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ADAPTED AZNN METHODS FOR TIME-VARYING AND STATIC MATRIX PROBLEMS∗

FRANK UHLIG†

Abstract. We present adapted Zhang neural networks (AZNN) in which the parameter settings for the exponential decay constant η and the
length of the start-up phase of basic ZNN are adapted to the problem at hand. Specifically, we study experiments with AZNN for time-varying
square matrix factorizations as a product of time-varying symmetric matrices and for the time-varying matrix square roots problem. Differing from
generally used small η values and minimal start-up length phases in ZNN, we adapt the basic ZNN method to work with large or even gigantic
η settings and arbitrary length start-ups using Euler’s low accuracy finite difference formula. These adaptations improve the speed of AZNN’s
convergence and lower its solution error bounds for our chosen problems significantly to near machine constant or even lower levels. Parameter-
varying AZNN also allows us to find full rank symmetrizers of static matrices reliably, for example, for the Kahan and Frank matrices and for
matrices with highly ill-conditioned eigenvalues and complicated Jordan structures of dimensions from n = 2 on up. This helps in cases where full
rank static matrix symmetrizers have never been successfully computed before.
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1. Introduction to AZNN methods for real or complex matrix flows A(t). We consider time-varying matrix
problems that we want to solve more speedily and accurately by using Zhang neural networks (ZNN) adaptively and
judiciously, and varying the length of the initial start-up phase and also adjusting the exponential decay constant η
in adapted ZNN (AZNN) to the three phases of ZNN, namely its start-up, middle, and final stages. Zeroing neural
networks such as as ZNNs are computational workhorses in many branches of engineering. For functional inputs,
discretized ZNN helps us to understand the feasibility of a given parametric matrix model’s function equation over
time or learn of its unfeasibility. If feasible, the chosen model can be implemented successfully in ZNN for sensor
clocked discretized input data and used on-chip in robots, other machinery, and in other engineering processes.

ZNN goes back to Yunong Zhang’s PhD work of 2000/2001 in Hong Kong [10]. ZNN’s engineering applications
have been described in almost 500 papers as well as in a handful of books. A theoretical numerical analysis of ZNN
methods has never been attempted; see [8].

Starting from a time-varying matrix/vector problem
f(x(t), A(t), ...) = g(t, ...),

discretized ZNN is designed to compute an approximate solution iteratively in time from a few start-up values. It does
so predictively over time and with high accuracy. ZNN’s success hinges on Zhang’s idea of stipulating exponential
decay for the associated error function:

E(t) = f(x(t), A(t), ...)− g(t, ...),
namely

Ė(t) = −ηE(t) for η > 0.
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Assuming a constant sampling gap τ = tk+1 − tk = const throughout the ZNN process, the derivative
of the unknown ẋ(tk) in the error differential equation is isolated algebraically if possible. This typically leads
to an expression for ẋ(tk) as the solution of a system of linear equations:

ẋ(tk) = P (tk)\q(tk).

After summing several Taylor expansions around x(tk) that contain future x(tk+1) and current or past
solution x(t`) data for ` ≤ k and the derivative ẋ(tk) of the unknown, we use a look-ahead and convergent finite
difference formula of type j s; see [7] for a list thereof, and solve for ẋ(t). This leads to an expression for the
derivative ẋ(tk) such as

ẋk =
8xk+1 + xk − 6xk−1 − 5xk−2 + 2xk−3

18τ
,

when for example using a five instance finite difference formula of type j s = 2 3 with global truncation error order
O(τ3).

Then the two expressions of the derivative ẋ(tk) in and of the unknown x(t) are equated.
The resulting solution-derivative free equation of is finally solved for

x(tk+1) =
9

4
τ(P (tk)\q(tk))−

1

8
xk +

3

4
xk−1 +

5

8
xk−2 −

1

4
xk−3.

This predicts the problem’s solution at the next time step tk+1.
Finally, ZNN iterates the process.

In step , the discretized ZNN method solves one linear equation and evaluates one short recursion of past solution
data, and thereby it solves the underlying time-varying matrix/vector problem cheaply and predictively in time.

The above seven steps of ZNN have recently been derived and explained in detail inside [8].

ZNN methods may seem connected to analytic continuation methods and ODE solvers when they start with the error
differential equation , but when interpreting their operations and results and watching their phenomena, ZNN meth-
ods appear to follow quite different numerical principles and seem to belong to a different area of numerical matrix
analysis. Further details, open questions, and an early assessment of ZNN methods are given [8].

