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STARLIKE TREES WITH MAXIMUM DEGREE 4 ARE
DETERMINED BY THEIR SIGNLESS LAPLACIAN SPECTRA*

GHOLAM R. OMIDIt AND EBRAHIM VATANDOOST*

Abstract. A graph is said to be determined by its signless Laplacian spectrum if there is no
other non-isomorphic graph with the same spectrum. In this paper, it is shown that each starlike
tree with maximum degree 4 is determined by its signless Laplacian spectrum.
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1. Introduction. In this paper, we are only concerned with undirected simple
graphs (loops and multiple edges are not allowed). Let G be a graph with n vertices,
m edges and the adjacency matrix A. We denote the maximum degree of G by
A(G). Let D be the diagonal matrix of vertex degrees. The matrices L = D — A
and @ = D + A are called the Laplacian matrixz and signless Laplacian matriz of G,
respectively. Since A, L and @) are real symmetric matrices, their eigenvalues are real
numbers. So we can assume that Ay > Ao > --- > A\ and pg > pg > -+ > p, are the
adjacency and signless Laplacian eigenvalues of G, respectively.

Let M be an associated matrix of a graph G (the adjacency matrix, the Laplacian
matrix and the signless Laplacian matrix). The multiset of eigenvalues of M is called
the M spectrum of G. Two graphs are said to be cospectral with respect to M if they
have the same M spectrum. A graph is said to be determined (DS for short) by the
M spectrum if there is no other non-isomorphic graph with the same spectrum of M.
A tree is called starlike if it has exactly one vertex of degree greater than two. We
will denote by S(l1,lz,...,1,) the unique starlike tree such that S(ly,ls,...,l,) —v =
P,,UP,U...UP,_, where P, is the path on [; vertices (i = 1,...,r) and v is the vertex
of degree greater than two. A starlike with maximum degree 3 is called a T-shape
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and is denoted by T'(I1,12,13).

Since the problem of characterization of DS graphs is very difficult, finding any
new infinite family of DS graphs is interesting. In [7], it was shown that 7'(1,1,n — 3)
and some graphs related to it are determined by their adjacency spectra as well as
their Laplacian spectra. In [9], Wang and Xu proved that T'(I1,l2,l3) is determined
by its adjacency spectrum if and only if (I1,12,13) # (1,1, 2] — 2) for any integer [ > 2.
In [10] they moreover showed that T-shape trees are determined by their Laplacian
spectra. Tajbakhsh and Omidi showed that starlike trees are determined by their
Laplacian spectra (see [6]). In [5] it has been shown that T'(I1,ls,13) is determined by
its signless Laplacian spectrum if and only if (I1,l2,13) # (I,1,2] — 1) for any integer
Il > 1. In this paper, we show that each starlike tree with maximum degree 4 is
determined by its signless Laplacian spectrum.

2. Preliminaries. First we give some facts that are needed in the next section.

LEMMA 2.1. [8/(Interlacing) Suppose that A is a symmetric n X n matriz with
eigenvalues \y > Ao > -+ > \,. Then the eigenvalues 1 > o > -+ > lm of a
principal submatriz of A of size m X m satisfy A; > s > Ap—mts fori=1,...,m.

LEMMA 2.2. ([8])Let G be a graph. For the adjacency matriz, the Laplacian
matriz and the signless Laplacian the following can be obtained from the spectrum.

i) The number of vertices.
ii) The number of edges.
For the adjacency matriz the following follows from the spectrum.
111) The number of closed walks of any length.
iv) Whether G is bipartite.

LEMMA 2.3. [2] The least eigenvalue of the signless Laplacian of a connected
graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple
etgenvalue.

COROLLARY 2.4. In any graph (possibly disconnected) the multiplicity of the
eigenvalue 0 of the signless Laplacian is equal to the number of bipartite components.
The line graph of a starlike tree S(l1,la,...,[,) is called the sunlike graph. We will
denote this by K (l1,l2,...,1,).

THEOREM 2.5. [4] If K(l1,la,...,l;) and K(14,15,...,1.) are two cospectral
sunlike graphs with respect to the adjacency matriz, then they are isomorphic.

LEMMA 2.6. [2] Let G be a connected graph and let H be a proper subgraph of
G. Then /\1(H) < )\1(G)
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THEOREM 2.7. [2] Let G and H be connected graphs and {G,H} # {K1,3, K3}.
Then G and H are isomorphic if and only if their line graphs L(G) and L(H) are
isomorphic.

LEMMA 2.8. [3] Let G be a connected graph that is not isomorphic to W,
where W,, is a graph obtained from the path P(,_s) (indexed by the natural order of
1,2,...,n—2) by adding two pendant edges at vertices 2 and n — 3. Let G, be the
graph obtained from G by subdividing the edge uv of G. If uv lies on an internal path
of G, then A\ (Guy) < M (G).

Let n, m, R be the number of vertices, the number of edges and the vertex-edge
incidence matrix of a graph G, respectively. The following relations are well-known:

RRT = A+ D, RTR = Ay +2I, (2.1)

where D is the diagonal matrix of vertex degrees and Ay, is the adjacency matrix of the
line graph L(G) of G. Let Prg)()) and Qa()) be characteristic polynomials of L(G)
and G with respect to the adjacency and signless Laplacian matrices, respectively.
Since non-zero eigenvalues of RRT and RT R are the same, by relations (2.1), we
immediately obtain:

Priy(N) = (A +2)"m Qe (A + 2). (2.2)
REMARK 2.9. If m < n, the matriz @ must have eigenvalue 0 with multiplicity
at least n — m.

