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Abstract. Closed-form formulas are derived for the rank and inertia of submatrices of the

Moore–Penrose inverse of a Hermitian matrix. A variety of consequences on the nonsingularity,

nullity and definiteness of the submatrices are also presented.
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1. Introduction. Throughout this paper, Cm×n and C
m×m

h
stand for the sets

of all m×n complex matrices and all m×m Hermitian complex matrices, respectively.

The symbols A∗, r(A) and R(A) stand for the conjugate transpose, rank and range

(column space) of a matrix A ∈ Cm×n, respectively. [A, B ] denotes a row block

matrix consisting of A and B. The inertia of a Hermitian matrix A is defined to

be the triplet In(A) = { i+(A), i−(A), i0(A) }, where i+(A), i−(A) and i0(A) are the

numbers of the positive, negative and zero eigenvalues of A counted with multiplicities,

respectively. It is obvious that r(A) = i+(A) + i−(A). We write A > 0 (A > 0) if

A is Hermitian positive (nonnegative) definite. Two Hermitian matrices A and B of

the same size are said to satisfy the inequality A > B (A > B) in the Löwner partial

ordering if A − B is positive (nonnegative) definite. The Moore–Penrose inverse of

A ∈ Cm×n, denoted by A†, is defined to be the unique solution X of the four matrix

equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

A matrix X ∈ C
m×m

h
is called a Hermitian g-inverse of A, denoted by A−

h
, if it satisfies

AXA = A. Further, the symbols EA and FA stand for the two orthogonal projectors

(idempotent Hermitian matrices) EA = Im−AA† and FA = In−A†A. A well-known

property of the Moore–Penrose inverse is (A†)∗ = (A∗)†. In particular, (A†)∗ = A†

and AA† = A†A if A = A∗. Results on the Moore–Penrose inverse can be found, e.g.,

in [1, 2, 7].
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One of the fundamental operations in matrix theory is to partition a matrix into

block forms. Many properties of a matrix and its operations can be derived from

partitions of the matrix and their operations. A typical partitioned Hermitian matrix

is given by the following 2× 2 form

M =

[

A B

B∗ D

]

, (1.1)

where A ∈ C
m×m

h
, B ∈ Cm×n and D ∈ C

n×n

h
. Correspondingly, the Moore–Penrose

inverse of M is Hermitian as well, and a partitioned expression of M † can be written

as

M † =

[

G1 G2

G∗
2 G3

]

, (1.2)

where G1 ∈ C
m×m

h
, G2 ∈ Cm×n and G3 ∈ C

n×n

h
. When M in (1.1) is nonsingular,

(1.2) reduces to the usual inverse of M .

In the investigation of a partitioned matrix and its inverse or generalized inverse,

attention is often given to expressions of submatrices of the inverse or generalized

inverse, as well as their properties. If (1.1) is nonsingular, explicit expressions of

the three submatrices G1, G2 and G3 of the inverse in (1.2) were given in a recent

paper [19]. If (1.1) is singular, expressions of the three submatrices G1, G2 and G3

in (1.2) can also be derived from certain decompositions of M . Various formulas for

G1, G2 and G3 in (1.2) were given in the literature; see, e.g., [9, 13, 16, 17]. These

expressions, however, are quite complicated in general. In addition to the expressions

of the submatrices in (1.2), another important task is to describe various algebraic

properties of the submatrices in (1.2), such as, their rank, range, nullity, inertia, and

definiteness. Some previous and recent work on these properties can be found, e.g.,

in [4, 10, 11, 14, 15, 18, 19, 20, 21]. Motivated by the work on nullity and inertia

of submatrices in a nonsingular (Hermitian) matrix and its inverse, we derive in this

paper closed-form formulas for the rank and inertia of the submatrices G1, G2 and

G3 in (1.2) through some known and new results on ranks and inertias of (Hermitian)

matrices. As applications, we use these formulas to characterize the nonsingularity,

nullity and definiteness of the submatrices in (1.2).

Some well-known equalities and inequalities for ranks of partitioned matrices are

given below.