This paper investigates both the role of the exponential decay constant η of ZNN and the actual length of ZNN’s
start-up phase. Our AZNN method adopts different strategies to improve the convergence behavior of ordinary ZNN.
Adaptive η and other settings help AZNN compute the time-varying problem’s predictive solution more accurately
and much sooner than ZNN. This is specially useful for time-varying matrix problems for which no globally reliable
static matrix algorithms exist such as for the factorization of real or complex square matrices into the product of two
symmetric ones [2]. Note that ZNN methods are very tolerant of random, partially “little-sense” start-up values. But
such start-up value settings often lead to divergence of the subsequent iterative process or they let ZNN needlessly
wander through “solutions” with very low accuracy for a long time. A better way to obtain reasonable start-up values
is to use Euler’s look-ahead method of type j s = 1 2 with local truncation error order O(τ2):

x(tk+1) = x(tk) + τ · ẋ(tk) +O(τ2) that is based on the secant rule ẋ(tk) =
x(tk+1)− x(tk)

τ
+O(τ),

and the problem formulation in tandem from an initial random first guess for x(t0) and with an adapted η setting.
In contrast, the basic non-adapted ZNN method uses the identical value of η as the exponential decay constant in its
start-up phase and in its main ZNN iterations through . Likewise, frugality concerns for basic ZNN suggest to
compute only the minimally needed number of start-up data before switching into iterative ZNN mode.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 164-180, April 2023.

Frank Uhlig 166

In AZNN, we use different η settings in the start-up point generation phase and in the iterations phase and we test
longer and shorter sequences of start-up value runs to find the best option for AZNN and the given matrix problem.
The Euler start-up run should last until its errors reach the Euler method’s truncation error plateau of around 10−5 or
10−6, or a little bit beyond. Then , we switch to the AZNN iterations phase where we use a different η value. These
two adaptations achieve the chosen finite difference formula’s truncation error order plateau faster than standard ZNN
does. The AZNN method helps us to solve our experimental example runs for finding time-varying matrix square
roots and time-varying symmetric matrix factorizations in a better way.

Section 2 deals pragmatically with techniques to alter or adapt the basic ZNN method to two specific parametric matrix
equations. Section 2 (A) deals with the time-varying matrix square root problem A(t) = X(t) · X(t) that generally

has many solutions unless its Jordan structure is badly formed such as in the 2 by 2 flow matrix A(t) =
(

0 t

0 0

)
for which there exists no matrix square root at all for any t 6= 0, see [4] or [1]. In Section 2 (B), we consider the time-
varying matrix symmetric factorization problem A(t) = S(T ) · V (t) for two symmetric matrix flows S(t) = ST (t)

and V (t) = V T (t) ∈ Cn,n with S(t) nonsingular for all t. In theory, the symmetrizer problem for static entry
matrices A ∈ Cn,n can always be solved by solving the linear system in the entries of the symmetric matrix S with
S · A = (S · A)T = AT · ST . But this intuitive approach generally leads to very ill conditioned linear systems. The
study of symmetric matrix factorizations goes back more than a century to Frobenius [5, p. 421]. Frobenius showed
that the symmetric factor S can always be chosen nonsingular, and that the symmetrizers of A form a linear subspace
of dimension n for static An,n ∈ Cn,n.

Static matrix symmetrizing algorithms that use linear equation solvers, iterative methods, or eigenvalue and singular
value based methods were studied in depth in [2]. All of these methods were shown to be deficient in [2] when a given
matrix A had degenerate eigen or Jordan structures. The analysis in [2] showed that eigen ill-conditioning prevented
these static methods generally from finding invertible symmetrizers S = ST with S ·A = V and V = V T . Until now
no symmetric factorizations A = S−1 ·V could be computed reliably for such A. Section 3 of this paper finally shows
how the adapted AZNN method can succeed via a simple parameterization in a matrix flow related to such A where
static matrix theory and static numerical analysis have failed us before.

Note: The matrix symmetrizer problem deals exclusively with real or complex symmetric matrices S = ST and V =

V T whose entries in position i, k are identical to entries in position k, i for all row and column indices 1 ≤ i, k ≤ n.
Matrices with complex conjugate entries in positions i, k and k, i are Hermitian and not the subject of symmetric
matrix factorizations, nor of this paper.