COROLLARY 2.10. If two graphs G and G’ are cospectral with respect to the
signless Laplacian matriz, then L(G) and L(G') are cospectral with respect to the
adjacency matrix.

The following useful Lemma provides some formulas for calculating the number
of closed walks of small lengths.

LEMMA 2.11. [5] Let Ng(H) be the number of subgraphs of a graph G which are
isomorphic to H and let Ng(i) be the number of closed walks of length i of G. Then:

Z) Ng(2) =2m, Ng(?)) =6Ng(K3) and Ng(4) = 2m + 4Ng(P3) + SNg(C4),
ZZ) Ng(5) = 3ONG(K3) + 10Ng(05) + IONg(To). (566 Fig.l)

>

To
Fig.1
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LEMMA 2.12. [1] Let G be a line graph. Then G does not have T; fori € {1,2,3}
as an induced subgraph (see Fig.2).

T2 TS

T
Fig.2

3. Main results. Using the previous facts, we show that each non-isomorphic
graph Q-cospectral to a given starlike tree with maximum degree 4 is either of type
Ty4 or a disjoint union of Ty5 with one path (see Fig.7). Finally we show that there
is no such graph and so each starlike tree with maximum degree 4 is determined by
its signless Laplacian spectrum.

LEMMA 3.1. Let G = K(a,b,c,d) with min{a,b,c,d} > 1. Then:

i) 2 can not be an adjacency eigenvalue of G,
it) Ifb=c=d=1 and a > 1, then 0 can not be an adjacency eigenvalue of G.

Proof.

i) Let 2 be an eigenvalue of G and let Z # 0 be the eigenvector corresponding to
2 of G. Suppose V(G) = {v1,v2,- - ,vn} be the vertices of G and let N; = {jlv;v; €
E(G)} for 1 < i < n. Let z; be the i-th entry of Z. Since AZ = 2Z, for 1 < i < n,

we have :
>z =2z (3.1)
JEN;
It is easy to see that if 2124+12a+6+1%a+b+c+1 = 0, then Z = 0. Which is not true.
So z; £ 0, fori € {l,a+ 1l,a+b+1,a+ b+ ¢+ 1}. Using relation (3.1), we
have z; = iz; for 1 < i < a, 244 = i2q41 for 1 < i < b, zgyp4s = 2g4pp1 fOr
1 <i<cand zgiptetri = iZatbret1 for 1 <@ < d. Again by relation (3.1), we have
22q = Za—1 t Za+tb + Zatbte T Zatbtetrds 2Zatb = Zatb—1 + 2a + Zatbte T Zatbtetds
2Zatbte = Zatbte—1+ Zatb T Za+ Zatbterd a0d 224 byt d = Zatbtetrd—1+ Za+ Zayp+
Za+b+c- So

(2a — 1)21 + (2b — 1)Za+1 + (26 - 1)Za+b+1 + (2d - 1)Za+b+c+1 =0.
Moreover it is clear that

(2a + 1)21 = (2b + 1)Za+1 = (26 + 1)Za+b+1 = (2d + 1)2a+b+c+1

=az1 + bzat1 + CZago+1 + dZatbtct1-
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Since a, b, c and d are positive integers, we have z1 = 2441 = Za+b+1 = Zatbtetr1 = 0,
which is not true (see Fig.3).

ii) In the similar way we can prove that 0 can not be the eigenvalue of G. O

Za+b+ct+1 Za+b+ctd Za+b+c Za+b+1
® - - - ° ® - - °
Za+b+ctd—1 Za+b+tc—1
® - - .- ° ® - - °
zZ1 Za—1 Za Za+b Za+b—1 Za+1
T,
Fig.3

LEMMA 3.2. Let G; = S(a,b,c,d) be the starlike tree where min{a,b,c,d} > 1
and let G2 be a cospectral to G1 with respect to the signless Laplacian matriz. Let H,y
and Hy be the line graphs of G1 and Ga, respectively. Let y; and x; be the numbers
of vertices of degree i of Hi and Hy respectively. Then:

i) The graph Gy has ezactly one bipartite component,
ZZ) Zo S 1,
iii) A(Hg) € {3,4},
w) 1 = 2wy + x3 — 200 — 4 and xo + x3 + 3x4 + 2Ng,(Cy) = 6 + 2y4,
1)) )\3(H1) < 2.

Proof. i) Since G; is a connected bipartite graph, by Corollary 2.4, G2 has
exactly one bipartite component.

ii) Each vertex of degree 0 of Hj is corresponding to the component P> of Ga,
so by 1), ¢y < 1.

iii) By Corollary 2.10, two graphs H; and Hj are cospectral with respect to the
adjacency matrix. By Lemma 2.11 and Lemma 2.2, Ny, (K3) = Np,(K3) = 4. So
A(Hy) > 2. If A(Hz2) = 2, then each component of Hj is either a path or a cycle.
Since each cycle has 2 as an eigenvalue, by Lemma 3.1, Hs contains no any cycle as
a component. So each component of Hy is a path. Hence Np,(K3) = 0, which is a
contradiction. Now let A(Hz) =t and let & be a vertex of degree t of Hs. Suppose
e = uv be the corresponding edge to x of G5. Since x is a vertex of degree ¢, the
edge e = uv has ¢ edges of G2 as neighborhoods. Let (deg(u),deg(v)) = (r, s), where
r+s—2=1t. Then 4 = Ny, (K3) > Nk, (K3) + Nk, (K3) and so r + s < 6. Hence
A(Hy) =t <A4.

