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Abstract. Let A be a nonsingular M -matrix, and τ(A) denote its minimum eigenvalue. Shiv-

akumar et al. [SIAM J. Matrix Anal. Appl., 17(2):298-312, 1996] presented some bounds of τ(A)

when A is a weakly chained diagonally dominant M -matrix. The present paper establishes some new

bounds of τ(A) for a general nonsingular M -matrix A. Numerical examples show that the results

obtained are an improvement over some known results in certain cases.
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1. Introduction. Let Z denote the class of all n× n real matrices all of whose

off-diagonal entries are nonpositive. A matrix A ∈ Z is called an M -matrix [1] if

there exists an n×n nonnegative matrix B and some nonnegative real number λ such

that A = λIn − B and λ ≥ ρ(B), where ρ(B) is the spectral radius of B, In is the

identity matrix; if λ > ρ(B), then A is called a nonsingular M -matrix ; if λ = ρ(B),

we call A a singular M -matrix. If D is the diagonal matrix of A and C = D − A,

then the spectral radius of the Jacobi iterative matrix JA = D−1C of A denoted by

ρ(JA) is less than 1 (see also [1]). Let q = (q1, q2, . . . , qn)
T denote the eigenvector

corresponding to ρ(JA).

For two real matrices A = (aij) and B = (bij) of the same size, the Hadamard

product of A and B is defined as the matrix A ◦ B = (aijbij). If A and B are two

nonsingular M -matrices, then it is proved [2] that A◦B−1 is a nonsingular M -matrix.

If A is a nonsingular M -matrix, then there exists a positive eigenvalue of A equal

to τ(A) = [ρ(A−1)]−1, where ρ(A−1) is the spectral radius of the nonnegative matrix

A−1. τ(A) is called the minimum eigenvalue of A [3]. The Perron-Frobenius theorem

[1] tells us that τ(A) is a eigenvalue of A corresponding to a nonnegative eigenvector,
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q = (q1, q2, . . . , qn)
T ≥ 0. If, in addition, A is irreducible, then τ(A) is simple and

q > 0.

For convenience, we shall employ the following notations throughout. Let N =

{1, . . . , n}. Let A = (aij) ∈ R
n,n be nonsingular with aii 6= 0 for all i ∈ N , and

A−1 = (αij),

Ri(A) =

n
∑

j=1

aij , Ci(A) =

n
∑

j=1

aji,

σi =
1

|aii|
∑

j 6=i

|aij |, δi =
1

|aii|
∑

j 6=i

|aji|,

R(A) = max
i∈N

n
∑

j=1

aij , r(A) = min
i∈N

n
∑

j=1

aij ,

and

M = max
i∈N

n
∑

j=1

αij , m = min
i∈N

n
∑

j=1

αij .

We shall always assume aii 6= 0 for all i ∈ N . The following definitions can be

found in [1, 7, 8]. Recall that A is called diagonally dominant by rows (by columns) if

σi ≤ 1 (δi ≤ 1, respectively) for all i ∈ N . If σi < 1 (δi < 1), we say that A is strictly

diagonally dominant by rows (by columns, respectively). A is called weakly chained

diagonally dominant if σi ≤ 1, J(A) = {i ∈ N : σi < 1} 6= φ and for all i ∈ N \ J(A),
there exist indices i1, i2, . . . , ik in N with air ,ir+1

6= 0, 0 ≤ r ≤ k−1, where i0 = i and

ik ∈ J(A). Notice that a strictly diagonally dominant matrix is also weakly chained

diagonally dominant.

Finding bounds on τ(A) is a subject of interest on its own and various refined

bounds can be found in [6, 8]. Shivakumar et al. [8] obtained the following bounds

when A is a weakly chained diagonally dominant M -matrix.

Theorem 1.1. Let A = (aij) be a weakly chained diagonally dominant M -matrix,

and A−1 = (αij). Then

r(A) ≤ τ(A) ≤ R(A), τ(A) ≤ min
i∈N

aii and
1

M
≤ τ(A) ≤ 1

m
.