Lemma 1.1 ([12]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then,
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(a) The following rank equalities hold

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.3)

r

[

A

C

]

= r(A) + r(CFA) = r(C) + r(AFC), (1.4)

r

[

A B

C 0

]

= r(B) + r(C) + r(EBAFC), (1.5)

r

[

A B

B∗ 0

]

= r[A, B ] + r(B) if A > 0, (1.6)

r

[

A B

C D

]

= r(A) + r

[

0 EAB

CFA D − CA†B

]

. (1.7)

(b) The following rank inequalities hold

r(A) + r(B) + r(C) > r

[

A B

C 0

]

> r(B) + r(C), (1.8)

r(CA†B) > r

[

A B

C 0

]

− r

[

A

C

]

− r[A, B ] + r(A). (1.9)

(c) r

[

A B

C 0

]

= r(A)+r(B)+r(C) ⇔ R(A)∩R(B) = {0} and R(A∗)∩R(C∗) =

{0}.

(d) r

[

A B

C D

]

= r(A) ⇔ AA†B = B, CA†A = C and D = CA†B.

Note that the inertia of a Hermitian matrix divides the eigenvalues of the matrix

into three sets on the real line. Hence the inertia of a Hermitian matrix can be used

to characterize the definiteness of the matrix. The following result is obvious from

the definitions of the rank and inertia of a matrix.

Lemma 1.2. Let A ∈ Cm×m, B ∈ Cm×n and C ∈ C
m×m

h
. Then,

(a) A is nonsingular if and only if r(A) = m.

(b) B = 0 if and only if r(B) = 0.

(c) C > 0 (C < 0) if and only if i+(C) = m (i−(C) = m).

(d) C > 0 (C 6 0) if and only if i−(C) = 0 (i+(C) = 0).
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Lemma 1.3. Let A ∈ C
m×m

h
, B ∈ Cm×n and P ∈ Cm×m. Then,

i±(PAP ∗) = i±(A) if P is nonsingular, (1.10)

i±(PAP ∗) 6 i±(A) if P is singular, (1.11)

A(A3)†A = A†, r(A3) = r(A), (1.12)

i±(A
3) = i±(A), i±(A

†) = i±(A), (1.13)

i±(λA) =

{

i±(A) if λ > 0

i∓(A) if λ < 0
, (1.14)

i±

[

0 B

B∗ 0

]

= r(B). (1.15)

Equation (1.10) is the well-known Sylvester’s law of inertia (see, e.g., [8, Theorem

4.5.8]). Equation (1.11) was given in [18, Lemma 1.6]. Equations (1.12), (1.13) and

(1.14) follow from the spectral decomposition of A and the definitions of the Moore–

Penrose inverse, rank and inertia. Equation (1.15) is well known (see, e.g., [5, 6]).

The following result was given in [18, Theorem 2.3].

Lemma 1.4. Let A ∈ C
m×m

h
, B ∈ Cm×n, D ∈ C

n×n

h
, and denote

U =

[

A B

B∗ 0

]

, V =

[

A B

B∗ D

]

, SA = D −B∗A†B.

Then,

i±(U) = r(B) + i±(EBAEB), (1.16)

i±(V ) = i±(A) + i±

[

0 EAB

B∗EA SA

]

, (1.17)

r(B) 6 i±(U) 6 r(B) + i±(A), (1.18)

r[A, B ]− i∓(A) 6 i±(V ) 6 r[A, B ] + i±(SA)− i∓(A), (1.19)

i±(B
∗A†B) > i∓(U)− r[A, B ] + i±(A). (1.20)

In particular,

(a) If A > 0, then i+(U) = r[A, B ] and i−(U) = r(B).

(b) If R(A) ⊆ R(B), then i±(U) = r(B).

(c) If R(A) ∩ R(B) = {0}, then i±(U) = i±(A) + r(B).

(d) If R(A) ∩ R(B) = {0} and R(B∗) ∩ R(D) = {0}, then i±(V ) = i±(A) +

r(B) + i±(D).

(e) i±(V ) = i±(A) if and only if R(B) ⊆ R(A) and i±(D −B∗A†B ) = 0.
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Lemma 1.5. Let A ∈ C
m×m

h
and B ∈ Cm×n. Then,

i±(B
∗A†B) = i∓

[

A3 AB

(AB)∗ 0

]

− i∓(A), (1.21)

r(B∗A†B ) = r

[

A3 AB

(AB)∗ 0

]

− r(A). (1.22)

Proof. Applying (1.12), (1.14) and (1.17) gives

i±

[

A3 AB

(AB)∗ 0

]

= i±(A
3) + i±[−B∗A(A3)†AB] = i±(A) + i∓(B

∗A†B),

as required for (1.21). Adding the two equalities in (1.21) gives (1.22).

