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PERTURBATIONS OF FUNCTIONS OF
DIAGONALIZABLE MATRICES*

MICHAEL I. GIL’f

Abstract. Let A and A be n x n diagonalizable matrices and f be a function defined on their
spectra. In the present paper, bounds for the norm of f(A) — f(A) are established. Applications to
differential equations are also discussed.
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1. Introduction and statement of the main result. Let C™ be a Euclidean

space with the scalar product (-, ), Euclidean norm ||-|| = 1/(+, -) and identity operator
I. A and A are n x n matrices with eigenvalues Ajand A; (j =1,...,n), respectively.

o(A) denotes the spectrum of A, A* is the adjoint to A, and N3(A) is the Hilbert-
Schmidt (Frobenius) norm of A: N3(A) = Trace(A* A).

In the sequel, it is assumed that each of the matrices A and A has n linearly
independent eigenvectors, and therefore, these matrices are diagonalizable. In other
words, the eigenvalues of these matrices are semi-simple.

Let f be a scalar function defined on o(A) U o(A). The aim of this paper is to
establish inequalities for the norm of f(A) — f(A). The literature on perturbations
of matrix valued functions is very rich but mainly, perturbations of matrix functions
of a complex argument and matrix functions of Hermitian matrices were considered,
cf. [1, 11, 13, 14, 16, 18]. The matrix valued functions of a non-Hermitian argument
have been investigated essentially less, although they are very important for various
applications; see the book [10].

The following quantity plays an essential role hereafter:

n 1/2

g(4) = | NF(A4) = Y Il

k=1
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g(A) enjoys the following properties:
G2(4) < 2NF(AD) (Ar = (A— A%)/2)) and g%(4) < NE(A) — [Trace(42)], (1.1)

cf. [8, Section 2.1]. If A is normal, then g(A) = 0. Denote by u;, j =1,...,m <mn,
the distinct eigenvalues of A, and by p; the algebraic multiplicity of p;. In particular,
one can write g = A = -+ = Ay, 2 = Ap,41 = -+ = Ap,4p,, etc. Similarly, fij,
j =1,...,m < n, are the distinct eigenvalues of A, and p; denotes the algebraic
multiplicity of fi;.

Let 0; be the half-distance from p; to the other eigenvalues of A, namely,

0j 1=, min - luj—pxl/2> 0.
Similarly,
5J':k—1 ..... ket |'u3_:uk|/2>0
Put
m n—1 - nel
gL i - N g (A)
B(A) = p and A(A) =3 5 3 220
= k=0 55@ j=1 k=0 ;C\/H
Here g%(A) =69 = 1 and §°(A) = §9 = 1. According to (1.1)

In what follows, we put
T =T g iy =5,
Ak — Aj

Now we are in a position to formulate our main result.

THEOREM 1.1. Let A and A be n x n diagonalizable matrices and f be a function

defined on o(A)U o (A). Then the inequalities

Na(f(4) = £(0) < B e LT woa -y 1)
e Na(£(4) = £(A) < BA)BA) max | F () = F()] (13)
are valid.

The proof of this theorem is divided into lemmas which are presented in the next
two sections. The importance of Theorem 1.1 lies in the fact that the right-hand sides
of inequalities (1.2) and (1.3) only involve universal quantities calculated for A and A,

and the values of the function f on the spectra o(A) and o(A), but e.g. no matrices
performing similarities of A and A to diagonal ones.
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2. The basic lemma. Let T and T be the invertible matrices performing sim-
ilarities of A and A to diagonal ones, that is,

T AT = S, (2.1)
and
T—'AT = S, (2.2)

where S = diag ();) and S = diag ()\;). Everywhere below, {d;}?_, is the standard
orthonormal basis and ||B| = sup {||Bh||/||h|| : h € C"} for an n x n matrix B.
Recall that N2(AB) < || B||N2(A).

We begin with the following lemma.

LEMMA 2.1. Let the hypotheses of Theorem 1.1 hold. Then

NF(fF(A) = fA) < ITTHPITIR Y () = FONNT ™ Ty, di) P (23)

J,k=1

Proof. We have

N2(A—A) = NY(TST ' —TST™) = NX(TST'TT~' —TT'TST™Y)

= NJ(T(ST'T — T 1T8)T~Y) < [T~ Y| T|2N2(ST~*T — T~'TS).