iv) Since H; = L(G1) = K(a,b,c,d), it is clear that y1 = ya, yo =0, y3 =4 —y4
and ya = n—y4—4. Then by ii) and iii) of Lemma 2.2, we have E?:o i?2;+4Ny, (Cy) =
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S %y + ANy, (Cy). So

4
%2 + 4N, (Cy) = 4n + 4dyy + 24. (3.2)

i=0

By Lemma 2.2, the number of edges of Hs is equal n 4+ 2, where n is the number of

vertices of H;. Hence by Lemma 2.2, we have Z?:o z; = n and Z?:l ix; = 2n+4. By

relation (3.2), we have 21 = 2z4+ 23— 2x0—4 and zo+ 23+ 324 +2Np,(Cy) = 6+2y4.

v) Let K be a graph obtain by deleting two vertices of degree at least 3 of Hj.
Then each component of K is a path. Since the largest adjacency eigenvalue of each
path is less than 2, by Lemma 2.1, we have A3(H1) < A\ (K) < 2.0

LEMMA 3.3. Let G1 = S(a,b,c,d) # K14 and let Go be cospectral graphs with
respect to the signless Laplacian matrixz. Let Hy and Ho be the line graphs of G1 and
Go respectively. If x is the vertex of degree 4 in Ha, then the induced subgraph of x
and its neighborhoods is of type Ts or Tg (see Fig.4).

X

T5 Tﬁ
Fig.4

Proof. By Corollary 2.10, two graphs H; and Hy are cospectral with respect
to the adjacency matrix. So by Lemma 2.2, two graphs H; and H; have the same
number of closed walks of length 3 and so by Lemma 2.11, Ny, (K3) = 4. Let e = v
be corresponding edge of x of G2. Since z is a vertex of degree 4, the edge e = uv
has 4 edges of G5 as neighborhoods. We have the following cases:

Casel: If (deg(u),deg(v)) € {(1,5),(5,1)}, then N, (K3) > 4. This is impossible.
Case2: If (deg(u),deg(v)) € {(2,4),(4,2)}, since Np,(K3) = 4, then the induced
subgraph of x and its neighborhoods is of type T5.

Case3: If (deg(u),deg(v)) = (3,3), then the induced subgraph of z and its neighbor-
hoods is of type Tg, T7 and Ty (see Fig.4 and Fig.5). If the induced subgraph of 2 and
its neighborhoods is of type T7, then xo + x5 + 324 + 2Np,(Cy) > 14. By Lemma 3.2
it is impossible. Now suppose the induced subgraph of z and its neighborhoods be of
type Ts. First suppose x4 = 1. By Lemma 3.1, Hy does not have any component of
type Cs. On the other hand by Lemma 3.2, 1 = x3—2x9—2. Therefore Ny, (C5) =1
and so Ng,(Cs) + N, (Tp) < 16. Moreover Ny, (Cs) = 0 and Ny, (To) = 12 + 3y,.
Since Ny, (5) = Np,(5) and Np, (K3) = Np,(K3) = 4, by Lemma 2.11, we have
ya € {0,1}. Since G; = S(a,b,¢,d) # K14, we have yy = 1l and so b = c=d = 1,
a > 1. Therefore by Lemma 3.2, 8 = 6 + 2y4 = o + 3 + 3x4 + 2Ng,(C4) > 9, which
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is impossible.

Now suppose Hy has more than one vertex of degree greater than 4 , then Hy has
Ty, Tio or T11 as a subgraph (see Fig.5). It is easy to see that each graph on 6
vertices with T7¢ as a subgraph has either more than 4 triangles or is not the line
graph of any graph. So if T}, is a subgraph of Hs, then it is an induced subgraph.
Since Hy = L(G2) and Typ is not the line graph of any graph, Hs does not have
T1o as a subgraph. If Hy has a subgraph of type 711, then by iv) of Lemma 3.2,
2ys + 6 = g + 3 + 324 + 2Ng,(Cy) > 15 and so y4 > 9/2, which is not true. Now
let Hs has Ty as a subgraph. Since Np,(Cy) > 2, by iv) of Lemma 3.2, 24 < 3 and so
x4 € {2,3}. If x4 = 3, then by iv) of Lemma 3.2, y, = 4 and 29+ x5 = 1. Since Ty has
4 vertices of degree greater than 2, Hs has at least 4 vertices of degree greater than
2. Hence z3 = 1 and xyp = 0. Since H> does not have any cycle as a component, it is
easy to see that Hs has two components one of them is a path. Using Lemma 2.11,
we have Np,(5) = 280 and Ny, (5) = 360, which is not true. If 4 = 2, since Hs has
at least 4 vertices of degree greater than 2, 3 > 2. By iv) of Lemma 3.2, 2o + 23 < 4.
If x3 = 2, then Hy has two components, one of them is Ty and another is a path.
By iv) of Lemma 3.2, y4 = 3 and using Lemma 2.11, we have Ny, (5) = 270 and
Nir, (5) = 330, which is not true. Now let Hy has 3 or 4 vertices of degree 3. Using
Lemma 2.11, we have Ny, (5) € {280,290} and Ng, (5) = 240 + 30y, is a multiple of
30. Thus Ng, (5) # Ng,(5), which is not true. O

T Ty Ty Tio 111

Fig.5
Let Hy = K(a,b,c¢,d) and Hy be non—isogmorphic cospectral graphs with respect

to the adjacency matrix. Let N be the number of cycles of Ha where the induced
subgraph obtained by its vertices contains no any triangle as a subgraph. Again let
x; be the number of vertices of degree ¢ of Hy. We have the following useful lemma.

