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THE MOORE-PENROSE INVERSE OF THE DISTANCE MATRIX OF A HELM GRAPH∗

I. JEYARAMAN† , T. DIVYADEVI , AND R. AZHAGENDRAN

Abstract. In this paper, we give necessary and sufficient conditions for a real symmetric matrix and, in particular, for

the distance matrix D(Hn) of a helm graph Hn to have their Moore-Penrose inverses as the sum of a symmetric Laplacian-like

matrix and a rank-one matrix. As a consequence, we present a short proof of the inverse formula, given by Goel (Linear

Algebra Appl. 621:86–104, 2021), for D(Hn) when n is even. Further, we derive a formula for the Moore-Penrose inverse of

singular D(Hn) that is analogous to the formula for D(Hn)
−1. Precisely, if n is odd, we find a symmetric positive semi-definite

Laplacian-like matrix L of order 2n − 1 and a vector w ∈ R2n−1 such that

D(Hn)
†
= −

1

2
L +

4

3(n − 1)
ww′,

where the rank of L is 2n − 3. We also investigate the inertia of D(Hn).
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1. Introduction. We consider a simple connected graph G with the vertex set {v1, v2, . . . , vn}. In

literature, several matrices have been associated with G through which many structural properties of the

graphs have been studied. A few classical graph matrices are the adjacency matrix, the Laplacian matrix,

the distance matrix, the incidence matrix etc., see [5, 7]. Let us recall the distance matrix which is relevant

to our discussion. The distance matrix D(G) ∶= (dij) of G is an n × n symmetric matrix with dij = d(vi, vj)
for all i and j, where d(vi, vj) denotes the length of a shortest path between the vertices vi and vj . This

matrix has been widely studied in the literature and has applications in chemistry, physics, computer science,

etc., see [5, 7] and the references therein. For a brief introduction, we refer to the survey article [1].

A basic problem in graph matrices is to give a simple formula to compute the inverses of these matrices.

This problem has been extensively studied in the literature, see [4, 5, 8, 10, 11, 18]. To state the famous

inverse formula given in [10], let us recall the Laplacian matrix corresponding to G. The Laplacian matrix

of G is given by L ∶= (lij) where lii is the degree of the vertex vi, lij = −1 if vi and vj are adjacent and zero

elsewhere. Then, L is a symmetric matrix of order n whose row sums are zero, positive semi-definite and

rank of L is n − 1 (see [5]). In [10], an expression for the inverse of the distance matrix D(T ) of a tree T is

obtained, which is given by

D(T )−1 = −1
2
L + 1

2(n − 1)uu
′,(1.1)

where u′ = (2 − deg(v1),2 − deg(v2), . . . ,2 − deg(vn)) and deg(vi) is the degree of the vertex vi. Motivated

by this, analogous inverse formulae for the distance matrices of various graphs have been established. For

instance, the distance matrices of wheel graphs Wn when n is even [4], helm graphs with even number of
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vertices [8] and fan graphs [11]. Let us mention that for all these matrices, the inverse formulae are obtained

by replacing the Laplacian matrix by Laplacian-like matrix which we recall next. A symmetric matrix L̄ is

said to be Laplacian-like if all its row sums are zero [18]. The results state that the inverse formulae for

all the above matrices are expressed as the sum of a symmetric positive semi-definite Laplacian-like matrix

and a rank-one matrix. Similar inverse formulae have been determined for the distance matrices of weighted

trees, cycles, complete graphs, block graphs and bi-block graphs, see [18] and the references therein for more

graphs.

Another basic problem in this topic is to find the Moore–Penrose inverses of singular and rectangular

graph matrices, which have been well studied in the literature (see [2, 3, 5, 15, 16] and references therein).

Let us recall that for an m×n real matrix M , an n×m matrix X is said to be the Moore-Penrose inverse of M

if MXM =M, XMX =X, (MX)′ =MX and (XM)′ =XM . It is known that the Moore–Penrose inverse

always exists and is unique. It is denoted by M †. Furthermore, M † coincides with the usual inverse M−1 if

M is non-singular, see [6] for more details. Inspired by the inverse formula result of [10], the Moore-Penrose

inverse of the distance matrix D(Wn) of the wheel graph Wn, similar to (1.1), was obtained for the singular

case [3]. More precisely, if n is odd, then the Moore-Penrose inverse of D(Wn) is given by

(1.2) D(Wn)† = −
1

2
L + 4

n − 1tt
′,

where L is a real symmetric positive semi-definite Laplacian-like matrix of order n and t ∈ Rn.

This paper focuses on the distance matrix of a helm graph Hn, which is a generalization of star graph

[14]. Several studies on helm graphs have been carried out in the literature. The resolving domination

numbers of helm graphs were analysed in [12]. It was proved in [14] that the distance matrix D(Hn) of a
helm graph Hn is a circum Euclidean distance matrix. In [8], it was shown that if n is even then D(Hn) is
non-singular. Further, the problem of finding the inverse of D(Hn) was considered and the inverse formula

for D(Hn), similar to (1.1), was provided using the inverse of the distance matrix D(Wn) of the wheel graph
Wn. That is,

(1.3) D(Hn)−1 = −
1

2
L + 4

3(n − 1)ww′,

where L is a Laplacian-like matrix and w ∈ R2n−1, see Theorem 3 in [8]. Motivated by the above-mentioned

results on Hn, our aim herein is to explore more results on D(Hn), which may be helpful in studying the

distance matrices of generalizations of star graphs.

In Section 3, we show that D(Hn) is singular if n is odd and then derive the inertia of D(Hn) by

finding its rank. We study the Moore-Penrose inverse formula for D(Hn) in Section 4. We first establish

necessary and sufficient conditions under which the Moore-Penrose inverses of symmetric matrices generally

and D(Hn), in particular, is of the form similar to (1.3). Using these results, we give an alternative proof of

the inverse formula given in (1.3). Further, we establish an analogous formula for D(Hn)† for the singular

case. That is, if n is odd, we construct a symmetric Laplacian-like matrix L of order 2n − 1 and a vector

w ∈ R2n−1 such that D(Hn)† is expressed as the sum of a constant multiple of L and a rank-one symmetric

matrix defined by w (see Theorem 4.13). It is noteworthy to mention that our approach of finding D(Hn)†
is significantly different from those of [3, 4, 8, 11]. Unlike [8], the techniques employed to obtain a different

proof for D(Hn)−1 do not depend on D(Wn)−1 and the proof given for D(Hn)† formula is also independent

of D(Wn)†. Finally, we prove that the constructed L is a positive semi-definite matrix of rank 2n − 3 using

the concept of simultaneous diagonalization.
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2. Preliminaries. In this section, we fix the notations and collect some basic results which will be

needed in this paper. For a matrix M , we denote the i-th row of M , the j-th column of M , the transpose of

M , the range of M , the null space of M and the rank of M by Mi∗, M∗j , M
′, R(M), N(M) and rank(M),

respectively. We write the determinant of a square matrix M as det(M) and the identity matrix of order n

as In. The symbol diag(µ1, µ2, . . . , µn) represents the n×n diagonal matrix whose j-th diagonal entry is µj .