In Theorem 1.1, it is possible that r(A) equals zero or that 1

M
is very small.

Moreover, whenever A is not (weakly chained) diagonally dominant, Theorem 1.1 can

not be used to estimate some bounds of τ(A). In this paper, using the method of the

optimally scaled matrices, we shall establish some new bounds of τ(A) for a general
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nonsingular M -matrix A. Numerical examples show that our results are better than

some known results in some cases. Further, we also exhibit some new bounds of τ(A)

that only depend on the entries of matrix A.

2. Some Lemmas. In this section, we will present some lemmas, which shall

be useful in the following proofs. The following Lemma 2.1 comes from [9].

Lemma 2.1. (i) Let A = (aij) be a strictly diagonally dominant matrix by rows,

that is, σi < 1 for all i ∈ N . Then A−1 = (αij) exists, and for all i 6= j,

|αji| ≤
∑

k 6=j |ajk|
|ajj |

|αii| = σj |αii|.

(ii) Let A = (aij) be a strictly diagonally dominant matrix by columns, that is,

δi < 1 for all i ∈ N . Then A−1 = (αij) exists, and for all i 6= j

|αij | ≤
∑

k 6=j |akj |
|ajj |

|αii| = δj |αii|.

Lemma 2.2. (i) Let A = (aij) be a strictly diagonally dominant M -matrix by

rows. Then A−1 = (αij) satisfies

1

aii
≤ αii ≤

1

aii +
∑

j 6=i aijσj

≤ 1

Ri(A)
.

(ii) Let A = (aij) be a strictly diagonally dominant M -matrix by columns. Then

A−1 = (αij) satisfies

1

aii
≤ αii ≤

1

aii +
∑

j 6=i ajiδj
≤ 1

Ci(A)
.

Proof. We prove only (i); the proof of (ii) is similar and is omitted. Since A is a

strictly diagonally dominant M -matrix, A−1 ≥ 0. By A ·A−1 = I, for all i ∈ N ,

1 = aiiαii +
∑

j 6=i

aijαji,

which implies

1

aii
≤ αii.

By Lemma 2.1, one has

αji ≤
∑

k 6=j |ajk|
ajj

αii = σjαii.
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Notice that 0 ≤ σj < 1, one obtains

1 ≥ aiiαii +
∑

j 6=i

aijσjαii =



aii +
∑

j 6=i

aijσj



αii ≥



aii +
∑

j 6=i

aij



αii,

which implies

αii ≤
1

aii +
∑

j 6=i aijσj

≤ 1

Ri(A)
.

This completes the proof.

The following Lemmas 2.3 and 2.4 can be found in [4].

Lemma 2.3. Let M = (mij) be a nonsingular M -matrix, and N = (nij) be a

nonnegative matrix of same size. Then ρ(M−1N) satisfies:

(i) If M is strictly diagonally dominant by rows, then

min
i∈N

{

∑n

j=1
nij

mii +
∑

j 6=i mij

}

≤ ρ(M−1N) ≤ max
i∈N

{

∑n

j=1
nij

mii +
∑

j 6=i mij

}

.

(ii) If M is strictly diagonally dominant by columns, then

min
i∈N

{

∑n

j=1
nji

mii +
∑

j 6=i mji

}

≤ ρ(M−1N) ≤ max
i∈N

{

∑n

j=1
nji

mii +
∑

j 6=i mji

}

.

Lemma 2.4. Let A = (aij) be an irreducible matrix and aii 6= 0 for all i ∈ N .

Then there exists a positive diagonal matrix Q = diag(q1, q2, . . . , qn) and Ã = (ãij) =

AQ such that

∑

j 6=i

|ãij |
|ãii|

= ρ(JA),

where ρ(JA) is the spectral radius of the Jacobi iterative matrix JA of A and q =

(q1, q2, . . . , qn)
T is the eigenvector corresponding to ρ(JA). Ã is called the optimally

scaled matrix of A.