2. Developing AZNN methods for time-varying square roots X(t) and symmetric factorizations S(t) ·
V (t) of time-varying matrix flows A(t).

(A) Time-varying square roots X(t) for time-varying matrix flows A(t). Fixed entry matrix An.n and their
square roots X with A = X · X have been studied for at least half a century, both numerically and theoretically;
see [4, p. 466, 469, 506] and [1] for the existence or nonexistence of static matrix square roots. We recommend the
Wikipedia entry on Square root of a matrix and a look at numerical and applied methods. Use Matlab’s sqrtm.m file
for computing X .

Computing time-varying matrix square root flows X(t) for time-varying matrix flows A(t) requires more effort.

Here, we first look at the basic ZNN method for a time-varying matrix square root problem and recreate [8, Fig. 1] for
further study. In Fig. 1, the two graphs show the error function value at the start-up to full j s = 4 5 switching point
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FIGURE 1.

displayed by a red square � and the 1000th iterate’s error function value displayed by a blue circle around a star ;
on the left-hand side with η = 1.35 as in [8, Fig. 1], and on the right side with η = 2.6 but for the higher truncation
order finite difference formula of type j s = 4 5. Both switching points between the start-up and iteration phases
of ZNN occur at around 20 s, but with very different error function values, namely at around 4 · 10−12 when η = 1.35

and at around 4 · 10−3 when η = 2.6. With η = 1.35 in the left-hand graph of Fig. 1, the transition from the start-up
phase that creates j + s = 4 + 5 = 9 data points via Euler’s method is very smooth until the Euler method’s error
function hovers below 10−11. For η = 2.6, the transition from Euler to basic η = 2.6 ZNN on the right of Fig. 1 is
also rather smooth for 20 + iteration steps, but thereafter many steps are wasted with error function value going up and
down until the 4 5-based ZNN method stabilizes and takes over smoothly to converge well error-wise to below 10−11

after around 70 s from start as Fig. 1 right and the enlarged view in Fig. 2 clearly shows.

If we increase η further above 2.6, the error curve will move more or less horizontally around the 10−1 error level
and basic ZNN becomes useless. The error function magnitudes may even diverge to 10150 and higher values over our
6 min run.

The aim of creating an adapted ZNN method is to try and extend the short region of rapidly decreasing errors after the
switch from Euler to full j s ZNN steps depicted in Fig. 2 and at the same time try to lower the terminal error function
values to the theoretical O(τ j+s+1) local truncation error level for j s based ZNN iterations.

To understand how this can be achieved, we shall explain the seven steps of ZNN briefly now.

These are the seven steps in basic discretized ZNN for the time-varying matrix square roots problem for a time-varying
matrix flow A(t)n,n with t ∈ [to, tf ] ⊂ R and a constant sampling gap τ = t`+1 − t` for all ` = 1, 2, ... .

Model equation A(t) = X(t) ·X(t) for a given matrix flow A(t)n,n and its unknown square roots X(t)n,n.
Error equation E(t) = A(t)−X(t) ·X(t).
Differentiated error equation Ė(t) = −ηE(t).
Error DE reordered Ȧ(t)− Ẋ(t) ·X(t)−X(t) · Ẋ(t) = −η(A(t)−X(t) ·X(t)); and by leaving off the
time t dependence:
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FIGURE 2.

ẊX +XẊ = Ȧ+ η (A−XX).
Rephrased using Kronecker products A⊗B and the matrix column vector notation X(:)

K (XT ⊗ In + In ⊗X)n2,n2 · Ẋ(:)n2,1 ∈ Cn2

=

= Ȧ(:)n2,1 + η A(:)n2,1 − η (XT ⊗ In)n2,n2 ·X(:)n2,1 ∈ Cn2

.

With P (t) = (XT (t)⊗ In + In ⊗X(t)) ∈ Cn2,n2 assumed nonsingular for all t and
q(t) = Ȧ(t)(:) + η A(t)(:)− η (XT (t)⊗ In) ·X(t)(:) ∈ Cn2

, we finally have separated

nonsing Ẋ(t) = P (t)\q(t).
If P (t) is singular for some t, we cannot invert P (t) and need to use P ’s pseudoinverse instead. For more
details on this process, see [8, Section 3, (III), (IV), (VII), and (VII start-up)].
Choose a convergent look-ahead finite difference formula of type j s that involves
X(tk+1), X(tk−1), X(tk−2), ... and Ẋ(tk).
Solve the difference formula in algebraically for Ẋ(tk).
Equate both expressions of Ẋ(tk) in steps nonsing and and solve the resulting solution-derivative free

equation for X(tk+1) numerically by solving the linear system in nonsing and adding the recursion in .
Iterate step for tk+2, tk+3, ... until you reach the final time tf .

