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THE GRAHAM–HOFFMAN–HOSOYA-TYPE THEOREMS FOR THE EXPONENTIAL

DISTANCE MATRIX∗

ZHIBIN DU† AND RUNDAN XING‡

Abstract. Let G be a strongly connected digraph with vertex set {v1, v2, . . . , vn}. Denote by Dij the distance between

vertices vi and vj in G. Two variant versions of the distance matrix were proposed by Yan and Yeh (Adv. Appl. Math.), and

Bapat et al. (Linear Algebra Appl.) independently, one is the q-distance matrix, and the other is the exponential distance

matrix. Given a nonzero indeterminate q, the q-distance matrix DG = (Dij)n×n of G is defined as

Dij =

{
1 + q + · · ·+ qDij−1 if i ̸= j,

0 otherwise.

In particular, when q = 1, it would be reduced to the distance matrix of G. The exponential distance matrix FG = (Fij)n×n

of G is defined as

Fij = qDij .

In 1977, Graham et al. (J. Graph Theory) established a classical formula connecting the determinants and cofactor sums

of the distance matrices of strongly connected digraphs in terms of their blocks, which plays a powerful role in the subsequent

researches on the determinants of distance matrices. Sivasubramanian (Electron. J. Combin.) and Li et al. (Discuss. Math.

Graph Theory) independently extended it from the distance matrix to the q-distance matrix. In this note, three formulae of

such types for the exponential distance matrices of strongly connected digraphs will be presented.
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1. Introduction and preliminaries. Let G be a strongly connected digraph with vertex set V (G) =

{v1, v2, . . . , vn}. For 1 ≤ i, j ≤ n, the distance between vertices vi and vj in G, denoted by DG(i, j), or

simply Dij , is the length of a shortest path connecting them in G. Based on the distances of vertex pairs,

the well-studied distance matrix of G is defined as DG = (Dij)n×n.

The earliest result about the distance matrix could date back to the classical work of Graham and

Pollack [6] in 1971, in which they showed that for any n-vertex tree T , the determinant of DT is expressed

as det(DT ) = (−1)n−1(n− 1)2n−2. This interesting formula reveals that such determinant depends only on

the order of trees, but is independent of the particular structure.

Let M be an n×n matrix. For 1 ≤ i, j ≤ n, let cij(M) represent the (i, j)-cofactor of M , which is equal

to (−1)i+j times the determinant of the submatrix obtained from M by deleting its ith row and jth column.

The cofactor sum of M , denoted by cof(M), is defined to be the sum of all cofactors of M , i.e.,

cof(M) =

n∑
i=1

n∑
j=1

cij(M).
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For 1 ≤ i ≤ n, let

ri(M) =

n∑
j=1

cij(M).

That is, cof(M) =
∑n

i=1 ri(M).

In 1977, Graham et al. [5] established the following two remarkable formulae on the determinant and

cofactor sum of the distance matrix of a strongly connected digraph, by using the corresponding determinants

and cofactor sums of the distance matrices of all its blocks.

Theorem 1.1 ([5]). Let G be a strongly connected digraph with blocks G1, G2, . . . , Gr. Then

cof(DG) =

r∏
i=1

cof(DGi
),

and

det(DG) =

r∑
i=1

det(DGi
)
∏
j ̸=i

cof(DGj
).

We call Theorem 1.1 the Graham–Hoffman–Hosoya theorem throughout this note.

For a nonzero indeterminate q, Yan and Yeh [10] and Bapat et al. [2] independently proposed two variant

versions of the distance matrix of G. One is the q-distance matrix DG = (Dij)n×n, defined as

Dij =

{
1 + q + · · ·+ qDij−1 if i ̸= j,

0 if i = j.

In particular, when q = 1, the q-distance matrix would be reduced to the distance matrix. Hence, the

distance matrix is a special case of the q-distance matrix. The other is the exponential distance matrix

FG = (Fij)n×n, defined as

Fij = qDij .

Obviously, the diagonal entries of FG are all equal to 1. When q = 1
2 , the exponential distance matrix FG is

almost identical to the so-called closeness matrix investigated in [11] (the only difference lies on the diagonal

entries, which are all 1 in FG, but all 0 in the closeness matrix).

In the past several decades, the distance matrices of connected graphs have been studied extensively,

e.g., see [1]. Besides that, the above-mentioned variant versions of distance matrix of graphs have also many

interesting applications. In quantum chemistry, the Wiener polynomial of G is defined as [7]

WG =
∑
i<j

qDij =
∑
i<j

Fij .