To proof Lemma 2.6, we also need the following Lemma 2.5 (see [1]).

Lemma 2.5. Let A be a nonnegative matrix. If Az ≤ kz for a positive nonzero

vector z, then ρ(A) ≤ k.

Lemma 2.6. Suppose that A = (aij) is a nonnegative matrix and B = (bij) is a

nonsingular M -matrix. Let B−1 = (βij). Then

ρ(A ◦B−1) ≤ max
i∈N

{aiiβii + βiiρ(JB)(ρ(A) − aii)} ≤ max
i∈N

βiiρ(A).(2.1)
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Proof. It is quite evident that (2.1) holds with equality for n = 1. In the following,

we shall assume that n ≥ 2, considering the following two cases:

Case 1 : Both A and B are irreducible. Suppose that v = (v1, v2, . . . , vn)
T is the

eigenvector corresponding to the special radius of the Jacobi iterative matrix of BT .

Let V = diag(v1, v2, . . . , vn). Then, by Lemma 2.4, BTV is an optimally scaled matrix

by rows. Thus B̃ = (b̃ij) = V B is also an optimally scaled matrix by columns. Let

B̃−1 = (β̃ij). Notice that both B−1 and B̃−1 are positive matrices, and by Lemma

2.1,

β̃ij ≤
∑

k 6=j |b̃kj |
b̃jj

β̃ii =

∑

k 6=j |bkj |vk
bjjvj

βii

vi
= ρ(JBT )

βii

vi
.

Let D be the diagonal matrix of B and C = D−B. Then the Jacobi iterative matrix

of B is JB = D−1C. Since BT = D − CT , then JBT = D−1CT . It is easy to verify

that ρ(JB) = ρ(JBT ). Hence,

βij ≤ ρ(JB)
βii

vi
vj .

Now let P = A ◦ B−1 and y = (y1, y1, . . . , yn)
T denote the eigenvector corre-

sponding to ρ(A), that is, Ay = ρ(A)y. Let z = (z1, z2, . . . , zn)
T , where zi = yi/vi.

Since B−1 > 0, it follows from both A and B are irreducible that P is irreducible as

well, and for each i ∈ N ,

(Pz)i =

n
∑

j=1

aijβijzj = aiiβiizi +
∑

j 6=i

aijβijzj

≤ aiiβiizi +
∑

j 6=i

aij(ρ(JB)
βii

vi
vj)zj

= aiiβiizi + ρ(JB)
βii

vi

∑

j 6=i

aijyj

= aiiβiizi + ρ(JB)
βii

vi
(ρ(A) − aii)yi

= [aiiβii + βiiρ(JB)(ρ(A)− aii)]zi

≤ βiiρ(A)zi,

where the last inequality follows from ρ(JB) ≤ 1. Thus

(Pz)i ≤ {max
i∈N

[aiiβii + βiiρ(JB)(ρ(A) − aii)]}zi ≤ {max
i∈N

βiiρ(A)}zi.

By Lemma 2.5, this shows that Lemma 2.6 is valid for this case.
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Case 2 : One of A and B is reducible. By replacing the zeros of A and B with ε

and −ε, respectively, we obtain the nonnegative matrix A(ε) and the Z-matrix B(ε),

both irreducible. B(ε) is a nonsingular M -matrix if ε is a sufficiently small positive

number. Now replace A and B with A(ε) and B(ε), respectively, in the previous case.

Letting ε approach 0, the result follows by continuity.

Remark 2.7. Under the hypotheses of Lemma 2.6, it follows that

diag(β11, β22, . . . , βnn) ≤ B−1,

and one may show that maxi∈N βii ≤ ρ(B−1). Thus

max
i∈N

βiiρ(A) ≤ ρ(A)ρ(B−1).

This shows that Lemma 2.6 is an improvement on Theorem 5.7.4 of [3] when B−1 is

an inverse M -matrix.

