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Abstract. Let A and Ã be n× n diagonalizable matrices and f be a function defined on their

spectra. In the present paper, bounds for the norm of f(A) − f(Ã) are established. Applications to

differential equations are also discussed.
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1. Introduction and statement of the main result. Let Cn be a Euclidean

space with the scalar product (·, ·), Euclidean norm ‖·‖ =
√

(·, ·) and identity operator

I. A and Ã are n×n matrices with eigenvalues λj and λ̃j (j = 1, . . . , n), respectively.

σ(A) denotes the spectrum of A, A∗ is the adjoint to A, and N2(A) is the Hilbert-

Schmidt (Frobenius) norm of A: N2
2 (A) = Trace(A∗A).

In the sequel, it is assumed that each of the matrices A and Ã has n linearly

independent eigenvectors, and therefore, these matrices are diagonalizable. In other

words, the eigenvalues of these matrices are semi-simple.

Let f be a scalar function defined on σ(A) ∪ σ(Ã). The aim of this paper is to

establish inequalities for the norm of f(A) − f(Ã). The literature on perturbations

of matrix valued functions is very rich but mainly, perturbations of matrix functions

of a complex argument and matrix functions of Hermitian matrices were considered,

cf. [1, 11, 13, 14, 16, 18]. The matrix valued functions of a non-Hermitian argument

have been investigated essentially less, although they are very important for various

applications; see the book [10].

The following quantity plays an essential role hereafter:

g(A) :=

[

N2
2 (A)−

n
∑

k=1

|λk|2
]1/2

.
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g(A) enjoys the following properties:

g2(A) ≤ 2N2
2 (AI) (AI = (A−A∗)/2i) and g2(A) ≤ N2

2 (A)− |Trace(A2)|, (1.1)

cf. [8, Section 2.1]. If A is normal, then g(A) = 0. Denote by µj , j = 1, . . . ,m ≤ n,

the distinct eigenvalues of A, and by pj the algebraic multiplicity of µj . In particular,

one can write µ1 = λ1 = · · · = λp1
, µ2 = λp1+1 = · · · = λp1+p2

, etc. Similarly, µ̃j ,

j = 1, . . . , m̃ ≤ n, are the distinct eigenvalues of Ã, and p̃j denotes the algebraic

multiplicity of µ̃j .

Let δj be the half-distance from µj to the other eigenvalues of A, namely,

δj := min
k=1,...,m; k 6=j

|µj − µk|/2 > 0.

Similarly,

δ̃j := min
k=1,...,m̃; k 6=j

|µ̃j − µ̃k|/2 > 0.

Put

β(A) :=

m
∑

j=1

pj

n−1
∑

k=0

gk(A)

δkj
√
k!

and β(Ã) :=

m̃
∑

j=1

p̃j

n−1
∑

k=0

gk(Ã)

δ̃kj
√
k!
.

Here g0(A) = δ0j = 1 and g̃0(A) = δ̃0j = 1. According to (1.1),

β(A) ≤
m
∑

j=1

pj

n−1
∑

k=0

(
√
2N2(AI))

k

δkj
√
k!

.

In what follows, we put

f(λk)− f(λ̃j)

λk − λ̃j

= 0 if λk = λ̃j .

Now we are in a position to formulate our main result.

Theorem 1.1. Let A and Ã be n×n diagonalizable matrices and f be a function

defined on σ(A) ∪ σ(Ã). Then the inequalities

N2(f(A)− f(Ã)) ≤ β(A)β(Ã)max
j,k

∣

∣

∣

∣

∣

f(λk)− f(λ̃j)

λk − λ̃j

∣

∣

∣

∣

∣

N2(A− Ã) (1.2)

and
N2(f(A)− f(Ã)) ≤ β(A)β(Ã)max

j,k
|f(λk)− f(λ̃j)| (1.3)

are valid.

The proof of this theorem is divided into lemmas which are presented in the next

two sections. The importance of Theorem 1.1 lies in the fact that the right-hand sides

of inequalities (1.2) and (1.3) only involve universal quantities calculated for A and Ã,

and the values of the function f on the spectra σ(A) and σ(Ã), but e.g. no matrices

performing similarities of A and Ã to diagonal ones.
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2. The basic lemma. Let T and T̃ be the invertible matrices performing sim-

ilarities of A and Ã to diagonal ones, that is,

T−1AT = S, (2.1)

and

T̃−1ÃT̃ = S̃, (2.2)

where S = diag (λj) and S̃ = diag (λ̃j). Everywhere below, {dk}nk=1 is the standard

orthonormal basis and ‖B‖ = sup {‖Bh‖/‖h‖ : h ∈ Cn} for an n × n matrix B.