LEMMA 3.4. Let Hy does not have K4 as a subgraph. Then:

i) Hy contains exactly one T; as a subgraph for 12 < i < 43 where different
components of T; lie in the different components of Ho (see Fig.6).
Also if Hy contains T; as a subgraph for 12 <1 < 40, then
ii) If Hy contains no path as a component or xg = 1, then x1 + 2N = x5 — s,
1) If xo = 0 and Hs contains exactly one path as a component, then x1 + 2N =
xr3 —T.
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Where,
(6,4) 12 < i < 16.
(5,7) = (4,2) 17 < < 28.
) (2,00 29<4 <37,
(0,—2) 38 <i<40.
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Proof. 1) Since H; and Hs are cospectral with respect to the adjacency matrix,
by Lemma 2.2, Ny, (3) = Np,(3) and so by Lemma 2.11, we have Ny, (K3) =4. By
Lemma 3.2, A3(Hz) < 2 and so the number of non-tree components of Hy is at most
2. Moreover by Lemma 3.1, Hs does not have any cycle as a component. On the
other hand by Lemma 2.12, Hy does not have K; 3 as an induced subgraph and so
each non-tree component of Hy has K3 as a subgraph. Let K be a disjoint union of
non-tree components of Hy. By Lemma 3.2, A(Hz) € {3,4}. Note that by Lemma
3.3, each vertex of degree 4 of Hy is a vertex of K. If A(Hz) = 3, then K has exactly
one T; for 12 < i < 21 as a subgraph. Now let A(Hy) = 4. If x4 = 1, then K has
exactly one T; for 22 <14 < 32 as a subgraph. If z4 = 2, then K has exactly one T; for
33 < i < 38 as a subgraph. If 24 = 3, then K has exactly one T; for ¢ € {39,40,41}
as a subgraph. If 4 = 4, then K has exactly one T; for ¢ € {42,43} as a subgraph.

ii, ili) Since Hy does not have K7 3 as an induced subgraph and Ny, (K3) = 4,
each vertex of degree 3 of Hy is a vertex of subgraph 7;. It is clear that the number
of vertices with degree 2 of T; where their degrees are 3 in Hs is equal to 2N plus the
number of vertices with degree 1 of V(Hs) \ V(T}). Let z; be the number of vertices
of degree 7 of Tj. So w3 — z3 = 2N +x1 — z1. If s = 23 — z1, where Hs contains no
any path as a component or zyp = 1, then xy + 2N = z3 —s. If r = z3 — 21, where
xo = 0 and Hs contains exactly one path as a component, then z; + 2N =z3 —r. O

LEMMA 3.5. Let G1 = S(a,b,¢,d) # K14 and Gy be cospectral graphs with respect
to the signless Laplacian matriz. Let Ho be the line graph of Go. Then A(Hz) = 4.

Proof. By Corollary 2.10, the graphs Hy = L(G1) and H are cospectral with
respect to the adjacency matrix. So by Lemma 2.2 and Lemma 2.11, Ny, (K3) = 4.
Let x; be the number of vertices of degree i of Hs , by Lemma 3.2, it is sufficient to
show that A(Hs) # 3. Let A(Hz) = 3. By Lemma 3.1, Hy does not have any cycle as
a component. If Hy has K4 as a subgraph, then since A(Hs) = 3, K4 is the component
of Hy. Since L(G2) = Hy and Np,(K3) = Nk, (K3) = 4, all other components of Hs
are trees. By Lemma 3.2, G2 has exactly one bipartite component. Hence Ho = K4
and so Go = K 4 and by Theorem 2.2, G; = K 4. Which is impossible. So Hs does
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not have K, as a subgraph. Since Np,(K3) =4 and x4 = 0, H2 has a subgraph of
type T; for 12 < ¢ < 21 (see Fig.6).