The notations Jn and On are used to denote the matrices with all elements equal to 1 and 0, respectively.

The subscripts are omitted if the order of the matrix is clear from the context. All the vectors are assumed to

be column vectors and are denoted by lowercase boldface letters. We use the notations e and 0 to represent

the vectors in Rn whose coordinates are all one and zero, respectively. Let Circ(a′) denote the circulant

matrix of order n defined by the vector a = (a1, a2, . . . , an)′ ∈ Rn, and the notation Tn(2,1,1) stands for the
tridiagonal matrix of order n whose diagonal entries are all 2. That is,

Circ(a′) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 ⋯ an−1 an
an a1 a2 ⋯ an−2 an−1
an−1 an a1 ⋯ an−3 an−2
⋮ ⋮ ⋱ ⋮ ⋮
a3 a4 a5 ⋯ a1 a2
a2 a3 a4 ⋯ an a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Tn(2,1,1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 ⋯ 0 0 0

1 2 1 0 0 0

0 1 2 0 0 0

⋮ ⋱ ⋱ ⋱
0 2 1 0

0 ⋯ 1 2 1

0 ⋯ 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Suppose that A = Circ(x′) and B = Circ(y′) where x,y ∈ Rn. Then,

(2.4) AB = BA, AB = Circ(x′B) and Circ(ax′ + by′) = aA + bB.

The above interesting properties of the circulant matrix will be used frequently in this paper. For more

results, we refer to the books [13, 17].

3. The distance matrix of a Helm graph and its inertia. We first define the distance matrix

D(Hn) of a helm graph Hn. Then, we show that D(Hn) is singular when n is odd. Finally, we derive the

inertia of D(Hn) after determining its rank.

We first recall the definition of a wheel graph. For n ≥ 4, the notation Cn−1 denotes the cycle of length

n − 1 and the vertices in Cn−1 are labelled as v1, v2, . . . , vn−1. The wheel graph Wn on n vertices is a graph

containing the cycle Cn−1 and a vertex, say v0, not in the cycle Cn−1 which is adjacent to every vertex vi
in the cycle Cn−1. This paper is concerned with the helm graph which we define next. The helm graph on

2n − 1 vertices, denoted by Hn, is a supergraph of Wn which is obtained from Wn by attaching a pendant

vertex ui to the vertex vi lying on the outer cycle for all i = 1,2, . . . , n−1. The helm graph H7 on 13 vertices

is given in Figure 1.

Let u = (0,1,2,2, . . . ,2,1)′ ∈ Rn−1. Then, the distance matrix D(Hn) of the helm graph Hn is given by

D(Hn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 e′ 2e′

e D̃ D̃ + Jn−1
2e D̃ + Jn−1 D̃ + 2(Jn−1 − In−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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Figure 1: Helm graph H7 on 13 vertices.

where D̃ = Circ(u′), see [8, 14]. We fix the symbol s to denote the vector (2,1,0, . . . ,0,1)′ in Rn−1. By

defining S = Circ(s′), the matrix D(Hn) can be re-written as D(Hn) =Da +Db, where

Da =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 e′ 2e′

e 2Jn−1 3Jn−1

2e 3Jn−1 4Jn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and Db =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0′ 0′

0 −S −S

0 −S −(S + 2In−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

It has been shown that det(D(Hn)) = 3(n − 1)2n−1 when n is even ([8], Theorem 2). From numerical

computations, it has been observed in [8] that D(Hn) is singular if n is odd. In the following, we give a

proof of this result. Precisely, we show that det(Hn) = 0 if n is odd.

Theorem 3.1. Let n ≥ 5. If n is an odd integer, then D(Hn) is singular.

Proof. Define v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1 and p0 = (0,v′,0′)′ ∈ R2n−1. Then,

D(Hn)p0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 e′ 2e′

e 2J 3J

2e 3J 4J

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

v

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0′ 0′

0 −S −S

0 −S −(S + 2I)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

v

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e′v

2Jv

3Jv

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

−Sv

−Sv

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since n − 1 is even, we have e′v = 0 which implies Jv = 0. It is easy to see that Sv = 0. Therefore,

D(Hn)p0 = 0, and hence, D(Hn) is singular.

3.1. The inertia of D(Hn). Recall that the inertia of a real symmetric matrix M of order n, denoted

by In(M), is the ordered triple (i+, i−, i0), where i+, i− and i0, respectively, denote the number of positive,

negative, and zero eigenvalues of M including the multiplicities. It is well known that rank(M) = i+ + i−.

It is shown in [9] that the inertia of the distance matrix of any tree with n ≥ 2 vertices is (1, n − 1,0).
The inertias of the distance matrices of wheel graphs and fan graphs are studied, see [1]. The objective of

this section is to find the inertia of the distance matrix of the helm graph.

Next, we find the rank of D(Hn) which will be used to compute the In(D(Hn)).
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Theorem 3.2. Let n ≥ 4 be an integer. Then,

rank(D(Hn)) =
⎧⎪⎪⎨⎪⎪⎩

2n − 1 if n is even,

2n − 2 if n is odd.

Proof. If n is even, then det(D(Hn)) = 3(n−1)2n−1 ≠ 0 by Theorem 2 in [8]. Hence, rank(D(Hn)) = 2n−1.
Assume that n is odd. We claim that rank(D(Hn)) = 2n − 2. To prove the claim, it is enough to show

N(D(Hn)) = span{z0} for some non-zero z0 ∈ R2n−1. Let z = (γ,p′,q′)′ ∈ R2n−1 where p,q ∈ Rn−1 and

γ ∈ R. Suppose D(Hn)z = 0. Then, we have the following system of equations:

e′p + 2e′q = 0.(3.5)

γe + 2Jp − Sp + 3Jq − Sq = 0.(3.6)

2γe + 3Jp − Sp + 4Jq − Sq = 2q.(3.7)

Subtracting (3.6) from (3.7), we obtain γe + Jp + Jq = 2q which can be written as

(3.8) (γ + e′p + e′q)e = 2q.