Recall that N2(AB) ≤ ‖B‖N2(A).

We begin with the following lemma.

Lemma 2.1. Let the hypotheses of Theorem 1.1 hold. Then

N2
2 (f(A)− f(Ã)) ≤ ‖T̃−1‖2‖T ‖2

n
∑

j,k=1

|(f(λk)− f(λ̃j))(T
−1T̃ dj , dk)|2. (2.3)

Proof. We have

N2
2 (A− Ã) = N2

2 (TST
−1 − T̃ S̃T̃−1) = N2

2 (TST
−1T̃ T̃−1 − TT−1T̃ S̃T̃−1)

= N2
2 (T (ST

−1T̃ − T−1T̃ S̃)T̃−1) ≤ ‖T̃−1‖2‖T ‖2N2
2 (ST

−1T̃ − T−1T̃ S̃).

But

N2
2 (ST

−1T̃ − T−1T̃ S̃) =

n
∑

j,k=1

|(ST−1T̃ − T−1T̃ S̃)dj , dk)|2

=
n
∑

j,k=1

|(T−1T̃ dj , S
∗dk)− (T−1T̃ S̃dj , dk)|2 = J, (2.4)

where

J :=

n
∑

j,k=1

|(λk − λ̃j)(T
−1T̃ dj , dk)|2.

So,

N2
2 (A− Ã) ≤ ‖T̃−1‖2‖T ‖2J.
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Similarly, taking into account that

T−1f(A)T = f(S) = diag (f(λj)) and T̃−1f(Ã)T̃ = f(S̃) = diag (f(λ̃j)),

we get (2.3), as claimed.

¿From the previous lemma we obtain at once:

Corollary 2.2. Under the hypotheses of Theorem 1.1, we have

N2(f(A)− f(Ã)) ≤ κT κ̃T [
n
∑

j,k=1

|f(λk)− f(λ̃j)|2]1/2,

where

κT := ‖T ‖‖T−1‖ and κ̃T := ‖T̃‖‖T̃−1‖.

Recall that

f(λk)− f(λ̃j)

λk − λ̃j

= 0 if λk = λ̃j .

Note that (2.3) implies

N2
2 (f(A)− f(Ã)) ≤ ‖T̃−1‖2‖T ‖2

n
∑

j,k=1

|f(λk)− f(λ̃j)

λk − λ̃j

(λk − λ̃j)(T
−1T̃ dj , dk)|2

≤ ‖T̃−1‖2‖T ‖2max
j,k

∣

∣

f(λk)− f(λ̃j)

λk − λ̃j

∣

∣

2
J. (2.5)

It follows from (2.4) that

J = N2
2 (T

−1AT̃ − T−1ÃT̃ ) ≤ ‖T−1‖2‖T̃‖2N2
2 (A− Ã).

Thus, (2.5) yields:

Corollary 2.3. Under the hypotheses of Theorem 1.1, the inequality

N2(f(A)− f(Ã)) ≤ κT κ̃TN2(A− Ã)max
j,k

∣

∣

f(λk)− f(λ̃j)

λk − λ̃j

∣

∣ (2.6)

is true.

Since

∣

∣

f(λk)− f(λ̃j)

λk − λ̃j

∣

∣ ≤ sup
s∈co(A,Ã)

|f ′(s)|,
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where co(A, Ã) is the closed convex hull of the eigenvalues of the both matrices A and

Ã, cf. [17], we have:

Corollary 2.4. Let A and Ã be n × n diagonalizable matrices and f be a

function defined and differentiable on co(A, Ã). Then

N2(f(A)− f(Ã)) ≤ κT κ̃T max
s∈co(A,Ã)

|f ′(s)|N2(A− Ã).

We need also the following corollary of Lemma 2.1.

Corollary 2.5. Under the hypotheses of Theorem 1.1, it holds that

N2(f(A) − f(Ã)) ≤ ‖T̃−1‖‖T ‖max
j,k

|f(λk)− f(λ̃j)|[
n
∑

j=1

‖T̃ dj‖2
n
∑

k=1

‖(T−1)∗dk‖2]1/2.

(2.7)

3. Proof of Theorem 1.1. Let Qj be the Riesz projection for µj :

Qj = − 1

2πi

∫

Lj

Rλ(A)dλ, (3.1)

where Lj := {z ∈ C : |z − µj | = δj}.

Lemma 3.1. The inequality

‖Qj‖ ≤
n−1
∑

k=0

gk(A)

δkj
√
k!

is true.