Obviously, dWG

dq |q=1 =
∑

i<j Dij is the Wiener index, one of the most studied molecular-graph-based struc-

tural descriptors (usually also called “topological indices”). The exponential distance matrix can also be

used as a measure of some properties (e.g., centrality, the network resistance) of network structures under

the context of closeness and residual closeness, see [3, 4].

Aiming to acquire a q-analogue of the Graham–Hoffman–Hosoya theorem, Sivasubramanian [9] defined

a weighted cofactor sum of DG as

Rq
i (DG) =

n∑
j=1

qDjirj(DG),



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 62-70, January 2023.

Z. Du and R. Xing 64

where 1 ≤ i ≤ n. It is shown in [9] that Rq
i (DG) is independent of the index i, and thus could be uniformly

denoted by Rq(DG), i.e.,

Rq(DG) = Rq
i (DG),

for any 1 ≤ i ≤ n. It is clear that when q = 1,

Rq(DG) = cof(DG) = cof(DG).

A Graham–Hoffman–Hosoya-type theorem for the q-distance matrix DG was obtained by Sivasubrama-

nian in [9]. A similar result can be also found in [8].

Theorem 1.2 ([9]). Let G be a strongly connected digraph with blocks G1, G2, . . . , Gr. Then

Rq(DG) =
r∏

i=1

Rq (DGi
) ,

and

det(DG) =

r∑
i=1

det (DGi
)
∏
j ̸=i

Rq
(
DGj

)
.

Combining the two formulae in Theorem 1.2 (or Theorem 1.1 for q = 1), one can get the following neat

formula.

Corollary 1.3. Let G be a strongly connected digraph with blocks G1, G2, . . . , Gr. If Rq (DGi) ̸= 0 for

each 1 ≤ i ≤ r, then

det(DG)

Rq(DG)
=

r∑
i=1

det (DGi
)

Rq (DGi
)
.

In this note, we will focus on the exponential distance matrix FG and get the corresponding Graham–

Hoffman–Hosoya-type theorems. Under the same assumptions as above, we obtain the following formulae:

det(FG) =

r∏
i=1

det (FGi
) ,

(q − 1)n
det(DG)

det(FG)
=

r∑
i=1

(q − 1)ni
det (DGi

)

det (FGi
)
,

and

1− cof(FG)

det(FG)
=

r∑
i=1

(
1− cof (FGi

)

det (FGi
)

)
.

They appear in an analogous fashion as the classical Graham–Hoffman–Hosoya theorem as shown in Theorem

1.1 (see also Theorem 1.2) as well as Corollary 1.3. We will confirm them one by one in the subsequent

sections.

2. The determinant of exponential distance matrix. First of all, let us consider the determinants

of exponential distance matrices.

Theorem 2.1. Let G be a strongly connected digraph with blocks G1, G2, . . . , Gr. Then

det(FG) =

r∏
i=1

det (FGi
) .(2.1)
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Proof. We will prove (2.1) by the induction on the number of blocks of G, i.e., r. When r = 1, the result

is trivial. Assume that (2.1) holds for any strongly connected digraph whose number of blocks is less than

r, where r ≥ 2.

Now suppose in the following that the strongly connected digraphG contains r blocks, sayG1, G2, . . . , Gr.

Further, assume without loss of generality thatG1 is an end block ofG (containing exactly one vertex adjacent

to some vertex outside the block), and H is the subgraph of G induced by V (G2) ∪ V (G3) ∪ · · · ∪ V (Gr).

In particular, denote by v1 the unique common vertex of G1 and H and let V (G1) = {v1, v2, . . . , vm} and

V (H) = {v1, vm+1, . . . , vn}.

For convenience, let ai = D1i and bi = Di1 for any 2 ≤ i ≤ n (ai and bi are not necessarily equal since

G is a digraph). For 2 ≤ i ≤ m and m+ 1 ≤ j ≤ n (vi ∈ V (G1) and vj ∈ V (H)), it is easy to see that

Dij = Di1 +D1j = bi + aj ,

and

Dji = Dj1 +D1i = bj + ai,

and thus

Fij = qbi+aj and Fji = qbj+ai .

Based on these settings, we can write the exponential distance matrix of G as the following form:

FG =



1 qa2 · · · qam qam+1 · · · qan

qb2 qb2+am+1 · · · qb2+an

... A
...

...

qbm qbm+am+1 · · · qbm+an

qbm+1 qbm+1+a2 · · · qbm+1+am

...
...

... B

qbn qbn+a2 · · · qbn+am


.

In particular,

FG1 =


1 qa2 · · · qam

qb2

... A

qbm

 and FH =


1 qam+1 · · · qan

qbm+1

... B

qbn

 .

