced the new concept of shifted hypocoercivity and scaled hypocontractivity. We then

have analyzed how the properties relate under the Cayley transformation that relates continuous-time and

discrete-time systems. While the role of the hypocontractivity index (or norm-one index) in the discrete-time

setting has been recognized before, the corresponding concept—the hypocoercivity index—in the continuous-

time setting and its role has been established only recently.

Future work will include the extension of the results of [3] for linear continuous-time differential-algebraic

systems to discrete-time descriptor systems.

Appendix A. Staircase forms. In [3], a computationally feasible procedure to check the conditions

of Lemma 7 in the continuous-time case via a staircase form under unitary congruence transformations of

the pair (J,R) = (BS ,BH) has been presented.

Lemma 57 (Staircase form for (J,R)). Let J ∈ Cn×n be a skew-Hermitian matrix, and R ∈ Cn×n be

a nonzero Hermitian matrix. Then there exists a unitary matrix V ∈ Cn×n, such that VJVH and VRVH

are block tridiagonal matrices of the form
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V J VH =




J1,1 −JH
2,1 · · · 0 0

J2,1 J2,2 −JH
3,2

. . .
. . .

. . .
...

Jk,k−1 Jk,k −JH
k+1,k

...
...

. . .
. . .

. . .

Js−2,s−3 Js−2,s−2 −JH
s−1,s−2

0 · · · Js−1,s−2 Js−1,s−1 0

0 · · · 0 Jss




n1

n2

...

nk

...

ns−2

ns−1

ns

n1 ns−2 ns−1 ns

,

V R VH =




R1 0

0 0
...

...
...

...

0 0




n1

n2

...

...

ns

n1 n− n1

,

(A.54)

where n1 ≥ n2 ≥ · · · ≥ ns−1 > 0, ns ≥ 0, and R1 ∈ Cn1,n1 is nonsingular.

If R is nonsingular, then s = 2 and n2 = 0. For example, V = I, J1,1 = J and R1 = R is an admissible

choice.

If R is singular, then s ≥ 3 and the matrices Ji,i−1, i = 2, . . . , s − 1, in the subdiagonal have full row

rank and are of the form

Ji,i−1 =
[
Σi,i−1 0

]
, i = 2, . . . , s− 1,

with nonsingular matrices Σi,i−1 ∈ Cni,ni , moreover Σs−1,s−2 is a real-valued diagonal matrix.

A system (1.1) with an accretive matrix B = BS +BH is hypocoercive if ns = 0 and if this is the case

then the hypocoercivity index is mHC(B) = s− 2.

A similar staircase form can be derived in the discrete-time case. It is based on the polar decomposition

Ad = UQ, see Proposition 41.

Lemma 58 (Staircase form for (U,Q)). Let U ∈ Cn×n be a unitary matrix, and Q ∈ Cn×n be a

nonzero semi-contractive Hermitian matrix. Then there exists a unitary matrix V ∈ Cn×n, such that VQVH

and VUVH are block upper Hessenberg matrices of the form

V U VH =




U1,1 U1,2 · · · · · · U1,s−1 0

U2,1 U2,2 U2,3 · · · U2,s−1 0
. . .

. . .
. . .

. . .
...

Us−2,s−3 Us−2,s−2 Us−2,s−1 0

0 · · · 0 Us−1,s−2 Us−1,s−1 0

0 · · · 0 Us,s




n1

n2

...

ns−2

ns−1

ns

,(A.55)
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V Q VH =




Q1 0 · · · · · · 0 0

0 In2
0 · · ·

...
...

... 0
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

...
. . . 0 Ins−1

0

0 0 · · · · · · 0 Ins




n1

n2

...

...

ns−1

ns

,

where n1 ≥ n2 ≥ · · · ≥ ns−1 > 0, ns ≥ 0, and Q1 ∈ Cn1,n1 is contractive and Hermitian.

If Q is contractive, then s = 2 and n2 = 0. Then V = I, U1,1 = U and Q1 = Q is an admissible choice.

If Q is not contractive, then s ≥ 3 and the matrices Ui,i−1, i = 2, . . . , s− 1, in the subdiagonal have full

row rank and are of the form

Ui,i−1 =
[
Σi,i−1 0

]
, i = 2, . . . , s− 1,

with nonsingular matrices Σi,i−1 ∈ Cni,ni , moreover Σs−1,s−2 is a real-valued diagonal matrix.

Proof. If Q is contractive, then n1 = n and we have to choose s = 2 and n2 = 0 to fit U into the

proposed structure in (A.55).

If Q is not contractive, then we have the following constructive proof.

