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STARLIKE TREES WITH MAXIMUM DEGREE 4 ARE

DETERMINED BY THEIR SIGNLESS LAPLACIAN SPECTRA∗

GHOLAM R. OMIDI† AND EBRAHIM VATANDOOST‡

Abstract. A graph is said to be determined by its signless Laplacian spectrum if there is no

other non-isomorphic graph with the same spectrum. In this paper, it is shown that each starlike

tree with maximum degree 4 is determined by its signless Laplacian spectrum.
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1. Introduction. In this paper, we are only concerned with undirected simple

graphs (loops and multiple edges are not allowed). Let G be a graph with n vertices,

m edges and the adjacency matrix A. We denote the maximum degree of G by

∆(G). Let D be the diagonal matrix of vertex degrees. The matrices L = D − A

and Q = D + A are called the Laplacian matrix and signless Laplacian matrix of G,

respectively. Since A, L and Q are real symmetric matrices, their eigenvalues are real

numbers. So we can assume that λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn are the

adjacency and signless Laplacian eigenvalues of G, respectively.

Let M be an associated matrix of a graph G (the adjacency matrix, the Laplacian

matrix and the signless Laplacian matrix). The multiset of eigenvalues of M is called

the M spectrum of G. Two graphs are said to be cospectral with respect to M if they

have the same M spectrum. A graph is said to be determined (DS for short) by the

M spectrum if there is no other non-isomorphic graph with the same spectrum of M .

A tree is called starlike if it has exactly one vertex of degree greater than two. We

will denote by S(l1, l2, . . . , lr) the unique starlike tree such that S(l1, l2, . . . , lr)− v =

Pl1∪Pl2 ∪. . .∪Plr , where Pli is the path on li vertices (i = 1, . . . , r) and v is the vertex

of degree greater than two. A starlike with maximum degree 3 is called a T -shape
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and is denoted by T (l1, l2, l3).

Since the problem of characterization of DS graphs is very difficult, finding any

new infinite family of DS graphs is interesting. In [7], it was shown that T (1, 1, n−3)

and some graphs related to it are determined by their adjacency spectra as well as

their Laplacian spectra. In [9], Wang and Xu proved that T (l1, l2, l3) is determined

by its adjacency spectrum if and only if (l1, l2, l3) 6= (l, l, 2l− 2) for any integer l ≥ 2.

In [10] they moreover showed that T-shape trees are determined by their Laplacian

spectra. Tajbakhsh and Omidi showed that starlike trees are determined by their

Laplacian spectra (see [6]). In [5] it has been shown that T (l1, l2, l3) is determined by

its signless Laplacian spectrum if and only if (l1, l2, l3) 6= (l, l, 2l − 1) for any integer

l ≥ 1. In this paper, we show that each starlike tree with maximum degree 4 is

determined by its signless Laplacian spectrum.

2. Preliminaries. First we give some facts that are needed in the next section.

Lemma 2.1. [8](Interlacing) Suppose that A is a symmetric n × n matrix with

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then the eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µm of a

principal submatrix of A of size m×m satisfy λi ≥ µi ≥ λn−m+i for i = 1, . . . ,m.

Lemma 2.2. ([8])Let G be a graph. For the adjacency matrix, the Laplacian

matrix and the signless Laplacian the following can be obtained from the spectrum.

i) The number of vertices.

ii) The number of edges.

For the adjacency matrix the following follows from the spectrum.

iii) The number of closed walks of any length.

iv) Whether G is bipartite.

Lemma 2.3. [2] The least eigenvalue of the signless Laplacian of a connected

graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple

eigenvalue.

Corollary 2.4. In any graph (possibly disconnected) the multiplicity of the

eigenvalue 0 of the signless Laplacian is equal to the number of bipartite components.

The line graph of a starlike tree S(l1, l2, . . . , lr) is called the sunlike graph. We will

denote this by K(l1, l2, . . . , lr).

Theorem 2.5. [4] If K(l1, l2, . . . , lr) and K(l′1, l
′

2, . . . , l
′

m) are two cospectral

sunlike graphs with respect to the adjacency matrix, then they are isomorphic.

Lemma 2.6. [2] Let G be a connected graph and let H be a proper subgraph of

G. Then λ1(H) < λ1(G).
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Theorem 2.7. [2] Let G and H be connected graphs and {G,H} 6= {K1,3,K3}.

Then G and H are isomorphic if and only if their line graphs L(G) and L(H) are

isomorphic.

Lemma 2.8. [3] Let G be a connected graph that is not isomorphic to Wn,

where Wn is a graph obtained from the path P(n−2) (indexed by the natural order of

1, 2, . . . , n− 2) by adding two pendant edges at vertices 2 and n− 3. Let Guv be the

graph obtained from G by subdividing the edge uv of G. If uv lies on an internal path

of G, then λ1(Guv) ≤ λ1(G).

Let n, m, R be the number of vertices, the number of edges and the vertex-edge

incidence matrix of a graph G, respectively. The following relations are well-known:

RRT = A+D, RTR = AL + 2I, (2.1)

whereD is the diagonal matrix of vertex degrees and AL is the adjacency matrix of the

line graph L(G) of G. Let PL(G)(λ) and QG(λ) be characteristic polynomials of L(G)

and G with respect to the adjacency and signless Laplacian matrices, respectively.