Stepl: Let 12 < ¢ < 16. If zp = 1, then by Lemma 3.2, z; = z3 — 6 and by Lemma
34,21 +2N =23 —6. So N =0. If zg = 0 and H> contains exactly one path as a
component, then by Lemma 3.2, x1 = x3 — 4 and by Lemma 3.4, 1 + 2N = x3 — 4.
Hence N = 0. So by Lemma 3.2, for ¢ € {12,13}, we have 25 = 542y4 or x5 = 64 2y4.
Hence by Lemma 2.11, Ny, (5) = 170 4+ 20y4 or Ny, (5) = 180 + 20y4. On the other
hand Ng, (5) = 240 + 30y,. However Np, (5) # Np,(5). Which is a contradiction
to this fact H; and Hy are cospectral with respect to adjacency matrix. For i = 14
, we have 3 = 1 + 2y4 or 3 = 2 4+ 2y4. By Lemma 2.11, Ng,(5) = 170 + 20y,
or Np,(5) = 180 + 20y4. On the other hand Ny, (5) = 240 + 30ys. So Ny, (5) #
N, (5). Which is a contradiction to this fact Hy and Hj are cospectral with respect to
adjacency matrix. For ¢ = 15, we have x5 = 3+ 2y4 or 3 = 44 2y,4. By Lemma 2.11,
Ny, (5) = 170420y4 or Ny, (5) = 180+20y4. On the other hand N, (5) = 240+30y4.
So Np, (5) # Np,(5). Which is a contradiction to this fact H; and Hy are cospectral
with respect to adjacency matrix. If Hy contains no any path as a component, then
by Lemma 3.2, z; = z3 — 4 and by Lemma 3.4, 1 + 2N = z3 — 6. Hence N = —1,
which is impossible. It is easy to see that if Hs has Ti¢ as a subgraph, then it has
either Ty or T3 as an induced subgraph. Since Ho = L(G2) by Lemma 2.12, which is
impossible.

Step2: Let 17 < 4 < 21. First let ¢ € {17,19}. If o = 1, then by Lemma 3.2,
r1 = x3 — 6 and by Lemma 3.4, z1 + 2N = x3 — 4. Also if xg = 0 and H> contains
exactly one path as a component, then x; + 2N = z3 — 2 and ;1 = z3 — 4. Any
way we have N = 1. Thus Ng,(Cy) = 1 or 2. If Ng,(Cy) = 1, then by Lemma
3.2, we have x3 = 3+ 2y4 or 3 = 4+ 2y,. By Lemma 2.11, Ng,(5) = 170 + 20y,
or Ny, (5) = 180 + 20y4. If Np,(C4) = 2, then 23 = 1+ 2y4 or 23 = 2+ 2y4. So
N, (5) = 150 + 20ys4 or Np,(5) = 160 + 20ys. Moreover Ng, (5) = 240 + 30ya.
However, this is a contradiction to this fact H; and Hy are cospectral with respect
to adjacency matrix. If Hs contains no any path as a component, then by Lemma
3.2, 1 = r3 — 4 and by Lemma 3.4, z1 + 2N = x3 — 4. Therefor N = 0 and so
Ny, (Cy) = 1. By Lemma 3.2, 3 = 4 + 2y4. So Np,(5) = 180 + 20y4 < 240 + 30y4.
Which is impossible. Let ¢ = 18. If zyp = 1, then by Lemma 3.2, x1 = 3 — 6 and
by Lemma 3.4, 1 + 2N = x3 — 4. If xyp = 0 and H> contains exactly one path as
a component, then z1 + 2N = z3 — 2 and x1 = x3 — 4, respectively. Any way we
have N = 1. Since by Lemma 2.12, Hy does not have T as an induced subgraph,
we have Ny, (Cy) = 2. So by Lemma 3.2, 3 = 1+ 2y, or 23 = 2+ 2y4. So
N, (5) = 170 + 20y4 or Np,(5) = 180 + 20y4. However, Np,(5) < 240 + 30y, this
is not true. If Hy contains no any path as a component, then z; + 2N = x3 — 4 and
21 = x3 — 4. Hence N = 0 and so Np,(Cy) = 2. By Lemma 3.2, 3 = 2+ 2y4. So
N, (5) = 180 + 20y4 < N, (5), which is a contradiction to this fact H; and Hy are
cospectral with respect to adjacency matrix.
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Now let i € {20,21}. If 2y = 1, then by Lemma 3.2, 1 = x5 — 6 and by Lemma 3.4,
x1 + 2N = 23 — 4. If xg = 0 and H; contains exactly one path as a component, then
142N = z3—2 and 1 = x3 — 4, respectively. Therefore N = 1 and so G2 has more
than one bipartite component which is impossible. If Hy contains no any path as a
component, then by Lemma 3.2, 1 = x3 — 4 and by Lemma 3.4, 1 + 2N = x3 — 4.
Hence N =0 and so G2 has more than one bipartite component, which is false. O

In the following theorem by using the previous facts we show that only graphs of
type Ty4 and disjoint union of Ty5 with one path can be cospectral to a given starlike
tree with maximum degree 4 with respect to the signless Laplacian spectrum (see
Fig.7).

THEOREM 3.6. Let G1 = S(a,b,c,d) where d > ¢ >b > a > 1 and let Gy be
cospectral to Gy with respect to the signless Laplacian matriz. Then:

i) Ifa=b=1, then Gy and G are isomorphic,
i) Ifa=1, b> 1, then Go is either isomorphic to Gy or is of type Ty,
1) If a > 1, then Gy is either isomorphic to Gy or it has two components, one
of them is path and another is of type Tys (see Fig.7).