From (3.5) and (3.8), we get (γ − e′q)e = 2q. This implies (γ − e′q)e′e = 2e′q, and hence,

(3.9) γ = n + 1
n − 1e

′q.

Now we obtain another expression for γ by premultiplying (3.6) by e′. Using the fact e′S = 4e′, we get

γ(n − 1) + 2(n − 1)e′p − 4e′p + 3(n − 1)e′q − 4e′q = 0. By (3.5), the above equation reduces to

(3.10) γ = n − 5
n − 1e

′q.

Comparing (3.9) and (3.10) gives e′q = 0 which implies γ = 0. It follows from (3.5) that e′p = 0, and hence

by (3.8), q = 0. Thus, z = (0,p′,0′)′ and the system D(Hn)z = 0 reduces to Sp = 0. Note that S can be

written as

S =
⎡⎢⎢⎢⎢⎣

2 e1
′ + en−2′

e1 + en−2 Tn−2(2,1,1)

⎤⎥⎥⎥⎥⎦
.

By Theorem 5.5 in [17], det(Tn−2(2,1,1)) = n − 1 which gives rank(S) ≥ n − 2. Note that the order of S is

n − 1 and Sv = 0 where v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1. Hence, rank(S) = n − 2 and N(S) = span{v}.
This implies N(D(Hn)) = span{z0} where z0 = (0,v′,0′)′. Hence, the proof.

Theorem 3.3. Let n ≥ 4. The inertia of D(Hn) is

InD(Hn) =
⎧⎪⎪⎨⎪⎪⎩

(1,2n − 2,0) if n is even,

(1,2n − 3,1) if n is odd.

Proof. It is proved that D(Hn) is a Euclidean distance matrix ([14], Theorem 14). Therefore, D(Hn)
has exactly one positive eigenvalue (see Theorem 2 in [14]), that is n+(D(Hn)) = 1 for all n ≥ 4. By Theorem

3.2 and using the fact that rank(D(Hn)) = n+(D(Hn)) + n−(D(Hn)), we obtain the desired result.
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4. Formulae for the inverse and the Moore-Penrose inverse of D(Hn). It is shown in [8] that

if n ≥ 4 is an even integer, then D(Hn) is non-singular and a formula for D(Hn)−1 has been obtained using

the inverse of the distance matrix of the wheel graph Wn. Also, the formula is expressed as a constant

multiple of a symmetric Laplacian-like matrix L plus a symmetric rank-one matrix defined by a vector w.

To be more precise,

(4.11) D(Hn)−1 = −
1

2
L + 4

3(n − 1)ww′,

where L is a symmetric positive semi-definite matrix of rank 2n − 2 and w = 1
4
(5 − n,−e′,2e′)′ ∈ R2n−1 ([8],

Theorem 3). In Section 4.2, we give another proof of this result. We point out that our proof does not

depend on D(Wn)−1.

Motivated by the inverse formula given in (4.11), we study an analogous formula for the Moore-Penrose

inverse of D(Hn) when D(Hn) is singular, see Section 4.3. If n is odd, we proved that D(Hn) is singular

(Theorem 3.1). In this case, we establish a formula for D(Hn)† by finding equivalent formulations for the

general matrix case and in particular, D(Hn) which will be discussed in Section 4.1.

4.1. Characterizations for the Moore-Penrose inverse of a general symmetric matrix and

D(Hn). In this subsection, we derive a necessary and sufficient condition for a symmetric matrix D to have

its Moore-Penrose inverse of the form (4.11). The conditions are given in terms of system of linear equations

and matrix equations, where the precise statement is given below.

Theorem 4.1. Let D be a symmetric matrix of order n with e ∈ R(D) and w ∈ Rn such that e′w = 1.
Suppose that L is a symmetric Laplacian-like matrix and α is a non-zero real number. Then, D

† = − 1
2
L +

αww′ if and only if Dw = 1
α
e and LD+2I = 2we′ + Ṽ for some symmetric matrix Ṽ satisfying DṼ = O and

Ṽ (− 1
2
L + αww′) = O.

Proof. Assume that D
† = − 1

2
L + αww′ with Le = 0. Premultiplying D

†
by D, we get DD

† = − 1
2
DL +

αDww′. Since e ∈ R(D), we have DD
†
e = e (see [6]). Therefore, DD

†
e = − 1

2
DLe + αDww′e = αDw which

gives Dw = 1
α
e. Now postmultiplying D

†
by D, we obtain D

†
D = − 1

2
LD + αww′D = − 1

2
LD +we′. This

implies LD + 2I = 2we′ + 2(I − D†
D) = 2we′ + Ṽ , where Ṽ ∶= 2(I − D†

D). Note that Ṽ is a symmetric

matrix as D
†
D is symmetric. Clearly DṼ = O. We claim that Ṽ (− 1

2
L + αww′) = O. We have Ṽ D† =

(2I −2D†D)D† = 2D† −2D†DD† = O. By the assumption on D†, the claim follows. Conversely, assume that

(4.12) Dw = 1

α
e and LD + 2I = 2we′ + Ṽ ,

where L and Ṽ are symmetric matrices such that Le = 0, DṼ = O and Ṽ (− 1
2
L + αww′) = O. Let X =

− 1
2
L+αww′. We claim that X is the Moore-Penrose inverse of D. First we show that XD is symmetric. We

have XD = − 1
2
LD + αww′D. Using (4.12), we can write XD = I − 1

2
Ṽ . Therefore, XD is symmetric. Also

DX is a symmetric matrix which follows from the fact that X, D and XD are symmetric. Since DṼ = O,

it is easy to see that DXD = D(I − 1
2
Ṽ ) = D. The assumption Ṽ X = O gives XDX = X. This completes

the proof.

The next theorem gives the uniqueness of the Laplacian-like matrix L and the vector w, which satisfy the

identities in (4.12).

Theorem 4.2. Let D be a symmetric matrix of order n. If there exists a non-zero real number α and

w ∈ Rn with e′w = 1 such that D
† = − 1

2
L + αww′ for some Laplacian-like matrix L, then the scalar α, the

vector w and the matrix L are unique.
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Proof. Suppose D
† = − 1

2
L0 + βzz′ for some non-zero β ∈ R, z ∈ Rn with e′z = 1 and L0e = 0. Then,

e′D
†
e = e′(αww′)e = e′(βzz′)e. This implies α = β and hence D

† = − 1
2
L + αww′ = − 1

2
L0 + αzz′. By finding

D
†
e, we get w = z. Hence, L = L0 which completes the proof.