Since non-zero eigenvalues of RRT and RTR are the same, by relations (2.1), we

immediately obtain:

PL(G)(λ) = (λ + 2)(m−n)QG(λ+ 2). (2.2)

Remark 2.9. If m < n, the matrix Q must have eigenvalue 0 with multiplicity

at least n−m.

Corollary 2.10. If two graphs G and G′ are cospectral with respect to the

signless Laplacian matrix, then L(G) and L(G′) are cospectral with respect to the

adjacency matrix.

The following useful Lemma provides some formulas for calculating the number

of closed walks of small lengths.

Lemma 2.11. [5] Let NG(H) be the number of subgraphs of a graph G which are

isomorphic to H and let NG(i) be the number of closed walks of length i of G. Then:

i) NG(2) = 2m, NG(3) = 6NG(K3) and NG(4) = 2m+ 4NG(P3) + 8NG(C4),

ii) NG(5) = 30NG(K3) + 10NG(C5) + 10NG(T0). (see Fig.1)

T0

Fig.1
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Lemma 2.12. [1] Let G be a line graph. Then G does not have Ti for i ∈ {1, 2, 3}

as an induced subgraph (see Fig.2).

T1

T2 T3

Fig.2

3. Main results. Using the previous facts, we show that each non-isomorphic

graph Q-cospectral to a given starlike tree with maximum degree 4 is either of type

T44 or a disjoint union of T45 with one path (see Fig.7). Finally we show that there

is no such graph and so each starlike tree with maximum degree 4 is determined by

its signless Laplacian spectrum.

Lemma 3.1. Let G = K(a, b, c, d) with min{a, b, c, d} ≥ 1. Then:

i) 2 can not be an adjacency eigenvalue of G,

ii) If b = c = d = 1 and a > 1, then 0 can not be an adjacency eigenvalue of G.

Proof.

i) Let 2 be an eigenvalue of G and let Z 6= 0 be the eigenvector corresponding to

2 of G. Suppose V (G) = {v1, v2, · · · , vn} be the vertices of G and let Ni = {j|vivj ∈

E(G)} for 1 ≤ i ≤ n. Let zi be the i-th entry of Z. Since AZ = 2Z, for 1 ≤ i ≤ n,

we have :
∑

j∈Ni

zj = 2zi. (3.1)

It is easy to see that if z1za+1za+b+1za+b+c+1 = 0, then Z = 0. Which is not true.

So zi 6= 0, for i ∈ {1, a + 1, a + b + 1, a + b + c + 1}. Using relation (3.1), we

have zi = iz1 for 1 ≤ i ≤ a, za+i = iza+1 for 1 ≤ i ≤ b, za+b+i = iza+b+1 for

1 ≤ i ≤ c and za+b+c+i = iza+b+c+1 for 1 ≤ i ≤ d. Again by relation (3.1), we have

2za = za−1 + za+b + za+b+c + za+b+c+d, 2za+b = za+b−1 + za + za+b+c + za+b+c+d,

2za+b+c = za+b+c−1+za+b+za+za+b+c+d and 2za+b+c+d = za+b+c+d−1+za+za+b+

za+b+c. So

(2a− 1)z1 + (2b− 1)za+1 + (2c− 1)za+b+1 + (2d− 1)za+b+c+1 = 0.

Moreover it is clear that

(2a+ 1)z1 = (2b+ 1)za+1 = (2c+ 1)za+b+1 = (2d+ 1)za+b+c+1

= az1 + bza+1 + cza+b+1 + dza+b+c+1.
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Since a, b, c and d are positive integers, we have z1 = za+1 = za+b+1 = za+b+c+1 = 0,

which is not true (see Fig.3).

ii) In the similar way we can prove that 0 can not be the eigenvalue of G.

za+b+c+d

za+b+c+d−1

za

za+b+c

za+bz1 zaza−1 za+1

za+b+1

za+b+c−1

za+b−1

za+b+c+1

T4

Fig.3

Lemma 3.2. Let G1 = S(a, b, c, d) be the starlike tree where min{a, b, c, d} ≥ 1

and let G2 be a cospectral to G1 with respect to the signless Laplacian matrix. Let H1

and H2 be the line graphs of G1 and G2, respectively. Let yi and xi be the numbers

of vertices of degree i of H1 and H2 respectively. Then:

i) The graph G2 has exactly one bipartite component,

ii) x0 ≤ 1,

iii) ∆(H2) ∈ {3, 4},

iv) x1 = 2x4 + x3 − 2x0 − 4 and x0 + x3 + 3x4 + 2NH2(C4) = 6 + 2y4,

v) λ3(H1) < 2.

Proof. i) Since G1 is a connected bipartite graph, by Corollary 2.4, G2 has

exactly one bipartite component.

ii) Each vertex of degree 0 of H2 is corresponding to the component P2 of G2,

so by i), x0 ≤ 1.

iii) By Corollary 2.10, two graphs H1 and H2 are cospectral with respect to the

adjacency matrix. By Lemma 2.11 and Lemma 2.2, NH1(K3) = NH2(K3) = 4. So

∆(H2) ≥ 2. If ∆(H2) = 2, then each component of H2 is either a path or a cycle.