T44 T45
Fig.7

Proof. Let G2 be a cospectral to G with respect to the signless Laplacian matrix.
Let Hy and Hs be the line graphs of G; and Ga, respectively. By Corollary 2.10, H;
and Hy are cospectral with respect to the adjacency matrix. If G; = Kj 4, then
H, = K4 and so Hy = K4. Hence Gy and Gy are isomorphic. Now let G; # K 4.
By Lemmas 3.2 and 3.5, 0 < x4 < 4. Hence we have the following cases :
Casel: x4 = 4. By Lemma 3.3 and the fact that Ny, (K3) = 4, Hs has a subgraph
of type T; or Ky for i € {42,43} (see Fig.6 ). Since by Lemma 2.12, Hy does not
have T5 as an induced subgraph and the fact that Ny, (K3) = 4, Hz does not have
Tyo as a subgraph. If i = 43, then Ng,(Cy) > 1 and by iv) of Lemma 3.2, we have
r3 = xg = 0 and x; = 4. Hence H> contains two path as a component and so (G has
more than one bipartite component. Which is a contradiction. Therefor Hs has K4
as a subgraph. Again by iv) of Lemma 3.2, we have x3 = xo = 0 and 21 = 4. First let
H; is a connected graph, then Hs is the line graph of a starlike tree with maximum
degree 4. Hence by Theorem 2.5, H; is isomorphic to H; and so by Theorem 2.7,
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(G1 is isomorphic to G2. Now let Hs is not a connected graph. Since x3 = 29 = 0
and x7 = 4, using the fact that G5 has exactly one bipartite component, Hy has two
components, one of them is path and another is of type Ty7 (see Fig.8 ).

Case2: z4 = 3. Then by Lemma 3.3 and this fact that Ng,(K3) = 4, Hs has a
subgraph of type T; or K4 for i € {39,40,41} (see Fig.6 ). If i = 41, then Ng, (Cy) > 2
and by Lemma 3.2, we have x3 < 0. Which is impossible. Let i € {39,40}. If
xo = 1, then by Lemma 3.2, 1 = x3 and by Lemma 3.4, z; + 2N = z3. Ilf 2o =0
and Hs contains exactly one path as a component, then xz; + 2N = x3 + 2 and
x1 = x3 + 2. Hence N = 0. However G2 has more than one bipartite component
which is a contradiction. If Hy contains no any path as a component, then by Lemma
3.2, z1 = 23 + 2 and by Lemma 3.4, 1 + 2N = x3. So N = —1, which is impossible.
So Hy has K4 as a subgraph. Since Hy does not have K 3 as an induced subgraph
and Ny, (K3) = 4, each vertex of degree at least 3 of Hy is the vertex of subgraph
K, of Hy. Therefore x3 + x4 = 4 and so x3 = 1. On the other hand by Lemma 3.2,
Nu,(Cy) € {1,2}. First let Ny, (Cy) = 2. By Lemma 3.2, y4 =4, zp =0 and 21 = 3
and so Hy has 2 components, one of them is a path and another is of type Tyg (see
Fig.8 ). By Lemma 2.11, Ng,(5) = 350 < Ng, (5) = 360, which is not true. Now let
Npy,(Cy) = 1. By Lemma 3.2, y4 = 3, g = 0 and x; = 3. First let Hs is a connected
graph, then it is the line graph of a starlike tree with maximum degree 4. Hence by
Theorem 2.5, H; is isomorphic to Hs and so by Theorem 2.7, Gy is isomorphic to
G2. Now let Hs is not a connected graph. Since xg = 0 and x; = 3, using the fact
that G2 has exactly one bipartite component, Hs has two components, one of them
is path and another is of type Tys.

Case3: Let x4 = 2. Then Hs has a subgraph of type T; or K, for 33 < i < 38 (see
Fig.6 ). Since x4 = 2 and Np, (K3) = 4, if Hy has T37 as a subgraph, then Hy has T
as an induced subgraph. By Lemma 2.12; which is impossible.

Let 2 = 38, if xp = 1, then by Lemma 3.2, 1 = x3—2 and by Lemma 3.4, x1+2N = z3.
If o = 0 and H> contains exactly one path as a component, then x; + 2N = x3 + 2,
x1 = x3. Hence N = 1, which is a contradiction to this fact that G5 has exactly one
bipartite component. If Hy contains no path as a component, then z1 +2N = x3 and
21 =3 so N =0. By i) of Lemma 3.2, it is a contradiction.

Let 7 € {33,35,36}. If xop = 1, then by Lemma 3.2, 1 = 3 — 2 and by Lemma 3.4,
x1+ 2N = 23 — 2. If xg = 0 and H> contains exactly one path as a component, then
21+ 2N = 23 and 21 = x3. Hence N = 0, by i) of Lemma 3.2, is a contradiction. If
Hs contains no path as a component, then x1 +2N = x3—2 and 1 = x3s0o N = —1,
which is impossible.