Discretized ZNN benefits from two important innovations. The first is the exponential error decay stipulation
and the setting of τ in . The second are the combined workings of through where ZNN places a barrier, a
membrane between the derivative-based formulation and their conditioning problems and the linear equations solving
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FIGURE 3.

plus recursion step . Most simply said: conditioning problems at the error equation or the error equation ODE level
are not passed into or onto the actual solving part of ZNN and do not affect the linear system conditioning in . The
two – quite different – conditioning limitations of ODE solvers and of linear systems’ solvability are not shared, and
thereby ZNN’s output and efficiency are immune to original problem instabilities and stiffnesses, etc., in the initial
problem setup , , and of the ODE setup in , .

Our first desire was to learn how to assign separate values to the decay constants η used in the start-up phase and
in the regular ZNN iteration phase. After some experiments and trial and error discoveries, we have settled on two
different exponential decay setting of η, namely at 160 for the start-up phase that we run for 12 steps with Euler while
our chosen finite difference formula of type j s = 4 5 requires only j + s = 9 actual solution data points. We have
adjusted η in the iteration phase of ZNN to η = 1.45 which differs slightly from the earlier global setting of η = 1.35

for Fig. 1 left. Our time interval for Fig. 3 is 1 h or 3600 s. The error drops below 10−11 and stays below after 23
s and levels out around 10−13 at the end of the run. Our simulation run took less than 14 s, and it computed 18,000
points of the solution X(tk) using around 8 · 10−4 s per time step tk ∈ [10, 3610], or in less than 4 % of the constant
sampling gap of tau = 0.02 that simulates a discrete 50 Hz sensor input.

The error function graphs of Fig. 1 left and Fig. 3 look similar, but the AZNN method reaches a tenfold lower error
plateau when compared to basic ZNN. In Fig. 3, AZNN’s η values were altered between phases, and the number of
initial Euler steps was increased from the necessary start-up data length j + s = 4+ 5 = 9 to 12 for this time-varying
matrix flow problem.
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We start Euler from the entry-wise square root matrix A(to).ˆ{0.5} in Matlab notation for ease with on-chip
implementation.

All of our finite difference formulas are convergent and as convergent difference formulas they obey certain rules.
For example, with the 5-IFD formula

żk =
8zk+1 + zk − 6zk−1 − 5zk−2 + 2zk−3

18τ
∈ Cn+1,

of type 2 3, its global truncation order O(τ3) and its scaled numerator above expressed as:

z(tk+1) + αkz(tk) + αk−1z(tk−1) + · · · + αk−`z(tk−`),

has the characteristic polynomial p(x) = xk+1 + αkx
k + αk−1x

k−1 + · · · + αk−`x
k−`. Convergence now requires

that p(1) = 1 + αk + αk−1 + ...+ αk−` = 0, see [3, Section 17]. Plugging z.. into the 5-IFD difference formula, we
realize that

z(tk+1) +
1

8
z(tk)−

3

4
z(tk−1)−

5

8
z(tk−2) +

1

4
z(tk−3) ≈ on+1, (∗)

is approximately the zero vector due to unavoidable truncation and rounding errors. The recursion part of the ZNN
computations is split by an equal sign in the final computational equation in step . Thus,

||z(tk+1)|| ≈
∣∣∣∣∣∣∣∣−1

8
z(tk) +

3

4
z(tk−1) +

5

8
z(tk−2)−

1

4
z(tk−3)

∣∣∣∣∣∣∣∣ .
And the two nearly equal recursion parts above become ever closer to each other in magnitude due to the conver-
gence to zero condition (∗) of all convergent finite difference schemes. Thus, the first linear equations solution term
(P (tk)\q(tk)) in eventually has only a comparatively small magnitude. It adjusts the predicted value of z(tk+1)

only slightly according to the current system data inputs while the remaining finite difference formula term:

−1

8
zk +

3

4
zk−1 +

5

8
zk−2 −

1

4
zk−3,

has nearly the same magnitude as the computed solution vector zk+1 for large indexed time steps tk+1.