Since each cycle has 2 as an eigenvalue, by Lemma 3.1, H2 contains no any cycle as

a component. So each component of H2 is a path. Hence NH2(K3) = 0, which is a

contradiction. Now let ∆(H2) = t and let x be a vertex of degree t of H2. Suppose

e = uv be the corresponding edge to x of G2. Since x is a vertex of degree t, the

edge e = uv has t edges of G2 as neighborhoods. Let (deg(u), deg(v)) = (r, s), where

r + s − 2 = t. Then 4 = NH2(K3) ≥ NKr
(K3) +NKs

(K3) and so r + s ≤ 6. Hence

∆(H2) = t ≤ 4.

iv) Since H1 = L(G1) = K(a, b, c, d), it is clear that y1 = y4, y0 = 0, y3 = 4− y4
and y2 = n−y4−4. Then by ii) and iii) of Lemma 2.2, we have

∑4
i=0 i

2xi+4NH2(C4) =
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∑4
i=0 i

2yi + 4NH1(C4). So

4
∑

i=0

i2xi + 4NH2(C4) = 4n+ 4y4 + 24. (3.2)

By Lemma 2.2, the number of edges of H2 is equal n+ 2, where n is the number of

vertices of H1. Hence by Lemma 2.2, we have
∑4

i=0 xi = n and
∑4

i=1 ixi = 2n+4. By

relation (3.2), we have x1 = 2x4+x3−2x0−4 and x0+x3+3x4+2NH2(C4) = 6+2y4.

v) Let K be a graph obtain by deleting two vertices of degree at least 3 of H1.

Then each component of K is a path. Since the largest adjacency eigenvalue of each

path is less than 2, by Lemma 2.1, we have λ3(H1) ≤ λ1(K) < 2.

Lemma 3.3. Let G1 = S(a, b, c, d) 6= K1,4 and let G2 be cospectral graphs with

respect to the signless Laplacian matrix. Let H1 and H2 be the line graphs of G1 and

G2 respectively. If x is the vertex of degree 4 in H2, then the induced subgraph of x

and its neighborhoods is of type T5 or T6 (see Fig.4).

T5 T6
Fig.4

Proof. By Corollary 2.10, two graphs H1 and H2 are cospectral with respect

to the adjacency matrix. So by Lemma 2.2, two graphs H1 and H2 have the same

number of closed walks of length 3 and so by Lemma 2.11, NH2(K3) = 4. Let e = uv

be corresponding edge of x of G2. Since x is a vertex of degree 4, the edge e = uv

has 4 edges of G2 as neighborhoods. We have the following cases:

Case1: If (deg(u), deg(v)) ∈ {(1, 5), (5, 1)}, then NH2(K3) > 4. This is impossible.

Case2: If (deg(u), deg(v)) ∈ {(2, 4), (4, 2)}, since NH2(K3) = 4, then the induced

subgraph of x and its neighborhoods is of type T5.

Case3: If (deg(u), deg(v)) = (3, 3), then the induced subgraph of x and its neighbor-

hoods is of type T6, T7 and T8 (see Fig.4 and Fig.5). If the induced subgraph of x and

its neighborhoods is of type T7, then x0 + x3 +3x4 +2NH2(C4) > 14. By Lemma 3.2

it is impossible. Now suppose the induced subgraph of x and its neighborhoods be of

type T8. First suppose x4 = 1. By Lemma 3.1, H2 does not have any component of

type C5. On the other hand by Lemma 3.2, x1 = x3−2x0−2. Therefore NH2(C5) = 1

and so NH2(C5) +NH2(T0) ≤ 16. Moreover NH1(C5) = 0 and NH1(T0) = 12 + 3y4.

Since NH1(5) = NH2(5) and NH1(K3) = NH2(K3) = 4, by Lemma 2.11, we have

y4 ∈ {0, 1}. Since G1 = S(a, b, c, d) 6= K1,4, we have y4 = 1 and so b = c = d = 1,

a > 1. Therefore by Lemma 3.2, 8 = 6+ 2y4 = x0 + x3 + 3x4 +2NH2(C4) ≥ 9, which
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is impossible.

Now suppose H2 has more than one vertex of degree greater than 4 , then H2 has

T9, T10 or T11 as a subgraph (see Fig.5). It is easy to see that each graph on 6

vertices with T10 as a subgraph has either more than 4 triangles or is not the line

graph of any graph. So if T10 is a subgraph of H2, then it is an induced subgraph.

Since H2 = L(G2) and T10 is not the line graph of any graph, H2 does not have

T10 as a subgraph. If H2 has a subgraph of type T11, then by iv) of Lemma 3.2,

2y4 + 6 = x0 + x3 + 3x4 + 2NH2(C4) ≥ 15 and so y4 ≥ 9/2, which is not true. Now

let H2 has T9 as a subgraph. Since NH2(C4) ≥ 2, by iv) of Lemma 3.2, x4 ≤ 3 and so

x4 ∈ {2, 3}. If x4 = 3, then by iv) of Lemma 3.2, y4 = 4 and x0+x3 = 1. Since T9 has

4 vertices of degree greater than 2, H2 has at least 4 vertices of degree greater than

2. Hence x3 = 1 and x0 = 0. Since H2 does not have any cycle as a component, it is

easy to see that H2 has two components one of them is a path. Using Lemma 2.11,

we have NH2(5) = 280 and NH1(5) = 360, which is not true. If x4 = 2, since H2 has

at least 4 vertices of degree greater than 2, x3 ≥ 2. By iv) of Lemma 3.2, x0+x3 ≤ 4.

If x3 = 2, then H2 has two components, one of them is T9 and another is a path.