Proof. By the Schur theorem, there is an orthonormal basis {ek}, in which A =

D + V , where D = diag (λj) is a normal matrix (the diagonal part of A) and V

is an upper triangular nilpotent matrix (the nilpotent part of A). Let Pj be the

eigenprojection of D corresponding to µj . Then by (3.1),

Qj − Pj = − 1

2πi

∫

Lj

(Rλ(A)−Rλ(D))dλ =
1

2πi

∫

Lj

Rλ(A)V Rλ(D)dλ

since V = A−D. But

Rλ(A) = (D + V − Iλ)−1 = (I +Rλ(D)V )−1Rλ(D).

Consequently,

Rλ(A) =

n−1
∑

k=0

(−1)k(Rλ(D)V )kRλ(D).
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So, we have

Qj − Pj =

n−1
∑

k=1

Ck, (3.2)

where

Ck = (−1)k
1

2πi

∫

Lj

(Rλ(D)V )kRλ(D)dλ.

By Theorem 2.5.1 of [8], we get

‖(Rλ(D)V )k‖ ≤ Nk
2 (Rλ(D)V )√

k!
≤ Nk

2 (V )

ρk(A, λ)
√
k!
,

where ρ(A, λ) = mink|λ−λk|. In addition, directly from the definition of g(A), when

the Hilbert-Schmidt norm is calculated in the basis {ek}, we have N2(V ) = g(A). So,

‖(Rλ(D)V )k‖ ≤ gk(A)

δkj
√
k!

(λ ∈ Lj),

and therefore,

‖Ck‖ ≤ 1

2π

∫

Lj

‖(Rλ(D)V )kRλ(D)‖|dλ| ≤ gk(A)

δk+1
j

√
k!

1

2π

∫

Lj

|dλ| = gk(A)

δkj
√
k!
.

Hence,

‖Qj − Pj‖ ≤
n−1
∑

k=1

‖Ck‖ ≤
n−1
∑

k=1

gk(A)

δkj
√
k!
, (3.3)

and therefore,

‖Qj‖ ≤ ‖Pj‖+ ‖Qj − Pj‖ ≤
n−1
∑

k=0

gk(A)

δkj
√
k!
,

as claimed.

Let {vk}nk=1 be a sequence of the eigenvectors of A, and {uk}nk=1 be the biorthog-

onal sequence: (vj , uk) = 0 (j 6= k), (vj , uj) = 1 (j, k = 1, . . . , n). So

A =

m
∑

k=1

µkQk =

n
∑

k=1

λk(·, uk)vk. (3.4)

Rearranging these biorthogonal sequences, we can write

Qj =

pj
∑

k=1

(·, ujk)vjk,
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where {ujk}pj

k=1 and {vjk}pj

k=1 are biorthogonal: (vjk, ujm) = 0 (m 6= k), (vjk, ujk) =

1 (m, k = 1, . . . , pj). Observe that we can always choose these systems so that ‖ujk‖ =

‖vjk‖.

Lemma 3.2. Let ‖ujk‖ = ‖vjk‖. Then we have

‖ujk‖2 ≤ ‖Qj‖ (k = 1, . . . , pj).

Proof. Clearly, Qjujk = (Qjujk, ujk)vjk . So,

(Qjujk, vjk) = (ujk, ujk)(vjk, vjk) = ‖ujk‖4.

Hence, ‖ujk‖4 ≤ ‖Qj‖‖ujk‖2, as claimed.

Lemmas 3.1 and 3.2 imply:

Corollary 3.3. The inequalities

‖ujs‖2 ≤
n−1
∑

k=0

gk(A)

δkj
√
k!

(s = 1, 2, . . . , pj)

are valid.

Again, let {dk} be the standard orthonormal basis.

Lemma 3.4. Let A be an n× n diagonalizable matrix. Then the operator

T =
n
∑

k=1

(·, dk)vk (3.5)

has the inverse one defined by

T−1 =
n
∑

k=1

(·, uk)dk, (3.6)

and (2.1) holds.

Proof. Indeed, we can write out

T−1T =
n
∑

j=1

dj

n
∑

k=1

(·, dk)(vk, uj) =
n
∑

j=1

dj(·, dj) = I

and

TT−1 =

n
∑

k=1

(·, uk)

n
∑

j=1

(dk, dj)vj =

n
∑

k=1

(·, uk)vk = I.
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Moreover,

AT =
n
∑

j=1

vjλj(·, dj) and S =
n
∑

k=1

λk(·, dk)dk.