3. Upper and lower bounds for τ(A) and q. In this section, we shall obtain

some upper and lower bounds for τ(A).

Theorem 3.1. Let B = (bij) be a nonsingular M -matrix and B−1 = (βij). Then

τ(B) ≥ 1

1 + (n− 1)ρ(JB)
· 1

maxi∈N βii

,

where ρ(JB) is the spectral radius of the Jacobi iterative matrix JB of B.

Proof. Let A = (aij) be a nonnegative matrix. It follows from Lemma 2.6 that

ρ(A ◦B−1) ≤ max
i∈N

{aiiβii + βiiρ(JB)(ρ(A)− aii)}.(3.1)

Take A = J , where J denotes the matrix of all elements one. Notice that ρ(A) = n.

The inequality (3.1) yields that

τ(B) =
1

ρ(B−1)
≥ 1

1 + (n− 1)ρ(JB)
· 1

maxi∈N βii

.

This completes our proof.

Let

A =

[

3 −3

−1 4

]

.

Applying Theorem 3.1, one has

τ(A) ≥ 2

3
· 9
4
= 1.5.
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However, applying Theorem 1.1, one has

τ(A) ≥ 9

7
≈ 1.286.

Hence the lower bound of Theorem 3.1 is better than that of Theorem 1.1 in some

cases.

In Theorem 1.1, some bounds were given for τ(A) when A is weakly chained

diagonally dominant M -matrix. Actually, we may obtain similar results for a general

nonsingular M -matrix. The following Theorem 3.2 can be found in [7]. For the

convenience of the readers, we provide its proof.

Theorem 3.2. Let A = (aij) be a nonsingular M -matrix and A−1 = (αij). Then

r(A) ≤ 1

M
≤ τ(A) ≤ 1

m
≤ R(A).

Proof. Since A is a nonsingular M -matrix, then A−1 ≥ 0. The Perron-Frobenius

theorem [1] implies that

1

M
≤ 1

ρ(A−1)
= τ(A) ≤ 1

m
.

In the following, we shall show that r(A) ≤ 1

M
and 1

m
≤ R(A).

Expanding the determinant of A by column i,

detA =

n
∑

j=1

ajiAji =

n
∑

j=1

n
∑

k=1

ajkAji =

n
∑

j=1

Rj(A)Aji ≥ r(A)

n
∑

j=1

Aji,(3.2)

where Aji denotes the (i, j)-th cofactor of A. Thus the inequality (3.2) implies that

r(A) ≤ detA
∑n

j=1
Aji

=
1

Ri(A−1)
, ∀i ∈ N.

This shows that r(A) ≤ 1

M
as i is arbitrary.

Using the same method, one may show that 1

m
≤ R(A).

Example 3.3. Let A be the following matrix (see [5])

A =















1 −0.2 −0.1 −0.2 −0.1

−0.4 1 −0.2 −0.1 −0.1

−0.9 −0.2 1 −0.1 −0.1

−0.3 −0.7 −0.3 1 −0.1

−1 −0.3 −0.2 −0.4 1















.
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It is easy to verify that A is a nonsingular M -matrix, but it is not weakly chained

diagonally dominant. Hence Theorem 1.1 may not be used to estimate the lower

bounds of τ(A). However, applying Theorems 3.1 and 3.2, one has

τ(A) ≥ max

{

1

1 + (n− 1)ρ(JA)
· 1

maxi∈N αii

,
1

M

}

≥ max

{

1

1 + 4× 0.9919
· 1

33.6729
,

1

215.2253

}

≈ max {0.0060, 0.0046} = 0.0060.

In fact, τ(A) ≈ 0.0081.

Combining Lemmas 2.2, 2.3 with Theorem 3.1, we may calculate lower bounds

for τ(A) which depend on the entries of matrix A when A is a strictly diagonally

dominant M -matrix.