In the following remark, we mention certain facts about the system D(Hn)w = 1
α
e where α is a non-zero

real number.

Remark 4.3. It was proved in ([14], Theorem 15) that the system D(Hn)w = 3(n−1)
4

e has a solution

w0 = 1
4
(5 − n,−e′,2e′)′ ∈ R2n−1. Note that e′w0 = 1 and e ∈ R(D(Hn)). In fact, it can be shown that

if the system D(Hn)w = 1
α
e has a solution w ∈ R2n−1 with e′w = 1 then α = 4

3(n−1)
. We omit the proof

as it is similar to the case of D(Hn)z = 0, (see Theorem 3.2). Moreover, if D(Hn) is singular then the

solution set of D(Hn)w = 3(n−1)
4

e is w0 +N(D(Hn)) = { 14(5 − n,βv
′ − e′,2e′)′ ∈ R2n−1 ∶ β ∈ R} where v =

(1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1 (see Theorem 3.2). Of course, the solution is unique if D(Hn) is non-singular.

The next result gives a necessary condition on Ṽ which will be useful in obtaining the identities (4.12) in

the case of D(Hn).
Lemma 4.4. Let S = Circ(s′) where s = (2,1,0, . . . ,0,1)′ ∈ Rn−1 and let D be the distance matrix of Hn.

Then, there exists a symmetric matrix Ṽ such that DṼ = O if and only if Ṽ = [ 0 0′ 0′
0 X O
0 O O

] for some symmetric

matrix X of order n − 1 with Xe = 0 and SX = O.

Proof. Assume that there exists a symmetric matrix Ṽ such that DṼ = O. Suppose Ṽ = [
γ p′ q′
p X F
q F ′ G

]

where γ ∈ R, p,q ∈ Rn−1 and X, F , G are matrices of order n − 1. Then, (DṼ )∗1 = DṼ∗1 = D [
γ
p
q
] = 0 gives

that γ = 0 and q = 0 (see the proof of Theorem 3.2). Similarly, we conclude that the first and the last (n−1)
coordinates of each column of Ṽ are zero. That is, p = 0, F ′ = O and G = O. Now DṼ = O reduces to

e′X = 0′ and (2J −S)X = O. Thus, Xe = 0 and SX = O. Conversely, assume that Ṽ = [ 0 0′ 0′
0 X O
0 O O

] where X is

an (n−1)× (n−1) symmetric matrix satisfying the conditions Xe = 0 and SX = O. By a direct verification,

we see that DṼ = O.

We now derive a necessary and sufficient condition on the Laplacian-like matrix L such that the identities

in (4.12) are satisfied for the case of D(Hn). Recall that for a real matrix M , R(M ′) = R(M †) (see [6]),

which will be used in the next proof.

Theorem 4.5. Suppose that S = Circ(s′) where s = (2,1,0, . . . ,0,1)′ ∈ Rn−1. Let D be the distance

matrix of Hn. Then, D
† = − 1

2
L + αww′ for some Laplacian-like matrix L, non-zero α ∈ R and w ∈ R2n−1

with e′w = 1 if and only if L =
⎡⎢⎢⎢⎢⎣

n−1
2 −

1
2e
′ 0′

−
1
2e A B

0 B′ In−1

⎤⎥⎥⎥⎥⎦
where A and B are symmetric matrices of order n−1 satisfying

the following conditions:

(i) Ae = 3
2
e

(ii) Be = −e
(iii) BS = −S
(iv) (B + I)A = O

(v) (B + I)B = O
(vi) (A +B)S + 2B = O.

Proof. Assume that D
† = − 1

2
L + αww′ with Le = 0 and e′w = 1. Note that D† is symmetric as D is

symmetric, see [6]. This implies L is symmetric. We first claim that w = 1
4
(5 − n,−e′,2e′)′. By Theorem

4.1 and Remark 4.3, we have Dw = 1
α
e where α = 4

3(n−1)
. If n is even then D is non-singular and w is the

unique solution of Dw = 1
α
e. Now assume that n is odd. Then from Remark 4.3, w = 1

4
(5 − n,βv′ − e′,2e′)′
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for some β ∈ R and v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1. Note that D
†
e = − 1

2
Le + αww′e = αw. Thus

w ∈ R(D†) = R(D) because D is symmetric. Since (0,v′,0′)′ ∈ N(D), we get (0,v′,0′)w = 0. That is,
1
4
v′(βv − e) = 1

4
[β(n − 1) − v′e] = 1

4
β(n − 1) = 0. Therefore, β = 0 and hence w = 1

4
(5 − n,−e′,2e′)′. Suppose

L = [
γ p′ q′
p A B
q B′ C

] where γ ∈ R, p,q ∈ Rn−1 and A and B are matrices of order n − 1. Then, the condition Le = 0
gives the following three equations:

γ + p′e + q′e = 0.(4.13)

p +Ae +Be = 0.(4.14)

q +B′e +Ce = 0.(4.15)

By Theorem 4.1, LD = 2we′−2I + Ṽ with DṼ = O and Ṽ (− 1
2
L+αww′) = O where Ṽ is a symmetric matrix.

Since DṼ = O, by Lemma 4.4, there exists an (n − 1) × (n − 1) symmetric matrix X such that

(4.16) Ṽ =
⎡⎢⎢⎢⎢⎢⎣

0 0′ 0′

0 X O

0 O O

⎤⎥⎥⎥⎥⎥⎦
with Xe = 0.

Note that

(4.17) 2we′ − 2I + Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−n
2

5−n
2
e′ 5−n

2
e′

− 1
2
e − 1

2
J − 2I +X − 1

2
J

e J J − 2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= LD.

Suppose

(4.18) LD = Y =

⎡⎢⎢⎢⎢⎢⎢⎣

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎤⎥⎥⎥⎥⎥⎥⎦

where Y is partitioned similarly to L. Equating the (1,2)th block of (4.17) and (4.18),

Y12 = γe′ + 2p′J − p′S + 3q′J − q′S =
5 − n
2

e′.(4.19)

Similarly (1,3)rd block gives

Y13 = 2γe′ + 3p′J − p′S + 4q′J − q′S − 2q′ =
5 − n
2

e′.(4.20)

Subtracting (4.19) from (4.20) gives γe′ + p′J + q′J = 2q′. This implies that 2qi = γ + p′e + q′e for all

i = 1,2, . . . , n − 1 where q = (q1, q2, . . . , qn−1)′ ∈ Rn−1. Using (4.13), we get qi = 0, for all i and hence q = 0.
We have Ce = −B′e from (4.15). Equating (2,1)th and (3,1)th blocks of (4.17) and (4.18), we get

(4.21) Y21 = Ae + 2Be = −1
2
e and Y31 = B′e + 2Ce = e.