Let ¢ = 34. If zyp = 1, then by Lemma 3.2, x1 = 3 — 2 and by Lemma 3.4,
1+ 2N =23 —2. So N = 0. By Lemma 3.2, we have x3 = 2y, — 3. By Lemma 2.11,
N, (5) = 190+20ys < N, (5) = 240+ 30y4. Which is a contradiction to this fact H;
and H, are cospectral with respect to adjacency matrix. If Hy contains no path as a
component, then x1 + 2N = 3 — 2 and ©; = 23 . So N = —1, which is impossible.
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If xp = 0 and H; contains exactly one path as a component, then x; + 2N = x3
and 1 = x3. So N = 0. By Lemma 3.2, we have z3 = 2y4 — 2 . By Lemma 2.11,
N, (5) =200 + 20ys < Np, (5). Which is a contradiction to this fact Hy and Ha are
cospectral with respect to adjacency matrix. So Hs has K, as a subgraph. Since Hy
does not have K7 3 as an induced subgraph and Ng, (K3) = 4, each vertex of degree
at least 3 of Hy is the vertex of subgraph K4 of Hy. Therefore x3 + x4 = 4 and so
x3 = 2. Moreover Hy does not have any cycle as a component. So Hy has exactly
one non-tree component. If Hy is a connected graph, then by Lemma 3.2, 1 = 2 and
s0 Np,(C4) = 1 and y4 = 2. Therefore H, is a line graph of a starlike graph with
maximum degree 4. Using Theorem 2.5, H; and Hs are isomorphic. So by Theorem
2.7, G and G, are isomorphic. If Hs is not a connected graph, then by Lemma 3.2,
we have xg + 2Ny, (Cy) = 2(ys — 1). Since zy < 1, we have g = 0 and so z; = 2
and Ny, (C4) = y4 — 1. Hence Hs has 2 components one of them is path and another
is of type Tys. It is easy to see that Np,(Cy) < 2. If Ny, (Cy) = 2, then y, = 3
and so Ng, (5) = 330 > Np,(5) = 320. That is false. Hence Ng,(Cy) = 1 and so
ys = 2. One can successively subdivide certain edges of the Hy in an appropriate
way, to obtain graph H, such that H; can be embedded in H as a proper subgraph.
So by Lemma 2.8, A;(Hz) > M\ (H) and by Lemma 2.6, A (H) > \;(H;). Hence
A1(Hz2) > A1(H1) which is a contradiction to the fact that Hy and H; are cospectral
with respect to the adjacency matrix.

Case4: Let 4 = 1. Then Hs has a subgraph of type T; or Ky for 22 < i < 32
(see Fig.6 ). If Hy has a subgraph of type K4, then by Lemma 3.2, Hs is a line
graph of a starlike graph with maximum degree 4. Using Theorem 2.5, H; and Hy
are isomorphic. So by Theorem 2.7, G; and G2 are isomorphic. Now let Hy has a
subgraph of type T; for 22 <i < 32.

Let ¢ € {22,27,28}. If 9 = 1, then by Lemma 3.2, 1 = 3 — 4 and by Lemma 3.4,
x1 + 2N = 23 — 4. If xg = 0 and H; contains exactly one path as a component, then
1+ 2N = 23 —2 and 1 = z3 — 2. Any way, N = 0. So G2 has more than one
bipartite component, which is impossible. If Hy contains no path as a component,
then x1 + 2N = 23 — 4 and 1 = 23 — 2. So N = —1, which is impossible.

Let ¢ = 23. If zp = 1, then by Lemma 3.2, x1 = z3 —4 and by Lemma 3.4, z; + 2N =
x3 — 4. Also if zp = 0 and Hy contains exactly one path as a component, then
21+ 2N =23 —2 and 1 = 23 — 2. Any way we have N = 0. Thus Ng,(Cy) = 1. By
Lemma 3.2, we have x3 = 2y4 or 3 = 2y, + 1. By Lemma 2.11, Ny, (5) = 180 + 20y,
or Ny, (5) = 190 + 20ys. However Np,(5) < Ng,(5), that is impossible. If Hy
contains no path as a component, then by Lemma 3.2, z; = z3 — 2 and by Lemma
3.4, x1 +2N =x3 —4. So N = —1, which is impossible.

Let « = 30. If zg = 1, then by Lemma 3.2, 1 = x3 — 4 and by Lemma 3.4,
x1+ 2N = x3 — 2. Also if x9 = 0 and H> contains exactly one path as a component,
then 1 + 2N = z3 and 21 = x3 — 2. Any way we have N = 1. Thus Ng,(Cy) =
1or 2. If Ng,(Cyq) = 1, then by Lemma 3.2, we have x3 = 2y4 or x3 = 2y4 + 1.
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By Lemma 2.11, NH2(5) = 180 + 20y4 or NH2(5) = 190 + 20y,. If Ny, (04) = 2,
then z3 = 2ys — 2 or 3 = 2y, — 1. By Lemma 2.11, Ng,(5) = 160 + 20y4 or
Nip,(5) = 170 4+ 20y4. However Ny, (5) < Np, (5), this is a contradiction to this fact
H, and H, are cospectral with respect to adjacency matrix. If Hy contains no any path
as a component, then by Lemma 3.2, x1 = x3—2 and by Lemma 3.4, 1 +2N = z3—2.
So N = 0. Hence by Lemma 3.2, x3 = 2ys + 1. So Np,(5) = 190 + 20y4 < N, (5).
This is impossible.

Let ¢ € {31,32}. If 2o = 1, then by Lemma 3.2, 1 = 3 — 4 and by Lemma 3.4,
x1+ 2N = 23 — 2. If xg = 0 and H> contains exactly one path as a component, then
1+ 2N =3 and z1 = x3 — 2. So N = 1. However G5 has more than one bipartite
component and this is a contradiction. If Hy contains no path as a component, then
1+ 2N =23 —2 and 1 = 3 — 2. So N = 0, which is a contradiction to this fact
that G2 has exactly one bipartite component.