Corollary 3.4. (i) Let A = (aij) be a strictly diagonally dominant M -matrix

by rows. Then

τ(A) ≥ 1

1 + (n− 1)maxi∈N σi

min
i∈N

{

aii +
∑

j 6=i
aijσj

}

.

(ii) Let A = (aij) be a strictly diagonally dominant M -matrix by columns. Then

τ(A) ≥ 1

1 + (n− 1)maxi∈N δi
min
i∈N

{

aii +
∑

j 6=i
ajiδj

}

.

Example 3.5. Let

A =





1.2 −0.1 −0.1

−0.3 1.0 −0.1

−0.2 −0.4 0.8



 .

It is easy to verify that A is a nonsingular M -matrix. Applying Lemmas 2.2 and 2.3,

we have 0.8333 ≤ α11 ≤ 0.9217, 1.0000 ≤ α22 ≤ 1.1429, 1.2500 ≤ α33 ≤ 1.6483 and

0.25 ≤ ρ(JA) ≤ 0.5, respectively. Now we may use Theorem 3.1 to estimate the lower

bound for τ(A)

τ(A) ≥ 1

1 + 2× 0.5
· 1

1.6483
≈ 0.3033.

However, applying Theorem 3.3 in [8], one has M ≤ 4. Then applying Theorem 1.1,

we obtain

τ(A) ≥ 1

4
= 0.25.
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This shows that our results are better than Theorem 1.1 in some cases.

In Theorem 3.1, the spectral radius of the Jacobi iterative matrix may be es-

timated using Lemma 2.3, but it is difficult for us to estimate the upper bound of

diagonal elements of A−1. Lemma 2.2 provides an upper bound of diagonal elements

of A−1 for a strictly diagonally dominant M -matrix A. Unfortunately, we are not able

to give the corresponding upper bound when A is a general nonsingular M -matrix.

It would be an interesting problem to be studied in future research.

Next, we shall exhibit some new bounds for τ(A) in terms of the spectral radius

of the Jacobi iterative matrix and its corresponding eigenvector.

Theorem 3.6. Let A = (aij) be an irreducible nonsingular M -matrix. Then

(1− ρ(JA))
mini∈N aiiqi
maxi∈N qi

≤ τ(A) ≤ (1− ρ(JA))
maxi∈N aiiqi
mini∈N qi

,(3.3)

where ρ(JA) is the spectral radius of the Jacobi iterative matrix JA of A and q =

(q1, q2, . . . , qn)
T is its eigenvector corresponding to ρ(JA).

Remark that in Theorem 3.6, A must be irreducible to ensure that qi 6= 0.

Proof. It is quite evident that (3.3) holds with equality for n = 1. In the following,

suppose that n ≥ 2. Since A is an irreducible nonsingular M -matrix, by Lemma 2.4,

there exists a positive diagonal matrix Q = diag(q1, q2, . . . , qn) such that AQ satisfies

∑

j 6=i

|aijqj |
aiiqi

= ρ(JA).

Since AQ is also a nonsingular M -matrix and Q−1A−1 ≥ min
i∈N

1

qi
A−1, then

τ(AQ) =
1

ρ(Q−1A−1)
≤ 1

ρ(A−1)mini∈N
1

qi

= τ(A)max
i∈N

qi.

Similarly,

τ(AQ) ≥ τ(A)min
i∈N

qi.

Thus, we have

τ(AQ)

maxi∈N qi
≤ τ(A) ≤ τ(AQ)

mini∈N qi
.(3.4)

Notice that AQ is strictly diagonally dominant matrix by rows and its row sums equal

to (1 − ρ(JA))aiiqi for all i ∈ N . By Theorem 3.2,

(1− ρ(JA))min
i∈N

aiiqi ≤ τ(AQ) ≤ (1− ρ(JA))max
i∈N

aiiqi.(3.5)
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From (3.4) and (3.5), we get that the inequality (3.3) holds.