By iv) of Lemma 3.2, y4 = 3 and using Lemma 2.11, we have NH2(5) = 270 and

NH1(5) = 330, which is not true. Now let H2 has 3 or 4 vertices of degree 3. Using

Lemma 2.11, we have NH2(5) ∈ {280, 290} and NH1(5) = 240 + 30y4 is a multiple of

30. Thus NH1(5) 6= NH2(5), which is not true.

T7 T8 T9 T10 T11

Fig.5
Let H1 = K(a, b, c, d) and H2 be non-isomorphic cospectral graphs with respect

to the adjacency matrix. Let N be the number of cycles of H2 where the induced

subgraph obtained by its vertices contains no any triangle as a subgraph. Again let

xi be the number of vertices of degree i of H2. We have the following useful lemma.

Lemma 3.4. Let H2 does not have K4 as a subgraph. Then:

i) H2 contains exactly one Ti as a subgraph for 12 ≤ i ≤ 43 where different

components of Ti lie in the different components of H2 (see Fig.6).

Also if H2 contains Tl as a subgraph for 12 ≤ l ≤ 40, then

ii) If H2 contains no path as a component or x0 = 1, then x1 + 2N = x3 − s,

iii) If x0 = 0 and H2 contains exactly one path as a component, then x1 + 2N =

x3 − r.
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Where,

(s, r) =















(6, 4) 12 ≤ i ≤ 16.

(4, 2) 17 ≤ i ≤ 28.

(2, 0) 29 ≤ i ≤ 37.

(0,−2) 38 ≤ i ≤ 40.

T12 T13 T14

T15 T16 T17

T18 T19 T20

T21 T22 T23

T24 T25 T26
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T27 T28 T29

T30 T31 T32

T33 T34 T35

T36 T37 T38

T39 T40 T41
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T42 T43

Fig.6

Proof. i) Since H1 and H2 are cospectral with respect to the adjacency matrix,

by Lemma 2.2, NH1(3) = NH2(3) and so by Lemma 2.11, we have NH2(K3) = 4. By

Lemma 3.2, λ3(H2) < 2 and so the number of non-tree components of H2 is at most

2. Moreover by Lemma 3.1, H2 does not have any cycle as a component. On the

other hand by Lemma 2.12, H2 does not have K1,3 as an induced subgraph and so

each non-tree component of H2 has K3 as a subgraph. Let K be a disjoint union of

non-tree components of H2. By Lemma 3.2, ∆(H2) ∈ {3, 4}. Note that by Lemma

3.3, each vertex of degree 4 of H2 is a vertex of K. If ∆(H2) = 3, then K has exactly

one Ti for 12 ≤ i ≤ 21 as a subgraph. Now let ∆(H2) = 4. If x4 = 1, then K has

exactly one Ti for 22 ≤ i ≤ 32 as a subgraph. If x4 = 2, then K has exactly one Ti for

33 ≤ i ≤ 38 as a subgraph. If x4 = 3, then K has exactly one Ti for i ∈ {39, 40, 41}

as a subgraph. If x4 = 4, then K has exactly one Ti for i ∈ {42, 43} as a subgraph.

ii, iii) Since H2 does not have K1,3 as an induced subgraph and NH2(K3) = 4,

each vertex of degree 3 of H2 is a vertex of subgraph Tl. It is clear that the number

of vertices with degree 2 of Tl where their degrees are 3 in H2 is equal to 2N plus the

number of vertices with degree 1 of V (H2) \ V (Tl). Let zi be the number of vertices

of degree i of Tl. So x3 − z3 = 2N + x1 − z1. If s = z3 − z1, where H2 contains no

any path as a component or x0 = 1, then x1 + 2N = x3 − s. If r = z3 − z1, where

x0 = 0 and H2 contains exactly one path as a component, then x1 + 2N = x3 − r.

Lemma 3.5. Let G1 = S(a, b, c, d) 6= K1,4 and G2 be cospectral graphs with respect

to the signless Laplacian matrix. Let H2 be the line graph of G2. Then ∆(H2) = 4.

Proof. By Corollary 2.10, the graphs H1 = L(G1) and H2 are cospectral with

respect to the adjacency matrix. So by Lemma 2.2 and Lemma 2.11, NH2(K3) = 4.

Let xi be the number of vertices of degree i of H2 , by Lemma 3.2, it is sufficient to

show that ∆(H2) 6= 3. Let ∆(H2) = 3. By Lemma 3.1, H2 does not have any cycle as

a component. IfH2 hasK4 as a subgraph, then since ∆(H2) = 3, K4 is the component

of H2. Since L(G2) = H2 and NH2(K3) = NK4(K3) = 4, all other components of H2

are trees. By Lemma 3.2, G2 has exactly one bipartite component. Hence H2 = K4

and so G2 = K1,4 and by Theorem 2.2, G1 = K1,4. Which is impossible. So H2 does
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not have K4 as a subgraph. Since NH2(K3) = 4 and x4 = 0, H2 has a subgraph of

type Ti for 12 ≤ i ≤ 21 (see Fig.6).

Step1: Let 12 ≤ i ≤ 16. If x0 = 1, then by Lemma 3.2, x1 = x3 − 6 and by Lemma

3.4, x1 + 2N = x3 − 6. So N = 0. If x0 = 0 and H2 contains exactly one path as a

component, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4, x1 + 2N = x3 − 4.

Hence N = 0. So by Lemma 3.2, for i ∈ {12, 13}, we have x3 = 5+2y4 or x3 = 6+2y4.