Using Ce = −B′e in (4.21) gives Ce = e and hence B′e = −e. We prove the conditions (i) − (vi) in the

following order. Firstly, we show (vi) followed by (ii). Secondly, we prove (i) and (iii). Lastly, (iv) and (v)
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will be verified. Substituting the first equation of (4.21) in (4.14), we get p −Be = 1
2
e. Postmultiplying this

equation by e′ gives pe′ = BJ + 1
2
J . Also, from the first equation of (4.21), we have AJ = −2BJ − 1

2
J . Note

that Y22 = pe′+A(2J −S)+B(3J −S) and Y23 = 2pe′+A(3J −S)+B(4J −S−2I). Comparing these with the

corresponding blocks of (4.17) and using pe′ and AJ , we get AS +BS = 2I −X and AS +BS +2B = O. This

implies (vi) is proved and hence 2B = −(AS +BS) =X − 2I. Therefore, B is symmetric as X is symmetric.

Since B′e = −e, we have proved (ii). Also, Ae = −2B′e − 1
2
e = 3

2
e and p = −1

2
e follows from (4.21) and

(4.14), respectively. By (4.13), γ = −p′e = n−1
2
. Substituting BJ = −J , CJ = J and q = 0 in (4.18), and

then equating (3,2)th and (3,3)th blocks of (4.18) and (4.17), we have BS +CS = O and BS +CS + 2C = 2I
which implies C = I and BS = −S. This proves (iii). To complete the only if part of the proof, it is

remaining to show (B + I)A = O and (B + I)B = O. It is easy to verify that Ṽw = 0 where Ṽ is given

in (4.16) with X = 2(B + I).Then, the conditions (B + I)A = O and (B + I)B = O are easily derived from

Ṽ (− 1
2
L + αww′) = O.

Conversely, assume that L = [
n−1
2

−1
2 e′ 0′

−1
2 e A B

0 B′ I

] where the symmetric matrices A and B satisfy the conditions

(i) − (vi). Using the conditions (i) and (ii), it is easy to see that Le = 0. Note that Dw = 1
α
e where

w = 1
4
(5−n,−e′,2e′)′ and α = 4

3(n−1)
. We claim that D

† = − 1
2
L+αww′. By Theorem 4.1, it is enough to find

a symmetric matrix Ṽ of order 2n− 1 satisfying LD + 2I = 2we′ + Ṽ with DṼ = O and Ṽ (− 1
2
L+αww′) = O.

Choose Ṽ = [ 0 0′ 0′
0 2(B+I) O
0 O O

]. Then it is easy to see that LD + 2I = 2we′ + Ṽ . From the assumptions (i) to (v),

it is clear that DṼ = O, Ṽ L = O and Ṽw = 0. Hence Ṽ (− 1
2
L + αww′) = O. This completes the proof.

4.2. A short proof of an inverse formula for D(Hn). If n is even, an inverse formula for D(Hn) is
given as the sum of symmetric Laplacian-like matrix and a rank-one matrix ([8], Theorem 3). While deriving

this, the inverse of the distance matrix D(Wn) of a wheel graph Wn is used. Using the inverse formula for

D(Wn), one may also get D(Hn)−1 from [18]. In this section, we offer a different proof of this result without

employing any results pertaining to D(Wn)−1.

We use circulant matrices of order n − 1 while introducing the Laplacian-like matrices. The vectors

defining the circulant matrices follow a certain type of symmetry in the last n − 2 coordinates, which we

recall below.

Definition 4.6 ([3, 4]). Let n ≥ 4. A vector z = (z1, z2, . . . , zn−1)′ ∈ Rn−1 is said to follow symmetry in

its last n − 2 coordinates if zi = zn+1−i for all i = 2,3, . . . , n − 1.

Let ∆ be the collection of all vectors z ∈ Rn−1 that follow symmetry in its last n − 2 coordinates. That is,

∆ ∶= {z = (z1, z2, . . . , zn−1)′ ∶ zi = zn+1−i for all i = 2,3, . . . , n − 1}.

Remark 4.7. The above-defined ∆ is a subspace of Rn−1. It is observed in [14] (see Theorem 10) that if

c ∈∆ and C = Circ(c′), then C is a symmetric matrix.

The following lemma is useful in computing the vector which follows symmetry.

Lemma 4.8. Let α and β be real numbers and g = (α,β,0, . . . ,0, β)′ ∈ Rn−1. If G = Circ(g′), then

(z′G)′ ∈∆, for all z ∈∆.
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Proof. Since G = Circ(g′), we have

G∗k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αe1 + β(e2 + en−1) if k = 1,
β(ek−1 + ek+1) + αek if 2 ≤ k ≤ n − 2,
β(e1 + en−2) + αen−1 if k = n − 1.

Let z = (z1, z2, . . . , zn−1)′ ∈ ∆. Then, zk = zn+1−k, for k = 2,3, . . . , n − 1. Here we denote the k-th coordinate

of z′G by (z′G)k. To show (z′G)′ ∈∆, we first consider

(z′G)2 = z′G∗2 = z′[β(e1 + e3) + αe2] = β(z1 + z3) + αz2
= β(z1 + zn−2) + αzn−1
= z′[β(e1 + en−2) + αen−1]
= (z′G)n−1.

If 3 ≤ k ≤ n − 2, then 3 ≤ n − k + 1 ≤ n − 2. The k-th coordinate of z′G is given by

(z′G)k = z′G∗k = z′[β(ek−1 + ek+1) + αek]
= β(zk−1 + zk+1) + αzk
= β(zn+1−(k−1) + zn+1−(k+1)) + αzn+1−k
= z′[β(en+1−(k−1) + en+1−(k+1)) + αen+1−k]
= (z′G)(n+1−k).

Hence the proof.

To give an alternative proof of Theorem 3 in [8], let us recall the symmetric Laplacian-like matrix L
associated with D(Hn)−1.

Definition 4.9 ([8]). Let n ≥ 4 be even. For 1 ≤ k ≤ n
2
− 1, βk = (−1)k[(n − 1) − 2k]. Let

z = 1

2
(n + 1, β1, β2, . . . , βn

2 −2
, βn

2 −1
, βn

2 −1
, βn

2 −2
, . . . , β2, β1)′ ∈ Rn−1.

