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ELA

ON THE RELATION BETWEEN THE NUMERICAL RANGE

AND THE JOINT NUMERICAL RANGE

OF MATRIX POLYNOMIALS�

P. J. PSARRAKOSy AND M. J. TSATSOMEROSz

Abstract. It is shown that the numerical range, NR[P (�)], of a matrix polynomial P (�) =
Am�

m + : : :+A1�+A0 consists of the roots of all scalar polynomials whose coeÆcients correspond
to the elements of the convex hull of the joint numerical range of the (m+1)-tuple (A0; A1; : : : ; Am).
Moreover, the elements of the joint numerical range that give rise to scalar polynomials with a
common root belonging to NR[P (�)] form a connected set. The latter fact is used to examine the
multiplicity of roots belonging to the intersection of the root zones of NR[P (�)]. Also an approxima-
tion scheme for NR[P (�)] is proposed, in terms of numerical ranges of diagonal matrix polynomials.

Key words. joint numerical range, matrix polynomial, root zone

AMS subject classi�cations. 15A60, 47A12

1. Introduction. The numerical range of a matrix polynomial and the joint
numerical range of a set of matrices (usually taken to be the coeÆcients of a matrix
polynomial) are both notions that generalize the classical numerical range of a matrix.
The former is a one-dimensional generalization and the latter a multi-dimensional
generalization. We will continue previous e�orts found in our references to study the
relations between these sets and discover their properties. The concluding paragraph
of this section includes a brief description of our results, requiring the following basic
terminology and notation.

Let Mn(C ) denote the algebra of n� n matrices over the complex �eld and let

P (�) = Am�
m + : : :+A1�+A0(1)

be a matrix polynomial, where Aj 2 Mn(C ) (j = 0; 1; : : : ;m), Am 6= 0. The positive
integers m and n are referred to as the degree and the order of P (�), respectively.
The scalar �0 2 C is called an eigenvalue of P (�) if the equation P (�0)x = 0 has a
nonzero solution x = x0 2 C

n. Thus the spectrum of P (�) is the set

�[P (�)] = f� 2 C : detP (�) = 0g:

As detP (�) is a polynomial of degree at most n �m, �[P (�)] is either equal to C or
it consists of at most n �m complex numbers. The numerical range of P (�) is the set

NR[P (�)] = f� 2 C : x�P (�)x = 0 for some nonzero x 2 C
ng;
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which is closed and contains �[P (�)]. Notice that the notion of NR[P (�)] generalizes
the classical numerical range of a matrix A, that is, the convex set

NR[�I �A] = fx�Ax : x 2 C
n; x�x = 1g:

Also notice that �0 2 NR[P (�)] if and only if 0 2 NR[�I � P (�0)]. It is known
that NR[P (�)] is not necessarily connected and that it is bounded if and only if
0 62 NR[�I �Am]; see Li and Rodman [6].

The joint numerical range of P (�) is the set of complex (m+ 1)-tuples

JNR[P (�)] = f(x�A0x; x
�A1x; : : : ; x

�Amx) : x 2 C
n; x�x = 1g:

The joint numerical range, being a continuous image of the unit sphere, is compact
and connected but not necessarily convex; see Binding and Li [1]. Its convex hull is
denoted by CofJNR[P (�)]g. Observe that

NR[P (�)] = f� 2 C : cm�
m + : : :+ c1�+ c0 = 0; (c0; c1; : : : ; cm) 2 JNR[P (�)]g:

Consider now the following two subsets of C : the set of roots of all m-degree
scalar polynomials whose coeÆcients correspond to elements of the joint numerical
range of m+1 given matrices, and the set of roots of all m-degree scalar polynomials
whose coeÆcients correspond to elements of the convex hull of the joint numerical
range of the same m + 1 matrices. As we will see, both these sets coincide and are
equal to the numerical range of the associated matrix polynomial, despite the fact
that the joint numerical range is not necessarily convex (Proposition 2.1). Moreover,
the elements of the joint numerical range associated with scalar polynomials that
have a common root belonging to the numerical range, form a set that is not only
nonempty but also connected (Proposition 2.2). Whether or not the multiplicities of
roots of scalar polynomials with coeÆcients from the two sets above also carry over
is an open (and seemingly substantial) problem with implications in the factorization
of matrix polynomials. Some partial results in this regard can be found in section 3.
Finally, in section 4 we describe a process to approximate the numerical range of a
matrix polynomial using the (joint) numerical ranges of diagonal matrices.