Corollary 3.7. Let A be an irreducible nonsingular M -matrix. Then there exist

two positive diagonal matrices D = diag(d1, d2, . . . , dn) and E = diag(e1, e2, . . . , en)

such that DA−1E is a doubly stochastic matrix and

min
i∈N

dimin
i∈N

ei ≤ τ(A) ≤ max
i∈N

di max
i∈N

ei.(3.6)

Proof. Since A is an irreducible nonsingular M -matrix, then A−1 is positive.

By Theorem 2-6.34 in [1], there exist two positive diagonal matrices D and E such

that DA−1E is a doubly stochastic matrix. This implies that E−1AD−1 is also a

nonsingular M -matrix and τ(E−1AD−1) = 1.

Let D = diag(d1, d2, . . . , dn) and E = diag(e1, e2, . . . , en). From the proof of

Theorem 3.6, one obtains

τ(E−1AD−1) ≥ min
i∈N

1

ei
τ(AD−1) ≥ min

i∈N

1

di
min
i∈N

1

ei
τ(A),

which implies

τ(A) ≤ max
i∈N

di max
i∈N

ei.

Similarly, we have

τ(A) ≥ min
i∈N

di min
i∈N

ei.

This completes our proof.

The following matrix A in Example 3.8 comes from [8].

Example 3.8. Let

A =















2 −1 0 0 0

−1 4 −1 −1 −1

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1















.

It is easy to verify that A is a nonsingular M -matrix. Applying Theorem 1.1, one has

0.03704 ≈ 1

27
≤ τ(A) ≤ 1.

Now, applying Theorem 3.6, we obtain

0.06458 ≈ 4−
√
14

4
≤ τ(A) ≤ 4

√
14− 14

2
≈ 0.4833.
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This shows that Theorem 3.6 provides tighter bounds than Theorem 1.1 in some

cases.

Theorem 3.9. Let A = (aij) be an irreducible nonsingular M -matrix and the

eigenvector q = (q1, q2, . . . , qn)
T corresponding to ρ(JA) satisfy ‖ q ‖1= 1. Then

minj 6=i |aij |
aiiρ(JA) + minj 6=i |aij |

≤ qi ≤
maxj 6=i |aij |

aiiρ(JA) + maxj 6=i |aij |
,(3.7)

where qi > 0 if minj 6=i |aij | = 0.

Proof. Let D be the diagonal matrix of A and C = D − A. Then the Jacobi

iterative matrix of A is JA = D−1C, that is, D−1Cq = ρq, where ρ = ρ(JA). It

follows from Lemma 2.4 that, for all i ∈ N ,

aiiρqi =
∑

j 6=i

|aij |qj .

Hence,

aiiρqi ≤ max
j 6=i

|aij |
∑

j 6=i

qj = max
j 6=i

|aij |(1 − qi),

which implies

qi ≤
maxj 6=i |aij |

aiiρ+maxj 6=i |aij |
.

Similarly, we get, for all i ∈ N ,

qi ≥
minj 6=i |aij |

aiiρ+minj 6=i |aij |
.

This completes our proof.

Theorem 3.9, together with Theorem 3.6, may be used to estimate some bounds

of τ(A) for an irreducible nonsingular M -matrix A. For example, let A be the matrix

in Example 3.3. Applying Theorem 3.9, we obtain that

min
i

qi ≥ 0.09158, max
i

qi ≤ 0.50203.

Also applying Theorem 3.6, one has

0.001476 ≤ τ(A) ≤ 0.04440.

When A is an irreducible nonsingular M -matrix and aij 6= 0 for all i 6= j, using

Theorem 3.9, we may obtain positive bounds of q. Then Theorem 3.6 can be used
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to estimate some bounds of τ(A). However, if there exists some entry aij = 0 in all

elements of A, we may only obtain q > 0. This show that Theorem 3.6 is invalid in

this case. To determine some positive bounds of eigenvector corresponding to ρ(JA)

in this case would be an interesting problem for future research.
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