Define

(4.22) L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−1
2

−1
2
e′ 0′

−1
2
e A −In−1

0 −In−1 In−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where A = Circ(z′).

Now we state Theorem 3 in [8] and present a short proof of this.

Theorem 4.10. Let n ≥ 4 be an even integer. If L is the matrix defined in (4.22), then

D(Hn)−1 = −
1

2
L + 4

3(n − 1)ww′

where w′ = 1
4
(5 − n,−e′,2e′) ∈ R2n−1.
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Proof. Since n is even, D(Hn) is non-singular, see [8]. Therefore, D(Hn)† = D(Hn)−1. It is straight

forward that the blocks of L satisfy the conditions (ii) − (v) given in Theorem 4.5. From [8], we have

∑
n
2 −1

k=1 (−1)k(n − 1 − 2k) =
2−n
2
. Since A = Circ(z′), we get

Ae = (z′e)e = 1

2

⎛
⎝
(n + 1) +

n
2 −1

∑
k=1

2βk

⎞
⎠
e =
⎛
⎝
n + 1
2
+

n
2 −1

∑
k=1

(−1)k(n − 1 − 2k)
⎞
⎠
e = 3

2
e.

If we prove (A− I)S − 2I = O, then the desired result follows by Theorem 4.5 together with Remark 4.3. By

(2.4), it is enough to prove z′S = s′ + 2e1′. We start with computing z′S. Let z′S = (r1, r2, . . . , rn−1). Then,
ri = z′S∗i. Since z ∈ ∆, (z′S)′ ∈ ∆ by Lemma 4.8. It is enough to compute the first n

2
coordinates of z′S.

We have r1 = z′(2e1 +e2 +en−1) = 1
2
[2(n+ 1)+ 2β1] = (n+ 1)+ (−1)(n− 1− 2) = 4 and r2 = z′(e1 + 2e2 +e3) =

1
2
[(n + 1) + 2β1 + β2] = 1. If 3 ≤ i ≤ n

2
− 1, then ri = z′(ei−1 + 2ei + ei+1) = βi−2 + 2βi−1 + βi = 0. Similarly, we

see that rn
2
= βn

2 −2
+ 3βn

2 −1
= 0. Thus, z′S = (4,1,0,0, . . . ,0,1) = s′ + 2e1′.

4.3. The Moore-Penrose inverse of D(Hn). In this section, we derive a formula for the Moore-

Penrose Inverse of D(Hn), when n is odd. This is an analogous to the formula given for D(Hn)−1. To obtain

the desired formula, we introduce the Laplacian-like matrix L, similar to L in (4.22), involving two circulant

matrices A and B which are defined by the vectors x and y in Rn−1, respectively. The vectors x and y are

identified from the numerical examples. Hereafter, it is assumed that n ≥ 5 is an odd integer and m = n−1
2

is

fixed.

Let 1 ≤ k ≤m. For each k, we define αk ∈ R and we fix the vectors x and y in Rn−1 which are given by

αk ∶= (−1)k+1[2m2 − 6(m − k)2 + 7],(4.23)

x ∶= 1

6(n − 1)(n
2 + 4n − 12, α1, α2, . . . , αm−1, αm, αm−1, αm−2, . . . , α2, α1)′,(4.24)

and

y ∶= 1

(n − 1)(2 − n,−1,1,−1,1, . . . ,−1,1,−1)
′.(4.25)

Using Theorem 4.5 and the above-defined vectors x and y, we now construct the symmetric Laplacian-like

matrix L associated with the formula for D(Hn)†.
Definition 4.11. Let n ≥ 5 be an odd integer. Let A = Circ(x′) and B = Circ(y′) where x and y are

given in (4.24) and (4.25), respectively. Define

(4.26) L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−1
2

−1
2
e′ 0′

−1
2
e A B

0 B In−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 4.12. Note that the vectors x and y are in ∆. By Remark 4.7, A and B are symmetric matrices

of order n − 1. Thus, the matrix L, of order 2n − 1, given in the above definition is symmetric.

We now state the result which gives the desired formula for D(Hn)†.
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Theorem 4.13. Let n ≥ 5 be an odd integer and L be the matrix given in Definition 4.11. Suppose

w = 1
4
(5 − n,−e′,2e′)′ ∈ R2n−1 and D is the distance matrix of Hn. Then,

D† = −1
2
L + 4

3(n − 1)ww′.

A proof of this result is based on the following three lemmas.

Lemma 4.14. Let A and B be the matrices given in Definition 4.11. Then,

(i) Ae = 3
2
e.

(ii) Be = −e.
Proof. Since A = Circ(x′), all the row sums of A are equal to e′x. Therefore, Ae = (e′x)e. To determine

e′x, we consider

m−1

∑
k=1

αk =
m−1

∑
k=1

(−1)k+1(2m2 − 6(m − k)2 + 7)

= (7 − 4m2)
m−1

∑
k=1

(−1)k+1 + 12m
m−1

∑
k=1

(−1)k+1k − 6
m−1

∑
k=1

(−1)k+1k2.(4.27)

By a simple verification, it is easy to see that

m−1

∑
k=1

(−1)k+1 =
⎧⎪⎪⎨⎪⎪⎩

1 if m is even,

0 if m is odd,
(4.28)

m−1

∑
k=1

(−1)k+1k = 1

2

⎧⎪⎪⎨⎪⎪⎩

m if m is even,

1 −m if m is odd,
(4.29)

and

m−1

∑
k=1

(−1)k+1k2 = 1

2

⎧⎪⎪⎨⎪⎪⎩

m(m − 1) if m is even,

−m(m − 1) if m is odd.
(4.30)

Using (4.27)-(4.30) and αm = (−1)m+1(2m2 + 7), we get

2
m−1

∑
k=1

αk + αm =
⎧⎪⎪⎨⎪⎪⎩

2(−m2 + 3m + 7) − (2m2 + 7) if m is even,

2(−3m2 + 3m) + (2m2 + 7) if m is odd.

= −4m2 + 6m + 7

= [−4(n − 1
2
)
2

+ 6(n − 1
2
) + 7]

= −n2 + 5n + 3.

Note that e′x = 1
6(n−1)

[(n2 + 4n − 12) + 2∑m−1
k=1 αk + αm]. Thus, e′x = 3

2
which implies Ae = 3

2
e. This proves

(i). Since n − 1 is even, we have e′y = −1 and hence Be = −e.