This heuristic analysis explains the small, but persistent error magnitude wiggles that set in after a few dozen seconds
in Figs. 1 and 3 above when the error level has dropped to well below 10−10. Toward the end of our hour long
simulation, the linear equations term that is computed in the AZNN iterative matrix square root example for zk+1 has
only about 1/10,000 of the magnitude of the finite difference formula term while our trial matrix flow norms have
grown to around 106. The linear equations “correction term” in zk+1 then affects the average number of 13 accurate
digits only slightly. These variations by around 1 digit up and down are depicted in Figs. 1 and 3 as “wiggles,” and
they assure us of between 12 and 14 accurate digits in all sufficiently late computed solutions.

Following Fig. 4 for a matrix symmetrizer problem, we include a data table that describes the same theoretical mag-
nitude disparity. Our Matlab codes for AZNN computations of time-varying matrix square roots are tvMatrSquare-
RootwEulerStartva.m and AZNNtvMatrSquRootEuler5.m. Both are available at [9] together with the auxiliary codes
Polyksrestcoeff3.m, formAnnm.m, and formAnnmc.m.

(B) Time-varying symmetrizers S(t) for time-varying matrix flows A(t) via AZNN. Matrix flow symmetriz-
ers are much easier to handle in AZNN as shown in Figs. 4 and 5. Here, the separate exponential decay parameters of
AZNN can apparently be set rather high, or even astronomically high when compared with the rather moderate decay
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FIGURE 4.

constants that are suitable for convergence in the same matrix flow example A(t) in Section 2 (A) for finding time-
varying matrix square roots in Fig. 3. The data or linear solver term-induced wiggles of z(tk+1) are much smaller and
less noticeable here. They occur in a relatively small time interval from about 2 min to about 45 min after start-up. In
this time interval, the magnitudes of the linear solver term in the solution remain around 4 digits below that of the finite
difference formula’s term. After around 6 h, the magnitude disparity of the two terms increases to 5 digits making
the contribution of the linear equations term solve almost irrelevant. But the exponential truncation errors decrease
is much slower even with ten or hundred times larger decay constants than those that we found for the time-varying
matrix square roots problem.

Individual matrix problems for the same data may behave quite differently under AZNN.innovations

Here is a table of convergence data and magnitude comparisons for the linear equations solution part and the
partial difference recurrence part that drive the iterations for the symmetrizer example in Figs. 4 and 5.

The columns in Table 1 list computational data for several discrete times tk. The second column contains the
matrix norms of the time-varying input matrices A(tk), followed by the norm of the linear equations’ system matrices
P and of their right-hand sides q(tk) when computing the next solution at tk+1. The two framed columns 5 and
6 contain the magnitudes of the two terms that predict the symmetrizer S(tk+1) of A(tk+1). The final two columns
measure the actual symmetrization error ||A(tk+1)·S(tk+1)−ST (tk+1)·AT (tk+1)|| forA(tk+1) and the unsymmetry
of S(tk+1). Clearly the two additive terms in the ZNN formulation of S(tk+1) have very different magnitudes, and
the finite difference term is approximately 10,000 times larger than the linear equations term. These data corroborate
our earlier theoretical analysis very well.
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FIGURE 5.

Our next example deals with finding a complex symmetric matrix factorization S(t) · V (t) of a complex matrix
flow A(t) via AZNN in a “wiggle-free” way if possible.

Here, we use one fixed complex matrix flow A(t) and determine the η intervals that ensure wiggle-free truncation
error curves over long time intervals. In our tests with AZNN below, we keep the Euler initial part value of η and the
length of the start-up iterations fixed while we vary the value of η in the subsequent basic ZNN iterations.

Figure 6 depicts the extreme lower and upper values for η that induce wiggly truncation error curves for this example
flow. Figure 7 shows upper and lower bounds for non-wiggly truncation error curves, except possibly right near the
Euler to ZNN transit point in time, in between which any η can be chosen for smooth output.

In Fig. 7, the lowest relative symmetrizer errors are recorded in the left graph as 8.4872 · 10−9 at the end of the
30 min run when η = 0.9 and as 4.1151 · 10−8 in the right graph for η = 4.2. Here, the slower exponential decay
constant gives us a five times better convergence result. This seems to turn our intuitively expected result on its head.
And we know of no explanation for this mystery.
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TABLE 1

FIGURE 6.

For 5-by-5 real matrix flows, the AZNN computations of the flow’s symmetrizers take around 28 s per 1 h of simulation
or 224 s for the 8 h plot in Fig. 8. It reached a minimum relative symmetrization error of 5.9095 · 10−8 at the end of
the run.