Define two auxiliary matrices RG and CG as

RG =



1

−qb2 1
...

. . .

−qbm 1

−qbm+1 1
...

. . .

−qbn 1


, CG =



1

−qa2 1
...

. . .

−qam 1

−qam+1 1
...

. . .

−qan 1


.
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Note that det(RG) = det
(
C⊤

G

)
= 1. It is standard (but somewhat tedious) to get that

det(FG) = det(RGFGC
⊤
G ) = det

 1

A′

B′

 = det(A′) det(B′),(2.2)

where the (i, j)-entry of

 1

A′

B′

 is equal to qDij −qbi+aj , for 2 ≤ i, j ≤ m (in A′) or m+1 ≤ i, j ≤ n

(in B′).

For the matrices considered in (2.2), if we just retain the rows and columns with indices {1, 2, . . . ,m}
(leading to the corresponding principal submatrix for G1), we have

det(FG1
) = det

([
1

A′

])
= det(A′),(2.3)

while if the indices of rows and columns are confined to {1,m+ 1, . . . , n} (aiming to H this time), we have

det(FH) = det

([
1

B′

])
= det(B′).(2.4)

Combining (2.2), (2.3) and (2.4), we are able to draw the conclusion

det(FG) = det(FG1
) det(FH).(2.5)

Recall that the number of blocks of H is r − 1 (G2, . . . , Gr). Applying the inductive hypothesis to H, we

have

det(FH) =

r∏
i=2

det (FGi
) .

Finally, together with (2.5), we get

det(FG) =

r∏
i=1

det (FGi
) ,

as desired.

3. The determinants and cofactor sums between the q-distance and exponential distance

matrices. This section is devoted to revealing the relationship on the determinants and cofactor sums

between DG (the q-distance matrix) and FG (the exponential distance matrix). Before proceeding, let us

present two auxiliary lemmas.

Denote by Jn the n× n all-one matrix.

Lemma 3.1. Let G be an n-vertex strongly connected digraph. For any nonzero indeterminate q, we have

(1− q)DG = Jn − FG.(3.6)

Proof. For any 1 ≤ i, j ≤ n, if i ̸= j, then

(1− q)Dij = (1− q)
(
1 + q + · · ·+ qDij−1

)
= 1− qDij = 1− Fij ,
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and if i = j, then

(1− q)Dij = 0 = 1− Fij .

It leads to (3.6) directly.

The following identity involving the determinants and cofactor sum of matrices is well known, which

frequently appears as an exercise about the properties of determinants in the textbooks on linear algebra.

Lemma 3.2. Let M be an n× n matrix, and x a real number. Then

det(M + xJn) = det(M) + x · cof(M).

In [9], Rq(DG) was viewed as a q-analog of cof(DG), which can be reflected in the following expression.

Lemma 3.3 ([9]). Let G be a strongly connected digraph. Then

Rq(DG) = (q − 1) det(DG) + cof(DG).(3.7)

Now we are ready to derive the relation on the determinants and cofactor sums between DG and FG.

Theorem 3.4. Let G be an n-vertex strongly connected digraph. Then

det(FG) = (q − 1)n−1 Rq(DG).

Proof. From (3.6), we have

FG = (q − 1)DG + Jn.

Applying Lemma 3.2 by setting M = (q − 1)DG and x = 1, one can get

det(FG) = det((q − 1)DG) + cof((q − 1)DG)

= (q − 1)n det(DG) + (q − 1)n−1 cof(DG)(3.8)

= (q − 1)n−1 ((q − 1) det(DG) + cof(DG))

(3.7)
= (q − 1)n−1 Rq(DG).

The result follows.

Theorem 3.5. Let G be an n-vertex strongly connected digraph, where n ≥ 2. Then

cof(FG) = (q − 1)n−1 cof(DG).

Proof. If q = 1, then FG = Jn, and thus

cof(FG) = 0 = (q − 1)n−1 cof(DG)

follows directly. Now suppose that q ̸= 1. From (3.6), we have an equivalent form:

DG =
1

q − 1
FG +

1

1− q
Jn,
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and thus from Lemma 3.2 by setting M = 1
q−1FG and x = 1

1−q ,

det(DG) = det

(
1

q − 1
FG

)
+

1

1− q
cof

(
1

q − 1
FG

)
=

1

(q − 1)n
det(FG)−

1

(q − 1)n
cof(FG)

=
det(FG)− cof(FG)

(q − 1)n
,(3.9)

or equivalently,

cof(FG) = det(FG)− (q − 1)n det(DG).