Hence by Lemma 2.11, NH2(5) = 170 + 20y4 or NH2(5) = 180 + 20y4. On the other

hand NH1(5) = 240 + 30y4. However NH1(5) 6= NH2(5). Which is a contradiction

to this fact H1 and H2 are cospectral with respect to adjacency matrix. For i = 14

, we have x3 = 1 + 2y4 or x3 = 2 + 2y4. By Lemma 2.11, NH2(5) = 170 + 20y4
or NH2(5) = 180 + 20y4. On the other hand NH1(5) = 240 + 30y4. So NH1(5) 6=

NH2(5). Which is a contradiction to this factH1 andH2 are cospectral with respect to

adjacency matrix. For i = 15, we have x3 = 3+2y4 or x3 = 4+2y4. By Lemma 2.11,

NH2(5) = 170+20y4 or NH2(5) = 180+20y4. On the other handNH1(5) = 240+30y4.

So NH1(5) 6= NH2(5). Which is a contradiction to this fact H1 and H2 are cospectral

with respect to adjacency matrix. If H2 contains no any path as a component, then

by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4, x1 + 2N = x3 − 6. Hence N = −1,

which is impossible. It is easy to see that if H2 has T16 as a subgraph, then it has

either T2 or T3 as an induced subgraph. Since H2 = L(G2) by Lemma 2.12, which is

impossible.

Step2: Let 17 ≤ i ≤ 21. First let i ∈ {17, 19}. If x0 = 1, then by Lemma 3.2,

x1 = x3 − 6 and by Lemma 3.4, x1 + 2N = x3 − 4. Also if x0 = 0 and H2 contains

exactly one path as a component, then x1 + 2N = x3 − 2 and x1 = x3 − 4. Any

way we have N = 1. Thus NH2(C4) = 1 or 2. If NH2(C4) = 1, then by Lemma

3.2, we have x3 = 3 + 2y4 or x3 = 4 + 2y4. By Lemma 2.11, NH2(5) = 170 + 20y4
or NH2(5) = 180 + 20y4. If NH2(C4) = 2, then x3 = 1 + 2y4 or x3 = 2 + 2y4. So

NH2(5) = 150 + 20y4 or NH2(5) = 160 + 20y4. Moreover NH1(5) = 240 + 30y4.

However, this is a contradiction to this fact H1 and H2 are cospectral with respect

to adjacency matrix. If H2 contains no any path as a component, then by Lemma

3.2, x1 = x3 − 4 and by Lemma 3.4, x1 + 2N = x3 − 4. Therefor N = 0 and so

NH2(C4) = 1. By Lemma 3.2, x3 = 4 + 2y4. So NH2(5) = 180 + 20y4 < 240 + 30y4.

Which is impossible. Let i = 18. If x0 = 1, then by Lemma 3.2, x1 = x3 − 6 and

by Lemma 3.4, x1 + 2N = x3 − 4. If x0 = 0 and H2 contains exactly one path as

a component, then x1 + 2N = x3 − 2 and x1 = x3 − 4, respectively. Any way we

have N = 1. Since by Lemma 2.12, H2 does not have T1 as an induced subgraph,

we have NH2(C4) = 2. So by Lemma 3.2, x3 = 1 + 2y4 or x3 = 2 + 2y4. So

NH2(5) = 170 + 20y4 or NH2(5) = 180 + 20y4. However, NH2(5) < 240 + 30y4 this

is not true. If H2 contains no any path as a component, then x1 + 2N = x3 − 4 and

x1 = x3 − 4. Hence N = 0 and so NH2(C4) = 2. By Lemma 3.2, x3 = 2 + 2y4. So

NH2(5) = 180 + 20y4 < NH1(5), which is a contradiction to this fact H1 and H2 are

cospectral with respect to adjacency matrix.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 274-290, May 2010



ELA

Starlike Trees with Maximum Degree 4 285

Now let i ∈ {20, 21}. If x0 = 1, then by Lemma 3.2, x1 = x3 − 6 and by Lemma 3.4,

x1 + 2N = x3 − 4. If x0 = 0 and H2 contains exactly one path as a component, then

x1+2N = x3− 2 and x1 = x3− 4, respectively. Therefore N = 1 and so G2 has more

than one bipartite component which is impossible. If H2 contains no any path as a

component, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4, x1 + 2N = x3 − 4.

Hence N = 0 and so G2 has more than one bipartite component, which is false.

In the following theorem by using the previous facts we show that only graphs of

type T44 and disjoint union of T45 with one path can be cospectral to a given starlike

tree with maximum degree 4 with respect to the signless Laplacian spectrum (see

Fig.7).

Theorem 3.6. Let G1 = S(a, b, c, d) where d ≥ c ≥ b ≥ a ≥ 1 and let G2 be

cospectral to G1 with respect to the signless Laplacian matrix. Then:

i) If a = b = 1, then G1 and G2 are isomorphic,

ii) If a = 1, b > 1, then G2 is either isomorphic to G1 or is of type T44,

iii) If a > 1, then G2 is either isomorphic to G1 or it has two components, one

of them is path and another is of type T45 (see Fig.7).

T44 T45

Fig.7

Proof. Let G2 be a cospectral to G1 with respect to the signless Laplacian matrix.

Let H1 and H2 be the line graphs of G1 and G2, respectively. By Corollary 2.10, H1

and H2 are cospectral with respect to the adjacency matrix. If G1 = K1,4, then

H1 = K4 and so H2 = K4. Hence G1 and G2 are isomorphic. Now let G1 6= K1,4.