Our 5-by-5 complex matrix flow experiment for time-varying matrix symmetrizers takes around 48 s per 1 h of simu-
lation or 385 s for the 8 h plot in Fig. 8 that reached a minimum relative symmetrization error of 7.2301 · 10−11 at the
end of its run.
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FIGURE 7.

FIGURE 8.

Exploring some phenomena of AZNN in this paper has lead to several new open problems with neural network-based
time-varying matrix algorithms: parameter optimizations in AZZN appear to be problem-dependent; for any one
problem large magnitude variations are seemingly possible for decay constant intervals with comparative results, even
thousand-fold η variations; why are there wiggles in some relative AZNN error graphs and so forth.
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Matlab codes for AZNN computations of time-vaying matrix symmetrizers are
AZNNtvMatrSymmwEulerStartm5.m for triple-phase parameter settings and AZNNtvMatrSymmwEulerStartm4.m
for double-phase parameter settings for the start-up Euler phase and the ZNN iterations phase only. They are available
together with trial matrix flow generating codes at [9].

A new application of AZNN methods uses time-varying neural networks directly to solve some previously unsolvable
static matrix symmetrizer problems in Section 3.

3. Computing static matrix symmetrizers via time-varying AZNN. We start with general observations of
matrix factorizing methods such as LR, QR, or SV.

For a given fixed entry matrix An,m, real or complex, almost every matrix factorization A = X · Y with specified
qualities in X and Y is achieved by operating on the given matrix A from the left with a matrix U of desired type to
obtain the right factor Y as U ·A = Y with Y as desired and then inverting U to obtain A = X · Y with X = U−1 if
the inversion of U preserves its special type. To factor A = L ·R for lower and upper triangular matrices L and R for
example, we obtain the upper triangular R by repeatedly multiplying A and its updates by lower triangular Gaussian
elimination matrices from the left. Their product is again lower triangular, and it can be easily inverted while keeping
the lower triangular form to give us the LR factorization of A. Likewise for orthogonal Householder matrices that
reduce An,m from the left to upper triangular form in the QR matrix factorization.

The key issue for successfully expressing any given real or complex square matrix A as a product of two symmetric
matrices S and V as A = S · V is to find a nonsingular symmetric matrix U = UT with U ·A = V = V T = AT ·U .
Then a symmetric matrix factorization of A is A = S · V with S = U−1. In 1902, Frobenius [5] proved theoretically
that such a factorization exists for each square matrix A. But finding nonsingular left-side symmetrizers numerically
for all static matrices An,n proved quite elusive, see [2, p. 609-612], especially for defective or derogatory matrices
A with repeated eigenvalues and certain Jordan structured ones inside a recent extensive comparison of eight iterative
and eigen or svd based symmetrizer algorithms [2].

An application of time-varying AZNN to compute matrix symmetrizers for a given fixed entry matrix A is relatively
simple. We use AZNN for the associated matrix flow A(t) = t ∗ A+ (1− t)a ∗ BB here with an exponent a > 0 that
we choose heuristically through experimentation with A(t) and a random small entry matrix BB. We start the AZNN
process with Euler and a chosen constant sampling gap τ = tk+1 − tk from to < 1. Typically to = 0.985 when using
small η and τ parameters and to = 0.9985 for large η and τ parameters. We stop the AZNN iterations at tk = 1

because then we have computed a symmetrizer S of A(1) via AZNN. Clearly this symmetrizer also symmetrizes
A since A(1) = A by construction. Here, it is important to synchronize to and τ so that in the iteration process
A(tk) = tk ∗ A+ (1− tk)

a ∗ BB, the factor 1− tk reaches zero precisely for some index k.

Now we test AZNN for the fixed entry matrix examples in [2] for which none of its eight symmetrizer algorithms
could find a nonsingular symmetrizer. The first one is the Kahan matrix of dimension 35, see [2, p.609, first table] and
the gallery in Matlab.

The left plot of Fig.3 9 shows the relative error ||S(1) ·A−AT ·S(1)||/||A|| for the computed Kahan (20) matrix
symmetrizer S = S(1) at the end point tk = 1 of AZNN for a relatively small exponential decay parameter ETA and a
relatively large first BB perturbation for A(0, 985). The value of the approach exponent a in (1− tk)a in the definition
of A(tk) here is set to 1.1 for all iterates, indicating a convex, slightly quadratic function approach to tk = 1 from
below a linear approach with a = 1. Sixteen AZNN steps take us into the 10−9 error territory here. Our computed
symmetrizers S(tk) for 35-by-35 Kahan all have condition numbers around 108 or 1010 and full rank, while the ones
computed in [2, p. 609] in six different static matrix ways have condition numbers 109 or 1010 with full numerical
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FIGURE 9.