A square matrix M is said to be diagonalizable if there exists a non-singular matrix P such that P −1MP =
diag(λ1, λ2, . . . , λn) where λ1, λ2, . . . , λn are the eigenvalues of M . We now recall a result on simultaneous

diagonalization which will be frequently used in the proofs.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 94-109, March 2023.

I. Jeyaraman et al. 106

Theorem 4.15 ([13]). Let M1,M2, . . . ,Mk be diagonalizable matrices. Then, M1,M2, . . . ,Mk are si-

multaneously diagonalizable if and only if MiMj =MjMi for all i, j ∈ {1,2, . . . , k}. Moreover, if λ1, λ2, . . . , λn

are the eigenvalues of M1, then there exists a non-singular matrix P such that P −1M1P = diag(λ1, λ2, . . . , λn)
and P −1MjP is diagonal for all j = 2,3, . . . , k.

If λ1, λ2, . . . , λk are the distinct eigenvalues of a real symmetric matrix M with respective multiplicities

m1,m2, . . . ,mk, then the set of all eigenvalues of M is given by σ(M) = {λ[m1]

1 , λ
[m2]

2 , . . . , λ
[mk]

k }.

Lemma 4.16. Let n ≥ 5 be an odd integer. Let B = Circ(y′) where the vector y is given in (4.25). Then,

σ(B) = {0[1],−1[n−2]} and σ (B − 1
2(n−1)

Jn−1) = {0[1],−1[n−3],− 3
2

[1]} .

Proof. Let v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1. As rows of Circ(v′) are either v′ or −v′, we have

rank(Circ(v′)) = 1. Hence, 0 is an eigenvalue of Circ(v′) with multiplicity n− 2. Also, Circ(v′)v = (n− 1)v.
Thus, σ( 1

n−1
Circ(v′)) = {1[1],0[n−2]}. Since y = 1

n−1
v − e1, we write B = Circ(y′) = 1

n−1
Circ(v′) − I.

Hence, σ(B) = {0[1],−1[n−2]}. It is easy to verify that Bv = 0 and Jn−1v = (e′v)e = 0. This gives

B − 1
2(n−1)

Jn−1 is singular because (B − 1
2(n−1)

Jn−1)v = 0. Note that B and 1
2(n−1)

Jn−1 commute by (2.4).

Hence, by Theorem 4.15, there exists a non-singular matrix P such that P −1BP = diag(0,−1,−1, . . . ,−1) and
P −1 ( 1

2(n−1)
Jn−1)P = diag(λ1, λ2, . . . , λn−1), where λ1, λ2, . . . , λn−1 are the eigenvalues of 1

2(n−1)
Jn−1. There-

fore, P −1 (B − 1
2(n−1)

Jn−1)P = diag(−λ1,−1 − λ2, . . . ,−1 − λn−1). We claim that λ1 = 0. On the contrary,

λ1 ≠ 0. Then, λ1 = 1
2
and λj = 0 for 2 ≤ j ≤ n − 1 because the eigenvalues of 1

2(n−1)
Jn−1 are 1

2
and 0 with

multiplicities 1 and n− 2, respectively. This implies that λ1 ≠ 0 and −1− λj ≠ 0 for all j = 2,3, . . . , n− 1, and
hence, B − 1

2(n−1)
Jn−1 is non-singular, which is a contradiction. Therefore, λ1 = 0, the result follows.

Lemma 4.17. Let n ≥ 5 be an odd integer. Suppose S = Circ(s′) where s = (2,1,0, . . . ,0,1)′ in Rn−1. If

A and B are the matrices given in the Definition 4.11, then the following conditions hold.

(i) A(B + I) = O.

(ii) B(B + I) = O.

(iii) BS = −S.
(iv) (A +B)S + 2B = O.

Proof. Since A and B are circulant symmetric matrices, they commute by (2.4) and are diagonalizable.

Therefore, by Theorem 4.15, they are simultaneously diagonalizable. That is, there exists an invertible

matrix P (whose columns are the eigenvectors of A as well B) such that

P −1AP = diag(µ1, µ2, . . . , µn−1) and P −1BP = diag(β1, β2, . . . , βn−1).

By Lemma 4.16, the eigenvalues of B are 0 and −1 with multiplicities 1 and n − 2, respectively. We assume

P such that β1 = 0 and βi = −1 for 2 ≤ i ≤ n − 1.

(i) To show A(B + I) = O, it is enough to prove that all the eigenvalues of A(B + I) are zero. Note that

the eigenvalues of A(B + I) are µi(βi + 1), i = 1,2, . . . , n − 1. We claim that µi(βi + 1) = 0 for all i.

As β1 = 0 and βi = −1 for i = 2,3, . . . , n − 1, it remains to prove µ1 = 0. Since Bv = 0 = β1v where

v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1 and the multiplicity of the eigenvalue 0 of B is 1, the first column

of P is a scalar multiple of v. Therefore, Av = µ1v. It is easy to see that Av = (x′v)v. Note that

x′v = 1
6(n−1)

[(n2 + 4n − 12) + 2 (∑m−1
k=1 (−1)kαk) + (−1)mαm]. Substituting αk’s and simplifying, we

get

x′v = 1

6(n − 1) [(n
2 + 4n − 12) − 2((7 − 4m2)

m−1

∑
k=1

1 + 12m
m−1

∑
k=1

k − 6
m−1

∑
k=1

k2) − (2m2 + 7)] .
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Using the formulae for the sum of first m − 1 natural numbers and the sum of squares of first m − 1
natural numbers, we have x′v = 1

6(n−1)
[(n2 + 4n − 12) − 2(m2 + 6m − 7) − (2m2 + 7)] = 0. Thus,

µ1 = 0.
(ii) It is clear that all the eigenvalues of B(B + I) are zero and hence B(B + I) = O.

(iii) Let v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1. It is easy to see that v′S = 0′. Note that y = 1
n−1

v − e1.
Since B = Circ(y′), we have BS = Circ(y′S) = Circ( 1

n−1
v′S − e1′S) = Circ(−s′) = −S.

(iv) Let x′S = (p1, p2, . . . , pn−1). Then, pi = x′S∗i. From (4.23) and (4.24), we have

p1 = x′(2e1 + e2 + en−1)

= 1

6(n − 1)[2(n
2 + 4n − 12) + 2α1]

= 2

6(n − 1)[(n
2 + 4n − 12) + (−1)2(2m2 − 6(m − 1)2 + 7)]

= 4n − 6
n − 1 .