2. The convex hull of the joint numerical range. Notice that if Q(�) is a
matrix polynomial of degree m, then

JNR[P (�)] � JNR[Q(�)] =) NR[P (�)] � NR[Q(�)]:

More generally, given a set G of complex (m+ 1)-tuples such that JNR[P (�)] � G,

NR[P (�)] � f� 2 C : bm�
m + : : :+ b1�+ b0 = 0; (b0; b1; : : : ; bm) 2 Gg:(2)

The following strengthening of (2) holds when G = CofJNR[P (�)]g.
Proposition 2.1. For every matrix polynomial P (�) of degree m we have

NR[P (�)] = f� 2 C : cm�
m + : : :+ c1�+ c0 = 0; (c0; c1; : : : ; cm) 2 CofJNR[P (�)]gg:
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Proof. Let �0 2 C such that

cm�
m
0 + : : :+ c1�0 + c0 = 0(3)

for some c = (c0; c1; : : : ; cm) 2 CofJNR[P (�)]g. By Caratheodory's Theorem applied
to C

m+1, c is a convex combination of � � 2(m + 1) + 1 points q1;q2; : : : ;q� 2
JNR[P (�)], that is,

c =

�X
j=1

tjqj ;

�X
j=1

tj = 1; tj � 0 (j = 1; 2; : : : ; �):

Since there exist unit vectors xj 2 C
n such that

qj = (x�jA0xj ; x
�
jA1xj ; : : : ; x

�
jAmxj) (j = 1; 2; : : : ; �);

we have that

ck =

�X
j=1

tj(x
�
jAkxj) (k = 1; 2; : : : ;m)

and thus (3) becomes

�X
j=1

tj
�
(x�jAmxj)�

m
0 + : : :+ (x�jA1xj)�0 + (x�jA0xj)

�
=

�X
j=1

tj
�
x�jP (�0)xj

�
= 0:

Since all the complex numbers x�jP (�0)xj (j = 1; 2; : : : ; �) belong to the convex set
NR[�I � P (�0)], it follows that 0 2 NR[�I � P (�0)], i.e., �0 2 NR[P (�)]. Hence

f� 2 C : cm�
m + : : :+ c1�+ c0 = 0; (c0; c1; : : : ; cm) 2 CofJNR[P (�)]g � NR[P (�)]:

The opposite inclusion follows from the discussion preceding this proposition.
We continue with an interesting geometric feature of the relation between

NR[P (�)] and JNR[P (�)]. Suppose that cm�
m
0 + : : : + c1�0 + c0 = 0. Then there

exist a0; a1; : : : ; am�1 2 C such that

cm�
m + : : :+ c1� + c0 = (� � �0)(am�1�

m�1 + : : :+ a1�+ a0)

= am�1�
m + (am�2 � �0am�1)�

m�1 + : : :+ (a0 � �0a1)�� �0a0:

We may then de�ne the set of complex (m+ 1)-tuples

T1(�0) = f(c0; c1; : : : ; cm) : cm�
m
0 + : : :+ c1�0 + c0 = 0g(4)

= f(��0a0; a0 � �0a1; : : : ; am�1) : (a0; a1; : : : ; am�1) 2 C
mg

= spanf(��0; 1; 0; : : : ; 0); (0;��0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0;��0; 1)g:

By Proposition 2.1, if T1(�0) intersects CofJNR[P (�)]g, it also intersects JNR[P (�)].
However, the following more general result holds.
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Proposition 2.2. Let P (�) = Am�
m + : : : + A1� + A0 be an n � n matrix

polynomial with n � 3. For every ! 2 NR[P (�)] the set T1(!) \ JNR[P (�)] is
connected.

Proof. The set T1(!)\ JNR[P (�)] consists of all points (c0; c1; : : : ; cm) such that
cm!

m + : : :+ c1! + c0 = 0 and (c0; c1; : : : ; cm) = (x�0A0x0; x
�
0A1x0; : : : ; x

�
0Amx0) for

some x0 2 C
n. It is shown in Lyubich and Markus [8] that the set

L0 = fx 2 C
n : x�x = 1 and x�P (!)x = 0g

is connected for n � 3. Consequently, if we consider the continuous function

� : fx 2 C
n : x�x = 1g �! JNR[P (�)]

de�ned by �(x) = (x�A0x; x
�A1x; : : : ; x

�Amx), then �(L0) = T1(!) \ JNR[P (�)] is
indeed a connected set.