Algorithm 1 Staircase algorithm for pair (U,Q)

Input: (U,Q)

———– Step 0 ———–

1: Perform a (spectral) decomposition of Q such that

Q = V1

[
Q̃1 0

0 I

]
VH

1 ,

with V1 ∈ Cn×n unitary, Q̃1 ∈ Cn1,n1 contractive and Hermitian.

2: Set V := VH
1 , Q̃ := VH

1 Q V1,

Ũ := VH
1 U V1 =:

[
Ũ1,1 Ũ1,2

Ũ2,1 Ũ2,2

]
.

———– Step 1 ———–

3: Perform a singular value decomposition (SVD) of Ũ2,1 ∈ C(n−n1)×n1 such that

Ũ2,1 = W2,1

[
Σ̃2,1 0

0 0

]
VH

2,1,

with unitary matrices W2,1 and V2,1 as well as a positive definite, diagonal matrix Σ̃2,1 ∈ Rn2,n2 .

4: Set V2 := diag(VH
2,1, WH

2,1), V := V2V.

5: Set

Ũ := V2 Ũ VH
2 =:




Ũ1,1 Ũ1,2 Ũ1,3

Ũ2,1 Ũ2,2 Ũ2,3

0 Ũ3,2 Ũ3,3


 , R̃ := V2Q̃VH

2 =:




Q̃1 0 0

0 In2
0

0 0 I


 .
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(The lines indicate the partitioning of the block matrices Ũ and Q̃ in the previous step.)

———– Step 2 ———–

6: i := 3

7: while ni−1 > 0 or Ũi,i−1 ̸= 0 do

8: Perform an SVD of Ũi,i−1 such that

Ũi,i−1 = Wi,i−1

[
Σ̃i,i−1 0

0 0

]
VH

i,i−1,

with unitary matrices Wi,i−1 and Vi,i−1 as well as a positive definite, diagonal matrix Σ̃i,i−1 ∈ Rni,ni .

9: Set Vi := diag(In1 , . . . , Ini−2 , VH
i,i−1, WH

i,i−1), V := ViV.

10: Set

Ũ := Vi Ũ VH
i =:




Ũ1,1 Ũ1,2 · · · · · · Ũ1,i+1

Ũ2,1 Ũ2,2 Ũ2,3

...

0
. . .

. . .
. . .

...
. . . Ũi,i−1 Ũi,i Ũi,i+1

0 · · · 0 Ũi+1,i Ũi+1,i+1




, where Ũi,i−1 = [Σ̃i,i−1 0].

11: i := i+ 1

12: end while

———– Step 3 ———–

13: s := i

14: for i = 1, . . . , s do

15: for j = i, . . . , s do

16: Set Ui,j := Ũi,j .

17: end for

18: end for

19: for i = 2, . . . , s do

20: Set Ui,i−1 := Ũi,i−1.

21: end for

Output: Unitary matrix V.

It is clear that Algorithm 1 terminates after a finite number of steps, either with ni−1 = 0 or Ui,i−1 = 0.

We also note that Step 3 provides the nonzero entries of the r.h.s. of VUVH in (A.55).

Note that Algorithm 1 can be applied to the polar decomposition PdUd analogously. In both cases,

it immediately follows that Ad is hypocontractive if ns = 0 and the hypocontractivity index is then

mdHC(Ad) = s− 2.

Appendix B. Equivalent hypocoercivity conditions. The following lemma is a simple generaliza-

tion of Lemma 2.3 in [4] and Proposition 1 in [1].
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Lemma 59. Let D ∈ Cn×n be positive semi-definite and C ∈ Cn×n. Then the following are equivalent:

(E1) There exists m ∈ N0 such that

(B.56) rank[D,CD, . . . ,CmD] = n .

(E2) There exists m ∈ N0 such that

(B.57)

m∑

j=0

CjD(CH)j > 0 .

Moreover, the smallest possible m ∈ N0 in (E1) and (E2) coincide.

Proof. First, we show that (E1) is equivalent to:

(E1’) There exists m ∈ N0 such that

rank[D1/2,CD1/2, . . . ,CmD1/2] = n ,

with the same m as in (E1):

(E1) holds iff the statement

xH[D,CD, . . . ,CmD] = 0 for some x ∈ Cn,

that is, D(CH)jx = 0 for j = 0, . . . ,m implies x = 0. Now, since ker(D) = ker(D1/2), (E1) and (E1’) are

equivalent.

Next, let (E1) hold and define

E := [D1/2, CD1/2, ..., CmD1/2] ∈ Cn×(m+1)n .

Then,

Cn×n ∋ E EH =

m∑

j=0

CjD(CH)j ≥ 0,

has rank n and (B.57) follows.

Conversely, let (E2) hold but assume we had rankE < n. Then, ∃ 0 ̸= x ∈ Cn with xHE = 0. Hence,

xHE EH = 0 would contradict (B.57).
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