Finally, together with (3.8), it leads to

cof(FG) = (q − 1)n det(DG) + (q − 1)n−1 cof(DG)− (q − 1)n det(DG)

= (q − 1)n−1 cof(DG),

completing the proof.

Remark 3.6. When n = 1, cof(FG) = (q − 1)n−1 cof(DG) is still valid for q ̸= 1 (both sides are equal

to 1), but becomes invalid for q = 1, since at this time (q − 1)n−1 = 00 is undefined.

Theorem 3.7. Let G be a strongly connected digraph. If cof(FG), cof(DG) ̸= 0, then

det(FG)

cof(FG)
= 1 + (q − 1) · det(DG)

cof(DG)
.

Proof. Let n denote the order of G. If n = 1, then the result follows trivially. Assume that n ≥ 2.

Observe that the hypothesis cof(FG) ̸= 0 implies q ̸= 1. By (3.9), we have

det(FG)− cof(FG) = (q − 1)n det(DG).

Furthermore, by Theorem 3.5,

det(FG)

cof(FG)
− 1 = (q − 1)n · det(DG)

cof(FG)
= (q − 1)n · det(DG)

(q − 1)n−1 cof(DG)
= (q − 1)

det(DG)

cof(DG)
,

implying the desired result.

4. The Graham–Hoffman–Hosoya-type theorems. The following lemma acts as an auxiliary tool

in our subsequent deduction.

Lemma 4.1. Let G be an n-vertex strongly connected digraph with blocks G1, G2, . . . , Gr, where ni =

|V (Gi)| for 1 ≤ i ≤ r. Then

n = 1 +

r∑
i=1

(ni − 1).(4.10)

Proof. We will confirm (4.10) by virtue of the induction on r. The case when r = 1 is trivial. Suppose

that r ≥ 2, and (4.10) holds for any strongly connected digraph with r − 1 blocks.
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Let H be the subgraph of G induced by V (G1)∪V (G2)∪· · ·∪V (Gr−1). Then H is a strongly connected

digraph with r − 1 blocks. Applying the inductive hypothesis to H, we have

|V (H)| = 1 +

r−1∑
i=1

(ni − 1).

Further,

n = |V (H)|+ nr − 1 = 1 +

r−1∑
i=1

(ni − 1) + nr − 1 = 1 +

r∑
i=1

(ni − 1),

confirming the validity of (4.10).

We present two more Graham–Hoffman–Hosoya-type theorems for the exponential distance matrix as

below.

Theorem 4.2. Let G be an n-vertex strongly connected digraph with blocks G1, G2, . . . , Gr, where ni =

|V (Gi)| for 1 ≤ i ≤ r. If det (FGi
) ̸= 0 for each 1 ≤ i ≤ r, then

(q − 1)n
det(DG)

det(FG)
=

r∑
i=1

(q − 1)ni
det (DGi

)

det (FGi)
.

Proof. If q = 1, then the result is trivial. Now suppose that q ̸= 1. From Theorem 3.4,

Rq (DGi
) =

det (FGi
)

(q − 1)ni−1

for 1 ≤ i ≤ r, which, together with Theorems 1.2 and 2.1, implies that

det(DG)

det(FG)
=

∑r
i=1 det (DGi)

∏
j ̸=i R

q
(
DGj

)∏r
i=1 det (FGi

)

=

∑r
i=1 det (DGi

)
∏

j ̸=i

det(FGj )
(q−1)nj−1∏r

i=1 det (FGi
)

=

r∑
i=1

det (DGi
)

det (FGi
)
· 1

(q − 1)
∑

j ̸=i(nj−1)

(4.10)
=

r∑
i=1

1

(q − 1)n−ni
· det (DGi

)

det (FGi
)
.

After multiplying by (q − 1)n on both sides, the result follows.

Theorem 4.3. Let G be a strongly connected digraph with blocks G1, G2, . . . , Gr. If det (FGi) ̸= 0 for

each 1 ≤ i ≤ r, then

1− cof(FG)

det(FG)
=

r∑
i=1

(
1− cof (FGi

)

det (FGi
)

)
.

Proof. Let n = |V (G)|, and ni = |V (Gi)| for 1 ≤ i ≤ r. If n ≥ 2 and q ̸= 1, then by (3.9), we have

(q − 1)n det(DG) = det(FG)− cof(FG),
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and when n = 1 or q = 1, then it can be verified directly. Equivalently,

(q − 1)n
det(DG)

det(FG)
= 1− cof(FG)

det(FG)
.

Analogously, we can get

(q − 1)ni
det (DGi)

det (FGi
)
= 1− cof (FGi)

det (FGi
)

for each 1 ≤ i ≤ r. Then the result follows directly from Theorem 4.2.
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