In the special case when P (�) is self-adjoint, that is, the coeÆcient matrices
are Hermitian, JNR[P (�)] consists of real (m + 1)-tuples. Therefore for every ! 2
NR[P (�)] \ R we can de�ne the real hyperplane

T1(!)
R = f(�!a0; : : : ; am�2 � !am�1; am�1) : (a0; a1; : : : ; am�1) 2 R

mg

= spanf(�!; 1; 0; : : : ; 0); (0;�!; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0;�!; 1)g:

Similarly to Proposition 2.2, it can be shown that if P (�) is an n�nmatrix polynomial

with n � 3, then T1(!)
R \ JNR[P (�)] is connected for every ! 2 NR[P (�)] \ R.

3. Root zones of the numerical range. Let P (�) be a matrix polynomial
as in (1), whose numerical range is bounded, that is, 0 62 NR[�I � Am]. We
can always number the roots of x�P (�)x = 0 to obtain a sequence of functionals
�1(x); �2(x); : : : ; �m(x) on the unit sphere S, having ranges �1;�2; : : : ;�m, respec-
tively. We will refer to �1;�2; : : : ;�m as root zones ofNR[P (�)]. We clearly have that
NR[P (�)] =

Sm

j=1 �j ; see Isaev [5]. Lyubich [7] refers to the �j as `root branches' and
uses them in identifying conditions that are equivalent to the roots of x�P (�)x = 0
being simple at every point of S.

If there exists a nonzero x 2 C
n such that x�P (�)x = 0 has multiple roots,

then some root zones have nonempty intersection and thus NR[P (�)] has fewer than
m connected components. In what follows, we will consider the converse, namely,
whether the nonempty intersection of some of the root zones necessarily implies the
existence of multiple roots; see Maroulas and Psarrakos [9, Theorem 3.1] for the self-
adjoint case. For that purpose, we will use the notion of the joint numerical range
and the results of the previous section. We will also need to restrict our attention to
a compact subset of S, where the functionals �1(x); �2(x); : : : ; �m(x) are well de�ned
and continuous. We expand on this requirement next.

Certainly, the roots of x�P (�)x = 0 depend continuously on the coeÆcients
x�Ajx, and thus on x. This fact can be deduced from Ostrowski [10, pp. 334{335] by
considering the companion matrix of the polynomial

�m + bm�1�
m�1 + : : :+ b1�+ b0;



ELA

24 P. J. Psarrakos and M. J. Tsatsomeros

where

bj =
x�Ajx

x�Amx
(j = 0; 1; : : : ;m� 1):

In spite of the continuous dependence of the roots of x�P (�)x = 0 on x, it may not be
possible to de�ne the aforementioned functionals �1(x); �2(x); : : : ; �m(x) continuously
on the whole unit sphere S. This situation is illustrated by the following example.
Consider the matrix polynomial

P (�) = I �2 �

�
0 2
0 2

�

and let x = (cos �e�i �; sin �)T parameterize S. We then have that

x�P (�)x = �2 � sin(2�)ei�:

Thus, if we require continuity of the roots �1(x); �2(x) as functions of x, then it is
easy to verify that they can not be de�ned globally on S.

When the roots of x�P (�)x = 0 are simple for every x 2 S, a unique global
de�nition of each �j(x) as a continuous functional on S is possible and is indeed
obtained in Lyubich [7]. Otherwise, to proceed with our goal, we need to modify the
notion of a root branch �j(x), using in essence the arguments in [7, pp. 55{56]. We
will de�ne continuous functionals �j = �j(x) on a certain compact subset M� of S,
using notions from di�erential geometry for which our general reference is Helgason
[4]. We construct M� under the assumption that the polynomial

L(�; x) � x�P (�)x 2 C [�; x1; x2; : : : ; xn]

has no multiple irreducible factors. Let D(x) be the discriminant of L(�; x) with
respect to the indeterminate �, that is, D(x) is the resultant of the polynomial L(�; x)
and its derivative @

@�
L(�; x). If D(x) � 0 in the polynomial ring C [�; x1; x2 : : : ; xn],

then L(�; x) has a repeated factor not in C [x]; cf. Walker [11, p. 25]). Therefore,
under our assumption, D(x) is a non-zero element of C [x].