By Lemmas 3.2 and 3.5, 0 < x4 ≤ 4. Hence we have the following cases :

Case1: x4 = 4. By Lemma 3.3 and the fact that NH2(K3) = 4, H2 has a subgraph

of type Ti or K4 for i ∈ {42, 43} (see Fig.6 ). Since by Lemma 2.12, H2 does not

have T3 as an induced subgraph and the fact that NH2(K3) = 4, H2 does not have

T42 as a subgraph. If i = 43, then NH2(C4) ≥ 1 and by iv) of Lemma 3.2, we have

x3 = x0 = 0 and x1 = 4. Hence H2 contains two path as a component and so G2 has

more than one bipartite component. Which is a contradiction. Therefor H2 has K4

as a subgraph. Again by iv) of Lemma 3.2, we have x3 = x0 = 0 and x1 = 4. First let

H2 is a connected graph, then H2 is the line graph of a starlike tree with maximum

degree 4. Hence by Theorem 2.5, H1 is isomorphic to H2 and so by Theorem 2.7,
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G1 is isomorphic to G2. Now let H2 is not a connected graph. Since x3 = x0 = 0

and x1 = 4, using the fact that G2 has exactly one bipartite component, H2 has two

components, one of them is path and another is of type T47 (see Fig.8 ).

Case2: x4 = 3. Then by Lemma 3.3 and this fact that NH2(K3) = 4, H2 has a

subgraph of type Ti orK4 for i ∈ {39, 40, 41} (see Fig.6 ). If i = 41, then NH2(C4) > 2

and by Lemma 3.2, we have x3 < 0. Which is impossible. Let i ∈ {39, 40}. If

x0 = 1, then by Lemma 3.2, x1 = x3 and by Lemma 3.4, x1 + 2N = x3. If x0 = 0

and H2 contains exactly one path as a component, then x1 + 2N = x3 + 2 and

x1 = x3 + 2. Hence N = 0. However G2 has more than one bipartite component

which is a contradiction. If H2 contains no any path as a component, then by Lemma

3.2, x1 = x3 + 2 and by Lemma 3.4, x1 + 2N = x3. So N = −1, which is impossible.

So H2 has K4 as a subgraph. Since H2 does not have K1,3 as an induced subgraph

and NH2(K3) = 4, each vertex of degree at least 3 of H2 is the vertex of subgraph

K4 of H2. Therefore x3 + x4 = 4 and so x3 = 1. On the other hand by Lemma 3.2,

NH2(C4) ∈ {1, 2}. First let NH2(C4) = 2. By Lemma 3.2, y4 = 4, x0 = 0 and x1 = 3

and so H2 has 2 components, one of them is a path and another is of type T48 (see

Fig.8 ). By Lemma 2.11, NH2(5) = 350 < NH1(5) = 360, which is not true. Now let

NH2(C4) = 1. By Lemma 3.2, y4 = 3, x0 = 0 and x1 = 3. First let H2 is a connected

graph, then it is the line graph of a starlike tree with maximum degree 4. Hence by

Theorem 2.5, H1 is isomorphic to H2 and so by Theorem 2.7, G1 is isomorphic to

G2. Now let H2 is not a connected graph. Since x0 = 0 and x1 = 3, using the fact

that G2 has exactly one bipartite component, H2 has two components, one of them

is path and another is of type T48.

Case3: Let x4 = 2. Then H2 has a subgraph of type Ti or K4 for 33 ≤ i ≤ 38 (see

Fig.6 ). Since x4 = 2 and NH2(K3) = 4, if H2 has T37 as a subgraph, then H2 has T2

as an induced subgraph. By Lemma 2.12, which is impossible.

Let i = 38, if x0 = 1, then by Lemma 3.2, x1 = x3−2 and by Lemma 3.4, x1+2N = x3.

If x0 = 0 and H2 contains exactly one path as a component, then x1 + 2N = x3 + 2,

x1 = x3. Hence N = 1, which is a contradiction to this fact that G2 has exactly one

bipartite component. If H2 contains no path as a component, then x1+2N = x3 and

x1 = x3 so N = 0. By i) of Lemma 3.2, it is a contradiction.

Let i ∈ {33, 35, 36}. If x0 = 1, then by Lemma 3.2, x1 = x3 − 2 and by Lemma 3.4,

x1 + 2N = x3 − 2. If x0 = 0 and H2 contains exactly one path as a component, then

x1 + 2N = x3 and x1 = x3. Hence N = 0, by i) of Lemma 3.2, is a contradiction. If

H2 contains no path as a component, then x1+2N = x3− 2 and x1 = x3 so N = −1,

which is impossible.

Let i = 34. If x0 = 1, then by Lemma 3.2, x1 = x3 − 2 and by Lemma 3.4,

x1 +2N = x3 − 2. So N = 0. By Lemma 3.2, we have x3 = 2y4 − 3. By Lemma 2.11,

NH2(5) = 190+20y4 < NH1(5) = 240+30y4. Which is a contradiction to this fact H1

and H2 are cospectral with respect to adjacency matrix. If H2 contains no path as a

component, then x1 + 2N = x3 − 2 and x1 = x3 . So N = −1, which is impossible.
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If x0 = 0 and H2 contains exactly one path as a component, then x1 + 2N = x3

and x1 = x3. So N = 0. By Lemma 3.2, we have x3 = 2y4 − 2 . By Lemma 2.11,

NH2(5) = 200 + 20y4 < NH1(5). Which is a contradiction to this fact H1 and H2 are