FIGURE 10.

rank according to Matlab’s criteria and four eigen method-based solutions have symmetrizer condition numbers of
1015 and deficient numerical rank 32 only. The 2-norm of the 35-dimensional Kahan matrix is 4.8.

The right side plot with increased parameters for Eta and the approach constant a, both by factors of around 10, and
with a 100-fold decreased perturbation BB size and a 10-fold smaller sampling gap τ , that is, with a countervalent
change of parameter pairs, brings the relative error for AZNN down into 10−13 territory and computes a full-rank
symmetrizer for the Kahan matrix.

Next in [2, p.409, second table] comes the Frank matrix of size 35-by-35 and 2-norm 340. The plots in Fig. 10 show
quite similar error behavior as the Kahan matrix did with or without countervalently set parameters, except for the
much smaller relative symmetrizing errors that fall well below the machine constant in the right graph of Fig. 10.
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FIGURE 11.

A derogatory 23-by-23 upper triangular matrix Cut with 2-norm 281 was studied in [2]. Here are our AZNN
results for this static matrix symetrizer problem with our standard large and small parameter value pairs.

In Fig. 11, we have again used relatively large and small countervalent parameter pairs together to compute a
nonsingular symmetrizer of Cut with symmetrizing error below the machine constant and condition number 362. In
[2, p. 410, second table], all six iterative and eigen-based methods compute Cut symmetrizers with condition numbers
1010, 1011, 1014, 1015, 1018, and 1019, ranks below 23 (four times) and full rank 23 only twice.

The above examples all deal with sparse matrices An,n. We have also transformed each of these matrices separately
via random dense unitary matrix similarities to dense form and then applied AZNN using the same parameter settings
to obtain quite similar results numerically.

The main cost of AZNN methods for matrix square root and matrix symmetrizer computations lies in the necessary
transformation of the respective n-by-n matrix model equations to Kronecker n2 by n2 matrix form and solving the
ensuing n2 by n2 linear system for each tk. Note that 352 = 1225 and the cost of solving each Kronecker matrix
linear system now is O(12253/3) = O(1.8383 · 109/3) ≈ O(6 · 108). Here, the Kronecker system matrices of the
unknown X(tk) both have the form (XT (tk) ⊗ In) + (In ⊗ X(tk)), see [8, Sections 2 (VIII) and (VII) start-up)],
whose sparsity structure may be exploited for sparse A and X and thus help us to expedite the linear system solves
significantly. We have not studied this idea any further.

Our last static matrix symmetrizer problem from [2, p. 617 formula (9) through p. 619] deals with the singular 2-by-2
matrix for varying 0 ≤ α ≤ 1:

A =

(
0 1

0 α

)
.

Here, we receive excellent full-rank results with symmetrizer condition numbers below 2.7 and relative sym-
metrizer errors well below the machine constant via AZNN for the identical parameter settings as used before.
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FIGURE 12.

Our static matrix symmetrizer method is AZNNsingleMatrSymmEuler3.m. It uses Matlab’s “gallery” matrices
gallery(’frank’,35) or gallery(’kahan’,35) and Jordan block matrices of varying dimensions built in AJordunisym.m
of [9].

4. Conclusions. We have shown how to obtain faster more accurate solutions for time-varying matrix problem
through an adapted version AZNN of basic ZNN, where we define the exponential decay constants η in the start-up
phase and in the ZNN iterations phase independently as the problem requires and also free the start-up phase to last as
long as is needed to ensure a smooth transition between AZNN’s two phases.

In the process, we have also learnt how and when to use “astronomically high” η settings for improved theoretical
results. These results were obtained when investigating two complicated time-varying n-by-n matrix factorizations
that require a model equation switch to Kronecker matrix form due to their very formulation.
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TABLE 2
Table of h = η · τ values for Figures 1 through 12.