Hence,

T−1AT =
n
∑

k=1

dk

n
∑

j=1

(vj , uk)λj(·, dj) =
n
∑

j=1

djλj(·, dj) = S.

So, (2.1) really holds.

Lemma 3.5. Let T be defined by (3.5). Then

‖T ‖2 ≤
m
∑

j=1

pj‖Qj‖ and ‖T−1‖2 ≤
m
∑

j=1

pj‖Qj‖,

and therefore,

κT ≤
m
∑

j=1

pj‖Qj‖.

Proof. Due to the previous lemma

‖T−1x‖2 =

n
∑

k=1

|(x, uk)|2 ≤ ‖x‖2
n
∑

k=1

‖uk‖2 (x ∈ C
n). (3.7)

By the Schwarz inequality,

(Tx, Tx) =
n
∑

k=1

n
∑

s=1

(x, dk)(vk, vs)(x, ds)

≤
n
∑

k=1

|(x, dk)|2[
n
∑

s,k=1

|(vk, vs)|2]1/2 ≤ ‖x‖2
n
∑

s=1

‖vs‖2. (3.8)

But by Lemma 3.2,

n
∑

s=1

‖us‖2 =

n
∑

s=1

‖vs‖2 =

m
∑

j=1

pj
∑

k=1

‖vjk‖2 ≤
m
∑

j=1

pj‖Qj‖.

Now (3.7) and (3.8) yield the required result.

Lemmas 3.1 and 3.5 imply:
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Corollary 3.6. The inequality κT ≤ β(A) is true.

Lemma 3.7. Under the hypotheses of Theorem 1.1, we have

N2(f(A) − f(Ã)) ≤ ‖T̃−1‖‖T ‖max
j,k

|f(λk)− f(λ̃j)|[
m̃
∑

j=1

p̃j‖Q̃j‖
m
∑

k=1

pk‖Qk‖]1/2,

where Qk, Q̃j are the eigenprojections of A and Ã, respectively.

Proof. By (3.6), we have

(T−1)∗ =

n
∑

k=1

(·, dk)uk.

Moreover, due to Lemma 3.2,

n
∑

j=1

‖(T−1)∗dj‖2 =
n
∑

k=1

‖uk‖2 ≤
m
∑

k=1

pk‖Qk‖.

Similarly,

n
∑

k=1

‖T̃ dk‖2 ≤
m
∑

k=1

pk‖Q̃k‖.

Now (2.7) implies the required result.

Thanks to Lemmas 3.5 and 3.7 we get the inequality

N2(f(A) − f(Ã)) ≤ max
j,k

|f(λk)− f(λ̃j)|
m̃
∑

j=1

p̃j‖Q̃j‖
m
∑

k=1

pk‖Qk‖. (3.9)

Proof of Theorem 1.1: Inequality (1.2) is due to (2.6) and Corollary 3.6. Inequal-

ity (1.3) is due to (3.9) and Lemma 3.1.

4. Applications. Let us consider the two differential equations

du

dt
= Au (t > 0) and

dũ

dt
= Ãũ (t > 0),

whose solutions are u(t) and ũ(t), respectively. Let us take the initial conditions

u(0) = ũ(0) ∈ C
n. Then we have

u(t)− ũ(t) = (exp [At]− exp [Ãt])u(0).

By (1.2),

‖u(t)− ũ(t)‖ ≤ ‖u(0)‖N2(exp [At]− exp [Ãt])
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≤ tetαN2(A− Ã)β(A)β(Ã)‖u(0)‖ (t ≥ 0),

where

α = max{max
k

Re λk,max
j

Re λ̃j}.

Furthermore, let 0 6∈ σ(A) ∪ σ(A). Then the function

A−1/2 sin (A1/2t) (t > 0)

is the Green function to the Cauchy problem for the equation

d2w

dt2
+Aw = 0 (t > 0).

Simultaneously, consider the equation

d2w̃

dt2
+ Ãw̃ = 0 (t > 0),

and take the initial conditions

w(0) = w̃(0) ∈ C
n and w′(0) = w̃′(0) = 0.

Then we have

w(t)− w̃(t) = [A−1/2 sin (A1/2t)− Ã−1/2 sin (Ã1/2t)]w(0).

By (1.2),

‖w(t)− w̃(t)‖ ≤ β(A)β(Ã)N2(A− Ã)max
j,k

∣

∣

∣

∣

∣

∣

∣

∣

sin (t
√
λk)√

λk
− sin (t

√
λ̃j)√

λ̃j

λk − λ̃j

∣

∣

∣

∣

∣

∣

∣

∣

(t > 0).

Here one can take an arbitrary branch of the roots.
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