Note that p2 = x′(e1 + 2e2 + e3) = 1
6(n−1)

[(n2 + 4n − 12) + 2α1 + α2] = n+1
n−1

. Let 3 ≤ i ≤ m. Then,

pi = x′(ei−1 +2ei +ei+1) = αi−2 +2αi−1 +αi = (−1)i 2
n−1

. Similarly, we see that pm+1 = 2(αm−1 +αm) =
(−1)m+1 2

n−1
. Since x ∈∆, we have (x′S)′ ∈∆ by Lemma 4.8. Thus,

x′S = 1

(n − 1)(4n − 6, n + 1,−2,2,−2,2, . . . ,2,−2, n + 1).

Now it is clear that x′S + 2y′ = s′. Also, from (iii), y′S = −s′. Hence (A +B)S + 2B = Circ(x′S +
y′S + 2y′) = O.

Proof of Theorem 4.13. The result follows from Theorem 4.5 and Lemmas 4.14 and 4.17.

In the following, we study two properties of the Laplacian-like matrix L defined in (4.26). First, we

show that L is a positive semi-definite matrix. Let us recall that an n × n real symmetric matrix M is said

to be positive semi-definite (positive definite) if z′Mz ≥ 0 (respectively, z′Mz > 0) for all non-zero z ∈ Rn.

We abbreviate the positive semi-definite (positive definite) as psd (respectively, pd).

To prove L is psd, we need to find the eigenvalues of Circ(s′), where s = (2,1,0,0, . . . ,0,1)′, which follows

from the next theorem.

Theorem 4.18 ([17]). Let m = (m0,m1, . . . ,mn−1)′ ∈ Rn and f(x) =m0 +m1x+m2x
2 +⋯+mn−1x

n−1.

Then the eigenvalues of M = Circ(m′) are f(ωj), j = 0,1,2, . . . , n− 1 where ω = cos( 2π
n
)+ i sin( 2π

n
) is an nth

primitive root of unity.

Remark 4.19. Consider the matrix S = Circ(s′) where s = (2,1,0, . . . ,0,1)′ ∈ Rn−1. In this case, f(x) =
2+ x+ xn−2. Therefore, f(ωj) = 2+ωj +ω−1j because ωn−1

j = 1. From Theorem 4.18, the eigenvalues of S are

4 cos2( πj
n−1
), j = 0,1,2, . . . , n − 2.

Using the same arguments as given in the proof of Theorem 7.2(iv) in [3], it can be shown that L is psd.

However, we wish to give a different proof based on the following result involving the Schur complement for

the sake of completeness.

Theorem 4.20 ([13]). Let M1 and M3 be square matrices. If M = [M1 M2

M ′

2 M3
] is a symmetric matrix,

then the following statements are true.
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(i) Let M1 be pd. Then, M is psd if and only if M3 −M ′

2M
−1
1 M2 is psd.

(ii) Let M3 be pd. Then, M is psd if and only if M1 −M2M
−1
3 M ′

2 is psd.

Theorem 4.21. Let L be the matrix given in Definition 4.11. Then L is a positive semi-definite matrix.

Proof. By (i) of Theorem 4.20, it suffices to show that X = [A−
1

2(n−1)Jn−1 B

B In−1
] is psd. Note that

B2 = −B by (ii) of Lemma 4.17. Now applying part (ii) of Theorem 4.20 to X, we get L is psd if and

only if A + B − 1
2(n−1)

Jn−1 is psd. If we prove all the eigenvalues of A + B − 1
2(n−1)

Jn−1 are non-negative,

then the desired result follows. Since A, B, S and B − 1
2(n−1)

Jn−1 are symmetric circulant matrices, by

(2.4) and Theorem 4.15, there exists an invertible matrix P such that P −1AP =∶ Λ1 = diag(µ1, µ2, . . . , µn−1),
P −1BP =∶ Λ2 = diag(0,−1,−1, . . . ,−1), P −1SP =∶ Λ3 = diag(γ1, γ2, . . . , γn−1), and P −1 (B − 1

2(n−1)
Jn−1)P =

diag(δ1, δ2, . . . , δn−1) where the diagonal entries of Λ2 are obtained from Lemma 4.16. Then, µ1 = 0 follows

from Λ1(Λ2 + I) = O by (i) of Lemma 4.17. We have (Λ2 + I)Λ3 = O by the identity BS = −S from

Lemma 4.17. This implies γ1 = 0. We now claim that δ1 = 0. The multiplicities of the eigenvalue 0 with

respect to B and B − 1
2(n−1)

Jn−1 are equal to 1, see Lemma 4.16. Also, Bv = (B − 1
2(n−1)

Jn−1)v = 0 where

v = (1,−1,1,−1, . . . ,1,−1)′ ∈ Rn−1. Therefore, the first column of P must be a scalar multiple of v. Hence,

δ1 = 0. To complete the proof, we need to show that µj + δj ≥ 0 for all j = 2,3, . . . , n − 1. Let 2 ≤ j ≤ n − 1.
From Lemma 4.16, it is clear that δj is either −1 or − 3

2
. In view of this, it is enough to prove that µj ≥ 3

2
.

Using the fact that rank(S) = n− 2 (see Theorem 3.2) and by Remark 4.19, we get γj > 0. By (iii) and (iv)
of Lemma 4.17, we write (A − I)S = −2B which gives (Λ1 − I)Λ3 = −2Λ2. This yields that (µj − 1)γj = 2.
This implies µj = 2

γj
+ 1 = 2

4 cos2( πj
n−1 )
+ 1 ≥ 3

2
. This completes the proof.

In the next result, we find the rank of L. We will make use of the following theorem.

Theorem 4.22 ([13]). Let A and B be symmetric matrices of same order. Then, rank(A + B) ≤
rank(A) + rank(B). Furthermore, equality holds if and only if R(A) ∩R(B) = {0}.

Theorem 4.23. Let L be the matrix given in (4.26). Then, the rank of L is 2n − 3.
Proof. For w = 1

4
(5 − n,−e′,2e′)′ ∈ R2n−1, we have e′w = 1. We claim that w ∉ R(L). On the contrary,

suppose Lz = w for some z ∈ R2n−1. Since e′L = 0′, e′Lz = e′w = 0 which is impossible. Hence, w ∉
R(L). Thus, R(L) ∩ R(ww′) = {0}. By Theorems 4.13 and 4.22, rank(L) = rank(D(Hn)†) − 1. Since

rank(D(Hn)) = rank(D(Hn)†), the result follows from Theorem 3.2.
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