cospectral with respect to adjacency matrix. So H2 has K4 as a subgraph. Since H2

does not have K1,3 as an induced subgraph and NH2(K3) = 4, each vertex of degree

at least 3 of H2 is the vertex of subgraph K4 of H2. Therefore x3 + x4 = 4 and so

x3 = 2. Moreover H2 does not have any cycle as a component. So H2 has exactly

one non-tree component. If H2 is a connected graph, then by Lemma 3.2, x1 = 2 and

so NH2(C4) = 1 and y4 = 2. Therefore H2 is a line graph of a starlike graph with

maximum degree 4. Using Theorem 2.5, H1 and H2 are isomorphic. So by Theorem

2.7, G1 and G2 are isomorphic. If H2 is not a connected graph, then by Lemma 3.2,

we have x0 + 2NH2(C4) = 2(y4 − 1). Since x0 ≤ 1, we have x0 = 0 and so x1 = 2

and NH2(C4) = y4 − 1. Hence H2 has 2 components one of them is path and another

is of type T46. It is easy to see that NH2(C4) ≤ 2. If NH2(C4) = 2, then y4 = 3

and so NH1(5) = 330 > NH2(5) = 320. That is false. Hence NH2(C4) = 1 and so

y4 = 2. One can successively subdivide certain edges of the H2 in an appropriate

way, to obtain graph H̃ , such that H1 can be embedded in H̃ as a proper subgraph.

So by Lemma 2.8, λ1(H2) ≥ λ1(H̃) and by Lemma 2.6, λ1(H̃) > λ1(H1). Hence

λ1(H2) > λ1(H1) which is a contradiction to the fact that H2 and H1 are cospectral

with respect to the adjacency matrix.

Case4: Let x4 = 1. Then H2 has a subgraph of type Ti or K4 for 22 ≤ i ≤ 32

(see Fig.6 ). If H2 has a subgraph of type K4, then by Lemma 3.2, H2 is a line

graph of a starlike graph with maximum degree 4. Using Theorem 2.5, H1 and H2

are isomorphic. So by Theorem 2.7, G1 and G2 are isomorphic. Now let H2 has a

subgraph of type Ti for 22 ≤ i ≤ 32.

Let i ∈ {22, 27, 28}. If x0 = 1, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4,

x1 + 2N = x3 − 4. If x0 = 0 and H2 contains exactly one path as a component, then

x1 + 2N = x3 − 2 and x1 = x3 − 2. Any way, N = 0. So G2 has more than one

bipartite component, which is impossible. If H2 contains no path as a component,

then x1 + 2N = x3 − 4 and x1 = x3 − 2. So N = −1, which is impossible.

Let i = 23. If x0 = 1, then by Lemma 3.2, x1 = x3− 4 and by Lemma 3.4, x1+2N =

x3 − 4. Also if x0 = 0 and H2 contains exactly one path as a component, then

x1 +2N = x3 − 2 and x1 = x3 − 2. Any way we have N = 0. Thus NH2(C4) = 1. By

Lemma 3.2, we have x3 = 2y4 or x3 = 2y4+1. By Lemma 2.11, NH2(5) = 180+20y4
or NH2(5) = 190 + 20y4. However NH2(5) < NH1(5), that is impossible. If H2

contains no path as a component, then by Lemma 3.2, x1 = x3 − 2 and by Lemma

3.4, x1 + 2N = x3 − 4. So N = −1, which is impossible.

Let i = 30. If x0 = 1, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4,

x1 + 2N = x3 − 2. Also if x0 = 0 and H2 contains exactly one path as a component,

then x1 + 2N = x3 and x1 = x3 − 2. Any way we have N = 1. Thus NH2(C4) =

1 or 2. If NH2(C4) = 1, then by Lemma 3.2, we have x3 = 2y4 or x3 = 2y4 + 1.
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By Lemma 2.11, NH2(5) = 180 + 20y4 or NH2(5) = 190 + 20y4. If NH2(C4) = 2,

then x3 = 2y4 − 2 or x3 = 2y4 − 1. By Lemma 2.11, NH2(5) = 160 + 20y4 or

NH2(5) = 170 + 20y4. However NH2(5) < NH1(5), this is a contradiction to this fact

H1 andH2 are cospectral with respect to adjacency matrix. IfH2 contains no any path

as a component, then by Lemma 3.2, x1 = x3−2 and by Lemma 3.4, x1+2N = x3−2.

So N = 0. Hence by Lemma 3.2, x3 = 2y4 + 1. So NH2(5) = 190 + 20y4 < NH1(5).

This is impossible.

Let i ∈ {31, 32}. If x0 = 1, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4,

x1 + 2N = x3 − 2. If x0 = 0 and H2 contains exactly one path as a component, then

x1 + 2N = x3 and x1 = x3 − 2. So N = 1. However G2 has more than one bipartite

component and this is a contradiction. If H2 contains no path as a component, then

x1 + 2N = x3 − 2 and x1 = x3 − 2. So N = 0, which is a contradiction to this fact

that G2 has exactly one bipartite component.