Consider now the set

U = [ C n n f0g ] n fx 2 C
n : L(�; x) =

@

@�
L(�; x) = 0 for some � 2 C g

= fx 2 C
n n f0g : D(x) 6= 0g:

The set U is open and is the complement of an algebraic hypersurface in C
n. A

complex algebraic hypersurface has real codimension 2 in the whole space. Thus by
[4, p. 346, Corollary 12.5], U is arcwise connected. It is clear that U is dense in C

n.
Therefore the set

U1 = fx 2 C
n : x�x = 1; D(x) 6= 0g

is an arcwise connected dense open subset of the unit sphere S. The set U1 is not
necessarily simply connected. Consider the universal covering space M0 of U1. We
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can de�ne on M0 analytic functionals �1; �2; : : : ; �m being roots of x�P (�)x = 0, via
a method similar to that mentioned in [7]. Denote by �0 the covering map of M0 onto
U1. For every p 2M0, these functionals satisfy �i(p) 6= �j(p) for 1 � i < j � m. For
every pair p; q of points of M0 satisfying �0(p) = �0(q), there is a permutation � of
f1; 2; : : : ;mg for which

�i(q) = ��(i)(p) (i = 1; 2; : : : ;m):

De�ne now an equivalence relation � on M0 as follows.

p � q if and only if �0(p) = �0(q) and �i(p) = �i(q) (i = 1; 2; : : : ;m):

De�ne now M as the coset space M0= �. Then M is also a covering space of U1.
Let � denote the covering map of M onto U1. The functionals �j are well de�ned
on M . For every pair p; q of M for which �(p) = �(q) and p 6= q, there is an index
1 � i � m with �i(p) 6= �i(q). For every x 2 U1, the number L of points p 2 M
for which �(p) = x is the same and not greater than m!. Thus, M is an analytic
manifold with the natural Riemannian structure. Denote by d the metric function on
M or S. As earlier, using the results in [10, pp. 334{335], we can in fact deduce that
the functionals �j are uniformly continuous on M . Taking an arbitrary � > 0, as S is
compact, there are points y1; y2; : : : ; y` in S such that

S =
[̀
j=1

fy 2 S : d(y; yj) < �=2g:

Since U1 is dense in S, there exist x1; : : : ; x` 2 U1 with d(xj ; yj) < �=2 (j = 1; 2; : : : ; `).
Thus

U1 =
[̀
j=1

fx 2 U1 : d(x; xj) < �g:

For each j, there exist points pj;1; pj;2; : : : ; pj;L of M for which �(pj;k) = xj (k =
1; 2; : : : ; L) and pj;s 6= pj;t for 1 � s < t � L. Then,

M =
[̀
j=1

L[
k=1

fx 2M : d(x; pj;k) < �g:

Since � > 0 is arbitrary, the space M is totally bounded. The completion M� of M
is compact. By uniform continuity, the functionals �j are de�ned and continuous on
M�.

The map � can be extended to a continuous map of M� onto the unit sphere
S. Based on the above discussion and notation, we will in the sequel refer to the
root zones of NR[P (�)] (where P (�) is a matrix polynomial as in (1) with bounded
numerical range) as the sets

�j = f�j(x) : x 2M�g (j = 1; 2; : : : ;m):
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Each root zone �j is a compact subset of the Gaussian plane C .
For �0 2 NR[P (�)] consider now a compact set F �M� that contains a vector x0

such that x�0P (�0)x0 = 0. Viewing �j(x) as a function of the coeÆcients of x�P (�)x,
de�ne the sets

Vj;F (�0) = f(c0;c1 ; : : : ; cm) = (x�A0x; x
�A1x; : : : ; x

�Amx) : x 2 F and

�0= �j(x) := �j(c0; c1; : : : ; cm)g (j = 1; 2; : : : ;m)

and

TF (�0) = f(c0; c1; : : : ; cm) = (x�A0x; x
�A1x; : : : ; x

�Amx) : x 2 Fg \ T1(�0);

where T1(�0) is as de�ned in (4). Clearly,

TF (�0) =

m[
j=1

Vj;F (�0):

Theorem 3.1. Consider the n � n matrix polynomial P (�) = Am�
m + : : : +

A1� + A0. Assume that 0 62 NR[�I � Am] and let �i, �j be distinct root zones of
NR[P (�)]. If

! 2 (�i \ �j) n (
[
k 6=i;j

�k)

and for a compact F �M� there exist x1; x2 2 F such that �i(x1) = �j(x2) = !, and
if the set fx 2 S : x�P (!)x = 0g \ F is connected, then there exists x0 2 F such that
�i(x0) = �j(x0), namely, ! is a double root of x�0P (�)x0 = 0.