But
N3 (ST'T —T7'T8) = > |(ST'T - T7'T8)d;, dy)|?
jik=1
= > (T7'Td;, S*dy) — (T~'TSd;, di)|” = J, (2.4)
4, k=1
where
Ji= Y | = XTI Td;, dy) .
g, k=1

So,

N (A~ A) < |[T7Y*||T)12.
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Similarly, taking into account that

T (AT = f(S) = diag (f(N)) and T7'f(A)T = f(S) = diag (f(\))),
we get (2.3), as claimed. O

;From the previous lemma we obtain at once:

COROLLARY 2.2. Under the hypotheses of Theorem 1.1, we have

n

No(f(A) = f(A) < rrir] Y 1FOw) = NPV,

J,k=1
where

k= |TIITH and & =TT

Recall that

Note that (2.3) implies

N2(F(A) - F(A) < [T PRI S |W(Ak )TV, dy)

k=1
e (2.
It follows from (2.4) that
J = N3(T~'AT — T 1AT) < | T7H|°||T > N5 (A — A).
Thus, (2.5) yields:
COROLLARY 2.3. Under the hypotheses of Theorem 1.1, the inequality

Na(f(4) ~ f(A)) < wrrNa(A — ) mas 1%! (2.6)

s true.

Since

< sup _[f(s)],
j s€co(A,A)
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where co(A, A) is the closed convex hull of the eigenvalues of the both matrices A and
A, cf. [17], we have:

COROLLARY 2.4. Let A and A be n x n diagonalizable matrices and f be a
function defined and differentiable on co(A, A). Then

No(f(A) = f(A)) < krkr  max_|f'(s)|N2(A = A).
s€co(A,A)
We need also the following corollary of Lemma 2.1.

COROLLARY 2.5. Under the hypotheses of Theorem 1.1, it holds that

Na(f(A) = f(A)) < T~ T I mae | £ Q) = ZIITd I? ZH ) di 1?12,

(2.7)

3. Proof of Theorem 1.1. Let ); be the Riesz projection for p;:

1

Qj=—=— [ Rx(A)d\, (3.1)
2mi g,

where L; :=={z € C: |z — p | = 0;}.

LEMMA 3.1. The inequality

n—1 k
(A)

1l <$ 2
’ g 5V k!

s true.

Proof. By the Schur theorem, there is an orthonormal basis {ex}, in which A =
D +V, where D = diag (\;) is a normal matrix (the diagonal part of A) and V
is an upper triangular nilpotent matrix (the nilpotent part of A). Let P; be the
eigenprojection of D corresponding to p;. Then by (3.1),

1 1
Q- P =—5= : (RA(A) — RA(D))dA = 5— 5 Ry(A)VRA(D)dA

since V= A — D. But
Ry(A) = (D+V —IN)' = (I + Ry(D)V)"'Rx(D).

Consequently,



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 20, pp. 303-313, May 2010

308 M.L Gil’

So, we have

n—1
Q;—Pj =) Ck, (3.2)
k=1
where
Cr = (-1 ki, (Rx(D)V)*Rx(D)d\
21 Jp,

By Theorem 2.5.1 of [8], we get

N3 (RA(D)V NS (V
By < M EBDI) NSO
VE! PF (A, NVEL
where p(4, \) = ming|\— Ag|. In addition, directly from the definition of g(A), when
the Hilbert-Schmidt norm is calculated in the basis {ej}, we have No(V) = g(A). So,

(R D)) < %72

(A € Ly),

and therefore,

o0l = 5 IOV R < eia [ 10 =

Hence,

YA
1Q; — P||<Z|\ck||s25k = (3.3)
k=1 "7 :

and therefore,

1Q51l < I1P5ll + 11Q; — Pill < Z k
k=0

7
as claimed. O

Let {vg}?_; be a sequence of the eigenvectors of A, and {ux}?_, be the biorthog-
onal sequence: (vj,ur) =0 (j #k), (vj,u;) =1 (j,k=1,...,n). So

A= Zquk = Z /\k(-, uk)vk. (3.4)
k=1 k=1

Rearranging these biorthogonal sequences, we can write

pPj

Qj = > (ugn)vsn,

k=1
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where {u;}y" | and {v;,}}°_, are biorthogonal: (vjk,ujm) =0 (m # k), (vjk,ujx) =
1(m,k=1,...,p;). Observe that we can always choose these systems so that ||uz| =

l[ojill-

LEMMA 3.2. Let |lujk|| = |lvjkll. Then we have

lujil® < 1QsI1 (k=1,...,p;).