Let 24 ≤ i ≤ 26. If x0 = 1, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4,

x1 + 2N = x3 − 4. If x0 = 0 and H2 contains exactly one path as a component, then

x1 + 2N = x3 − 2 and x1 = x3 − 2. So N = 0. By Lemma 3.2, for i = 24, we have

x3 = 2y4 − 2 or x3 = 2y4 − 1. By Lemma 2.11, NH2(5) = 180 + 20y4 or NH2(5) =

190+ 20y4. By Lemma 3.2, for i = 25, we have x3 = 2y4 or x3 = 2y4 +1. By Lemma

2.11, NH2(5) = 180 + 20y4 or NH2(5) = 190 + 20y4. However NH2(5) < NH1(5),

that is not true. Now if x0 = 0 and H2 contains no path as a component, then by

Lemma 3.2, x1 = x3 − 2 and by Lemma 3.4, x1 + 2N = x3 − 4. So N = −1, which

is impossible. Since x4 = 1 and NH2(K3) = 4, if H2 has T26 as a subgraph, then H2

has T2 as an induced subgraph. By Lemma 2.12, which is impossible.

Let i = 29. If x0 = 1, then by Lemma 3.2, x1 = x3 − 4 and by Lemma 3.4,

x1 + 2N = x3 − 2. If x0 = 0 and H2 contains exactly one path as a component,

then x1 + 2N = x3 and x1 = x3 − 2. Hence N = 1. Thus NH2(C4) = 1 or 2.

If NH2(C4) = 1, then by Lemma 3.2, we have x3 = 2y4 or x3 = 2y4 + 1. By

Lemma 2.11, NH2(5) = 180 + 20y4 or NH2(5) = 190 + 20y4. If NH2(C4) = 2,

then by Lemma 3.2, we have x3 = 2y4 − 2 or x3 = 2y4 − 1. By Lemma 2.11,

NH2(5) = 160 + 20y4 or NH2(5) = 170 + 20y4, a contradiction. If x0 = 0 and H2

contains no path as a component, then by Lemma 3.2, x1 = x3 − 2 and by Lemma

3.4, x1 + 2N = x3 − 2. So N = 0. Thus by Lemma 3.2, x3 = 2y4 + 1. By Lemma

2.11, NH2(5) = 190 + 20y4 < NH1(5). This is impossible.
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T46 T47 T48

Fig.8

Let NG(H) be the number of subgraphs of a graph G which are isomorphic to

H and let NG(i) be the number of closed walks of length i in G. Let N ′

H(i) be the

number of closed walks of length i of H which contains all edges and let Si(G) be the

set of all connected graphs such H with N ′

H(i) 6= 0 where G has at least one subgraph

isomorphic to H . Then:

NG(i) =
∑

H∈Si(G)

NG(H)N ′

H(i). (3.3)

Theorem 3.7. Let G = S(a, b, c, d) where d ≥ c ≥ b ≥ a ≥ 1. Then G is

determined by its signless Laplacian spectrum.

Proof. Let G1 = G and let G2 be cospectral to G1 with respect to the signless

Laplacian matrix. If G2 is not isomorphic to G1, then by using Theorem 3.6, we have

the following cases:

Case1: Let a = 1, b > 1 and let G2 = A (see Fig.9). If b ≥ b, then we can

subdivide certain edges of the cycle Cl of L(G2) in an appropriate way, to obtain

graph H̃ , such that L(G1) can be embedded in H̃ as a proper subgraph. So by

Lemma 2.8, λ1(L(G2)) ≥ λ1(H̃) and by Lemma 2.6, λ1(H̃) > λ1(L(G1)). Hence

λ1(L(G2)) > λ1(L(G1)) which contradicts to the fact that L(G2) and L(G1) are

cospectral with respect to the adjacency matrix. So b < b. If b ≥ (l − 1)/2, then

Sl(L(G2)) = Sl(L(G1))∪{Cl} and for each K ∈ Sl(L(G1)), NL(G2)(K) ≥ NL(G1)(K).

So by the equation (3.3), NL(G2)(l) > NL(G1)(l), contradicting to the fact that L(G2)

and L(G1) have the same number of closed walks of any length. If b < (l− 3)/2, then

S(2b+3)(L(G2)) = S(2b+3)(L(G1)), NL(G1)(K(1, 1, b + 1)) > NL(G2)(K(1, 1, b + 1))

and NL(G1)(K) = NL(G2)(K) for each K 6= K(1, 1, b + 1) in S(2b+3)(L(G2)). Hence

by the equation (3.3), we have NL(G1)(2b + 3) > NL(G2)(2b + 3), which is again a

contradiction. Hence b ∈ {(l − 3)/2, (l − 2)/2}. On the other hand G1 and G2 have

the same number of vertices and so l > c+ d ≥ 2b ≥ 2b+ 2. Therefore b = (l − 3)/2

and so G2 is not a bipartite graph, contradicting to the fact that G1 is bipartite.

Case2: Let a > 1 and let G2 has two components, one of them is path and another is
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B (see Fig.9) where a ≤ b. Since G2 has exactly one bipartite component, l is an odd

number. If a > a, then by easy task we can see that NL(G2)(2a+3) > NL(G1)(2a+3),

contradicting to the fact that L(G2) and L(G1) have the same number of closed walks

of any length. If a = a, then as a similar to case1, we have b = (l − 3)/2 < b. Since

for each natural x we have N ′

K(1,1,x)(2x+1) = N ′

C(2x+1)
(2x+1) = 4x+2, it is easy to

see that NL(G2)(l) < NL(G1)(l), that is impossible. If a < a, then again as a similar

to case1, we have a = (l− 3)/2. Again we can see that NL(G2)(l) < NL(G1)(l), which

is impossible.

1b

Cl

A B

Fig.9

la

lb

Cl
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