Proof. Note that since the set fx 2 S : x�P (!)x = 0g \ F is connected, follow-
ing the proof of Proposition 2.2, we can show that TF (!) is a connected subset of
JNR[P (�)]. Moreover,

TF (!) = Vi;F (!) [ Vj;F (!);

where these three sets are compact subsets of JNR[P (�)]. Consequently, Vi;F (!) \
Vj;F (!) 6= ; and there exists x0 2 F such that �i(x0) = �j(x0) = !.

We comment that when ! 2 (�i \ �j) n (
S
k 6=i;j �k), then there always exist

p; q 2M� such that �i(p) = �j(q) = !. However, for the existence of the vector x0 as
in the above theorem, p and q must be connected by a continuous curve in

fx 2 S : x�P (!)x = 0g \M�;

a fact implied by the remaining assumptions of Theorem 3.1.
Theorem 3.2. Consider the n�n matrix polynomial P (�) = Am�

m+: : :+A1�+
A0. Assume that 0 62 NR[�I�Am] and let �i, �j be distinct root zones of NR[P (�)].
If there exists a compact F �M� and x1; x2 2 F such that �i(x1) = �j(x2) = !, and
if the set fx 2 S : x�P (!)x = 0g \ F is connected, then there exists x0 2 F such that
! is a multiple root of x�0P (�)x0 = 0.
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Proof. As in the proof of Theorem 3.1, the sets

Vi;F (!) and
[
k 6=i

Vk;F (!)

are nonempty and compact subsets of F �M�. Moreover, the set

TF (!) = Vi;F (!) [

2
4[
k 6=i

Vk;F (!)

3
5

is a compact and connected subset of JNR[P (�)]. Hence,

Vi;F (!) \

2
4[
k 6=i

Vk;F (!)

3
5 6= ;;

that is, there exists x0 2 F such that �i(x0) = �k(x0) = ! for at least one k 6= i.

4. Polyhedra and the joint numerical range. Consider two matrix polyno-
mials P (�) = Am�

m + : : : + A1� + A0 and Q(�) = Bm�
m + : : : + B1� + B0, not

necessarily of the same order. If JNR[P (�)] � JNR[Q(�)] or if CofJNR[P (�)]g �
CofJNR[Q(�)]g, then by our discussion in section 2, NR[P (�)] � NR[Q(�)]. Let us
further assume NR[P (�)] and NR[Q(�)] are bounded. Then for any (c0; c1 : : : ; cm)
in JNR[P (�)], the equation cm�

m + : : : + c1� + c0 = 0 has at least one root in ev-
ery connected component of NR[P (�)]. A similar statement is true for JNR[Q(�)]
and the connected components of NR[Q(�)]. Thus NR[Q(�)] has at most as many
connected components as NR[P (�)].

In view of the above, consider now two diagonal matrix polynomials D1(�) and
D2(�) such that

JNR[D1(�)] � JNR[P (�)] � JNR[D2(�)]:(5)

Let #NR[P (�)] denote the number of connected components of NR[P (�)]. From the
preceding discussion it follows that

#NR[D1(�)] � #NR[P (�)] � #NR[D2(�)]:(6)

Observe that the orders of D1(�) and D2(�) are irrelevant as long as (5) is satis�ed.
Moreover, (6) gives an approximation of the number of connected components of
NR[P (�)] that can be quite useful, especially when the order n of P (�) is a lot
greater than its degree m.