Left side graph Right side graph
Figure 1 h = 0.027 h = 0.056
(t.-v. square root)
Figure 3 h = 3.2 h = 0.029
(t.-v. square root)

Figures 4 and 5 Start Middle End
(t.-v. symmetrizer) h = 28.4 h = 64 h = 56
Figures 4 and 5 Start Middle End
(t.-v. symmetrizer) h = 28.4 h = 64 h = 56
Figure 6 Start End Start End
(t.-v. symmetrizer) h = 0.162 h = 0.016 h = 0.162 h = 0.084
Figure 7 Start End Start End
(t.-v. symmetrizer) h = 0.162 h = 0.018 h = 0.162 h = 0.084
Figure 8 Start End
(t.-v. symmetrizer) h = 0.162 h = 0.018

Figure 9 (Euler) (Euler)
(Static symmetrizer) h = 0.29 h = 0.37
Figure 10 (Euler) (Euler)
(Static symmetrizer) h = 0.79 h = 0.67
Figure 11 (Euler)
(Static symmetrizer) h = 0.95
Figure 12 Top and bottom left graphs Top and bottom right graphs
(Static symmetrizer) (Euler) (Euler)

with α at 10−27 and 10−3 with α at 10−10 and 1
h = 0.95 h = 0.95

For n-by-n matrix flows A(t)n,n and the unknown matrix X(t), Kronecker-based matrix problems increase the linear
equations solving dimensions for ZNN iterates fromO(n3/3) toO((n2)3/3) = O(n6/3) operations. This slows down
time-varying matrix factorizations from typically fractions of a second to possibly dozens of seconds. But a study of
the sparsity structure of the Kronecker matrices (XT (t)⊗ In) + (I2 ⊗X(t)) may improve the speed of time-varying
matrix flow factorizations in the future. And really high dimensions n are not generally encountered even in complex
biological and chemical reaction models as demonstrated in [6] in numerous applications.

This paper is not about Theory or the numerical analysis of time-varying matrix computations, which – at this moment
– has not even begone for Zhang neural networks. Here, we rather have shown some phenomena and behavior that
appear with AZNN methods when altering the set of parameters of ZNN in each of its phases experimentally. One
commonly noted event with basic ZNN is the relative constancy of the product h = η · τ for ZNN over wide ranges
of τ and η for any one problem. Table 2 lists the η and τ data for all our experiments which – for AZNN – puts
this assumption to rest with wide h variations and factors of 2 to 10 (Fig. 6 left) and even 110 (Fig. 3) for identical
problems.
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[5] F.G. Frobenius. Über die mit einer Matrix vertauschbaren Matrizen. Sitzungsberichte der Königlich Preußischen Akademie der Wis-

senschaften zu Berlin, 3–15, 1910. Also in: F. Frobenius and G. Abhandlungen, vol. 3, Springer, 415–427, 1968.
[6] S. Elnashaie, F. Uhlig, and C. Affane. Numerical Techniques for Chemical and Biological Engineers using MATLAB, A Simple Bifurcation

Approach. Springer, 2007, ISBN-10: 0-387-34433-0, ISBN-13: 978-0-387-34433-1, 590 p + xxiv p, with 95 MATLAB codes on CD.
[7] F. Uhlig. The construction of high order convergent look-ahead finite difference formulas for Zhang Neural Networks. J. Diff. Equat. Appl.,

25:930–941, 2019. https://doi.org/10.1080/10236198.2019.1627343 .
[8] F. Uhlig. Zeroing neural networks: An introduction to predictive computations for time-varying matrix problems via ZNN, 34 p, submitted,

http://arxiv.org/abs/2008.02724.
[9] F. Uhlig. MATLAB codes for plotting and assessing matrix flows under AZNN. Available at http://www.auburn.edu/∼uhligfd/m files/

AZNN/.
[10] Y. Zhang and J. Wang. Recurrent neural networks for nonlinear output regulation. Automatica, 37:1161–1173, 2001.

http://doi.org/10.1080/03081087408817029
http://doi.org/10.1080/03081087408817029
http://dx.doi.org/10.1016/j.laa.2015.06.031
https://doi.org/10.1080/10236198.2019.1627343
http://arxiv.org/abs/2008.02724
http://www.auburn.edu/~uhligfd/m_files/AZNN/
http://www.auburn.edu/~uhligfd/m_files/AZNN/

	Introduction to AZNN methods for real or complex matrix flows A(t)
	Developing AZNN methods for time-varying square roots X(t) and symmetric factorizations S(t) V(t) of time-varying matrix flows A(t)
	Computing static matrix symmetrizers via time-varying AZNN
	Conclusions
	References