Let 24 < ¢ < 26. If zp = 1, then by Lemma 3.2, x1 = x3 — 4 and by Lemma 3.4,
x1+ 2N = 23 — 4. If xg = 0 and H> contains exactly one path as a component, then
14+ 2N =23 —2 and 1 = 23 — 2. So N = 0. By Lemma 3.2, for ¢ = 24, we have
3 = 2ys — 2 or x3 = 2y4 — 1. By Lemma 2.11, Ng,(5) = 180 + 20y4 or Ng,(5) =
190 4+ 20y,4. By Lemma 3.2, for ¢ = 25, we have 3 = 2y, or 3 = 2y, + 1. By Lemma
2.11, Np,(5) = 180 + 20y4 or Ng,(5) = 190 + 20ys. However Ny, (5) < Ng, (5),
that is not true. Now if zp = 0 and Hy contains no path as a component, then by
Lemma 3.2, 1 = x3 — 2 and by Lemma 3.4, z; + 2N = x3 — 4. So N = —1, which
is impossible. Since x4 =1 and Np, (K3) = 4, if H has Ths as a subgraph, then Hs
has T as an induced subgraph. By Lemma 2.12, which is impossible.

Let i = 29. If zg = 1, then by Lemma 3.2, x1 = x3 — 4 and by Lemma 3.4,
1+ 2N = 23 — 2. If g = 0 and H, contains exactly one path as a component,
then 1 + 2N = x3 and 27 = x5 — 2. Hence N = 1. Thus Ng,(Cy) = 1 or 2.
If Ng,(Cy) = 1, then by Lemma 3.2, we have z3 = 2ys or z3 = 2ys + 1. By
Lemma 2.11, Ng,(5) = 180 + 20y4 or Ng,(5) = 190 + 20y4. If Ng,(Cy) = 2,
then by Lemma 3.2, we have x3 = 2y4 — 2 or 3 = 2y4 — 1. By Lemma 2.11,
Ny, (5) = 160 + 20y4 or Np,(5) = 170 + 20y, a contradiction. If g = 0 and Hs
contains no path as a component, then by Lemma 3.2, z; = z3 — 2 and by Lemma
34, 21+ 2N =23 —2. So N =0. Thus by Lemma 3.2, x3 = 2y4 + 1. By Lemma
2.11, Ng,(5) = 190 + 20y4 < N, (5). This is impossible. O
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Fig.8

Let Ng(H) be the number of subgraphs of a graph G which are isomorphic to
H and let Ng(i) be the number of closed walks of length ¢ in G. Let N, (i) be the
number of closed walks of length ¢ of H which contains all edges and let S;(G) be the
set of all connected graphs such H with Ny, (2) # 0 where G has at least one subgraph
isomorphic to H. Then:

Na(i)= > Na(H)Ny(i). (3:3)
HeS; (GQ)

THEOREM 3.7. Let G = S(a,b,c,d) where d > ¢ > b > a > 1. Then G is
determined by its signless Laplacian spectrum.

Proof. Let G1 = G and let G5 be cospectral to G; with respect to the signless
Laplacian matrix. If G2 is not isomorphic to G1, then by using Theorem 3.6, we have
the following cases:

Casel: Let a = 1, b > 1 and let Gy = A (see Fig.9). If b > b, then we can
subdivide certain edges of the cycle C; of L(G2) in an appropriate way, to obtain
graph H, such that L(G;) can be embedded in H as a proper subgraph. So by
Lemma 2.8, \;(L(G2)) > M\ (H) and by Lemma 2.6, \;(H) > A\ (L(G1)). Hence
M (L(G2)) > AM(L(G1)) which contradicts to the fact that L(G2) and L(Gy) are
cospectral with respect to the adjacency matrix. So b < b. If b > (I —1)/2, then
Sl(L(Gg)) = S[(L(Gl))U{Cl} and for each K € Sl(L(Gl)), NL(G2)(K) > NL(Gl)(K)-
So by the equation (3.3), Nz(a,)(l) > Nr(g,)(l), contradicting to the fact that L(G?2)
and L(G1) have the same number of closed walks of any length. If b < (I — 3)/2, then
S(ap13) (L(G2)) = 5(25+3)(L(G1))= Npepy(K(1,1,b 4+ 1)) > Npa,)(K(1,1,b + 1))
and Np(,)(K) = Np(q,)(K) for each K # K(1,1,b+ 1) in S5, 5 (L(G2)). Hence
by the equation (3.3), we have Ny g,)(2b+ 3) > Np(q,)(2b + 3), which is again a
contradiction. Hence b € {(I — 3)/2, (I —2)/2}. On the other hand G; and G, have
the same number of vertices and so [ > ¢+ d > 2b > 2b + 2. Therefore b = (I — 3)/2
and so G5 is not a bipartite graph, contradicting to the fact that G; is bipartite.

Case2: Let a > 1 and let G5 has two components, one of them is path and another is
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B (see Fig.9) where @ < b. Since G5 has exactly one bipartite component, [ is an odd
number. If @ > a, then by easy task we can see that Ny q,)(2a+3) > Npq,)(2a+3),
contradicting to the fact that L(G2) and L(G1) have the same number of closed walks
of any length. If @ = a, then as a similar to casel, we have b = (I — 3)/2 < b. Since
for each natural « we have Ny, , 2z +1) = N/C(2m+1) (2x41) = 4z +2, it is easy to
see that Ny (q,)(l) < Nra,)(l), that is impossible. If @ < a, then again as a similar
to casel, we have @ = (I — 3)/2. Again we can see that Ny (q,)(l) < Np(a,)(l), which

is impossible. 0

b 1 b l
N U R Y U
Cl a l Ci
,,,,,,, o. . . ..
A B
Fig.9
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