We do know that the joint numerical range of a diagonal matrix polynomial is a
convex polyhedron; see [1] and [9]. Conversely, if K � C

m+1 is a convex polyhedron
with n vertices

(ck;0; ck;1; : : : ; ck;m); k = 1; 2; : : : ; n;
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then K = JNR[D(�)], where

D(�) = diag(c1;m; : : : ; cn;m)�
m + : : :+ diag(c1;1; : : : ; cn;1)�+ diag(c1;0; : : : ; cn;0):

Lemma 4.1. Let T � C
m be a nonempty compact set and W a subspace of C m

such that W \K 6= ; for every convex polyhedron K � C
m that contains T . Then

CofTg \W 6= ;.
Proof. Let K be the family of all convex polyhedra that contain T . Notice that

K is intersection closed. Since T is compact, we have that

CofTg =
\
K2K

K:

De�ne F = fW \ K : K 2 Kg. By assumption, all members of F are compact,
nonempty and convex. Moreover, if W \Kj 2 F (j = 1; 2; : : : ; p), we have

p\
j=1

(W \Kj) =W \ (

p\
j=1

Kj) 2 F

since
Tp
j=1Kj 2 K. Hence by Helly's Theorem (see Danzer, Grunbaum, and Klee

[3]),
T
K2K(W \K) 6= ;. It follows that CofTg \W = (

T
K2KK) \W 6= ;:

The following result is a generalization of [9, Theorem 1.1].
Theorem 4.2. Let P (�) = Am�

m+: : :+A1�+A0 be an n�n matrix polynomial.
Then [

NR[D1(�)] = NR[P (�)] =
\
NR[D2(�)];(7)

where the union [intersection] is taken over all diagonal matrix polynomials D1(�)
[D2(�)] of degree m for which JNR[D1(�)] � JNR[P (�)] � JNR[D2(�)].

Proof. For every diagonal matrix polynomial D1(�) with
JNR[D1(�)] � JNR[P (�)] it is clear that NR[D1(�)] � NR[P (�)]. Thus

[
JNR[D1(�)]�JNR[P (�)]

NR[D1(�)] � NR[P (�)]:

In addition, for every c = (c0; c1; : : : ; cm) 2 JNR[P (�)] we can takeD1(�) = cmI�
m+

: : :+ c1I�+ c0I so that JNR[D1(�)] = fcg. Hence

[
JNR[D1(�)]�JNR[P (�)]

NR[D1(�)] � NR[P (�)]

and the �rst equation in (7) holds. For the second equation, notice that for every
diagonal polynomial matrix D2(�) of degree m for which JNR[D2(�)] � JNR[P (�)],
we have NR[D2(�)] � NR[P (�)]. Thus

NR[P (�)] �
\

JNR[D2(�)]�JNR[P (�)]

NR[D2(�)]:
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Let now

�0 2
\

JNR[D2(�)]�JNR[P (�)]

NR[D2(�)]:

From the discussion in section 2 (see (4)) it follows that T1(�0)\JNR[D2(�)] 6= ; for
every diagonal matrix polynomial D2(�) satisfying JNR[D2(�)] � JNR[P (�)]. Hence
from Lemma 4.1,

T1(�0) \ CofJNR[P (�)]g 6= ;;

and from Proposition 2.1, T1(�0)\JNR[P (�)] 6= ;. So there exists unit x0 2 C
n such

that

(x�0Amx0)�
m
0 + : : :+ (x�0A1x0)�0 + x�0A0x0 = 0;

which in turn implies

NR[P (�)] �
\

JNR[D2(�)]�JNR[P (�)]

NR[D2(�)];

completing the proof.
Observation 4.3. In (7) we can replace JNR[P (�)] by its convex hull.
Observation 4.4. Theorem 4.2 gives a method of approximation of NR[P (�)]

by numerical ranges of diagonal matrix polynomials. With the help of Proposition
2.1, we can develop a second method as follows. Consider two sequences of convex

polyhedra fK
(i)
t g (i = 1; 2 and t = m+ 2;m+ 3; : : :) so that K

(i)
t has t vertices,

K
(1)
t � CofJNR[P (�)]g � K

(2)
t (t = m+ 2;m+ 3; : : :);

and lastly so that both K
(i)
t converge to CofJNR[P (�)]g as t!1. If we let D

(i)
t (�)

for i = 1; 2 be t � t diagonal matrix polynomials associated with K
(i)
t , respectively,

then for all t � m+ 2,

NR[D
(1)
t ] � NR[P (�)] � NR[D

(2)
t ]

and both NR[D
(i)
t ] converge to NR[P (�)] as t ! 1. In other words, NR[P (�)] can

be approximated by numerical ranges of diagonal matrix polynomials of the same
degree and appropriately large order.

The results in Binding, Farenick, and Li [2] suggest another method of associat-
ing numerical ranges of matrix polynomials to numerical ranges of diagonal matrix
polynomials via dilations.
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