Proof. Clearly, Qjujr = (QjUjk, Ujk)Vjk- S0,
(Qjujn, vin) = (wjn, wjn) (ik, vin) = [[ugn ]|t
Hence, [Ju;x||* < [|Q;ll||ujkl|?, as claimed. O
Lemmas 3.1 and 3.2 imply:

COROLLARY 3.3. The inequalities

mp
||ujs||2§2 SR (s=1,2,...,pj)
k=0 ]

are valid.
Again, let {dj} be the standard orthonormal basis.

LEMMA 3.4. Let A be an n X n diagonalizable matriz. Then the operator
T = Z(-,dk)’vk (3.5)

has the inverse one defined by

T = i(~,uk)dk, (3.6)

k=1
and (2.1) holds.
Proof. Indeed, we can write out
TIT = "d; Y (di) (v, ug) =Y dj(dy) =T
j=1 k=1 j=1

and

77! Z Z dy, d; j = Z(,Uk Vg =

k=1 j=1

E
Il
—
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Moreover,
AT =3 viAi(d;) and S = Ne(-, di)ds.
j= k=1
Hence,
1AT dezvj’uk ; :Z =
k=1 j=1 7j=1
So, (2.1) really holds. O
LEMMA 3.5. Let T be defined by (3.5). Then
ITI? <D pil Qs and IT7HP <D pillQ,
Jj=1 j=1
and therefore,

m
ke <> pillQsll-

Jj=1

Proof. Due to the previous lemma

1T~ ) = ZI (2, ug)* < | Z lu® (= €C").

By the Schwarz inequality,

(Tz,Tx) ii (x,di) (vg, vs)(x, ds)

k=1 s=1

n n
<D M@ d)PLY ) |(ww, vs) P12 < l)? levsl\2
k=1

s, k=1

But by Lemma 3.2,

m  Pj

n n
Z HUSH2 = Z HUSH2 ZZ HUJk||2 < ZPJ”Q I
s=1 s=1

j=1k=1
Now (3.7) and (3.8) yield the required result. O

Lemmas 3.1 and 3.5 imply:
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COROLLARY 3.6. The inequality kr < B(A) is true.
LEMMA 3.7. Under the hypotheses of Theorem 1.1, we have

Na(f(A) = f(A)) < | T~ 1HHT||maX|f Ak) — ZP;IIQ IIZkaIQkII 112,

where Q, Qj are the eigenprojections of A and A, respectively.

Proof. By (3.6), we have

(T = (- di)us.

k=1

Moreover, due to Lemma 3.2,

DT d)? = Z lur]l* < ZmHQkH
Similarly,
S OITdkl* < el Qll.
k=1 k=1

Now (2.7) implies the required result. O

Thanks to Lemmas 3.5 and 3.7 we get the inequality

Na(f(4) - f(4)) < max |f(Ar) - MY B l1Q31D - prell Q- (3.9)
j=1 k=1

Proof of Theorem 1.1: Inequality (1.2) is due to (2.6) and Corollary 3.6. Inequal-
ity (1.3) is due to (3.9) and Lemma 3.1. O

4. Applications. Let us consider the two differential equations

du du 5 _
E—Au (t >0) and E—Au (t>0),

whose solutions are u(t) and a(t), respectively. Let us take the initial conditions
u(0) = @(0) € C". Then we have

u(t) — i(t) = (exp [At] — exp [At])u(0).
By (1.2),
lu(t) = a(®)]| < [lu(0)| Na(exp [At] - exp [At])
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< te"* No(A — A)B(A)B(A)|u(0)]| (t > 0),
where

o= Inax{m]?xRe A, max Re \; }.
J

Furthermore, let 0 ¢ o(A) U o(A). Then the function
A™Y2 sin (AY2) (t > 0)
is the Green function to the Cauchy problem for the equation

d>w
W—FA’LU:O (t>0).

Simultaneously, consider the equation

o
W—FA’LU:O (t>0),

and take the initial conditions
w(0) =w(0) € C" and w'(0) =w'(0) = 0.
Then we have

w(t) — w(t) = [A7Y2 sin (AY2t) — A7Y/2 sin (AY/24)]w(0).

By (1.2),
sin\(/t}\lﬁ) _ sin (tﬁ)
() — ()] < BAYBA)N(A — Aymax|— VA | (4 50).

gk Ak — A

Here one can take an arbitrary branch of the roots.
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