2. Main results. Note that the three submatrices G1, G2 and G3 in (1.2) can

be represented as

G1 = P1M
†P ∗

1 , G2 = P1M
†P ∗

2 , G3 = P2M
†P ∗

2 , (2.1)

where P1 = [ Im, 0 ] and P2 = [ 0, In ]. Applying Lemma 1.5 to (2.1) gives the

following result.

Theorem 2.1. Let M and M † be given by (1.1) and (1.2), and denote

W1 = [A, B ] and W2 = [B∗, D ]. (2.2)

Then,

r(G1) = r

[

W ∗
2DW2 W ∗

1

W1 0

]

− r(M), (2.3)

r(G2) = r

[

W ∗
1BW2 W ∗

2

W1 0

]

− r(M), (2.4)

r(G3) = r

[

W ∗
1AW1 W ∗

2

W2 0

]

− r(M), (2.5)

and

i±(G1) = i∓

[

W ∗
2DW2 W ∗

1

W1 0

]

− i∓(M), (2.6)

i±(G3) = i∓

[

W ∗
1AW1 W ∗

2

W2 0

]

− i∓(M). (2.7)

Hence,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 226-240, April 2010



ELA

Rank and Inertia of the Moore–Penrose Inverse 231

(a) G1 is nonsingular if and only if r

[

W ∗
2DW2 W ∗

1

W1 0

]

= r(M) +m.

(b) G1 = 0 if and only if r

[

W ∗
2DW2 W ∗

1

W1 0

]

= r(M).

(c) G1 > 0 (G1 < 0) if and only if

i−

[

W ∗
2DW2 W ∗

1

W1 0

]

= i−(M) +m

(

i+

[

W ∗
2DW2 W ∗

1

W1 0

]

= i+(M) +m

)

.

(d) G1 > 0 (G1 6 0) if and only if

i+

[

W ∗
2DW2 W ∗

1

W1 0

]

= i+(M)

(

i−

[

W ∗
2DW2 W ∗

1

W1 0

]

= i−(M)

)

.

(e) G2 = 0 if and only if r

[

W ∗
1BW2 W ∗

2

W1 0

]

= r(M).

(f) G3 is nonsingular if and only if r

[

W ∗
1AW1 W ∗

2

W2 0

]

= r(M) +m.

(g) G3 = 0 if and only if r

[

W ∗
1AW1 W ∗

2

W2 0

]

= r(M).

(h) G3 > 0 (G3 < 0) if and only if

i−

[

W ∗
1 AW1 W ∗

2

W2 0

]

= i−(M) +m

(

i+

[

W ∗
1AW1 W ∗

2

W2 0

]

= i+(M) +m

)

.

(i) G3 > 0 (G3 6 0) if and only if

i+

[

W ∗
1AW1 W ∗

2

W2 0

]

= i+(M)

(

i−

[

W ∗
1AW1 W ∗

2

W2 0

]

= i−(M)

)

.

Proof. Applying (1.21) and (1.22) to (2.1) gives

r(G1) = r

[

M3 MP ∗
1

P1M 0

]

− r(M) = r

[

M3 W ∗
1

W1 0

]

− r(M), (2.8)

r(G2) = r

[

M3 MP ∗
2

P1M 0

]

− r(M) = r

[

M3 W ∗
2

W1 0

]

− r(M), (2.9)

r(G3) = r

[

M3 MP ∗
2

P2M 0

]

− r(M) = r

[

M3 W ∗
2

W2 0

]

− r(M), (2.10)

i±(G1) = i∓

[

M3 MP ∗
1

P1M 0

]

− i∓(M) = i∓

[

M3 W ∗
1

W1 0

]

− i∓(M), (2.11)

i±(G3) = i∓

[

M3 MP ∗
2

P2M 0

]

− i∓(M) = i∓

[

M3 W ∗
2

W2 0

]

− i∓(M). (2.12)
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Expanding M3 gives

M3 = [W ∗
1 , W

∗
2 ]

[

A B

B∗ D

][

W1

W2

]

= W ∗
1 AW1 +W ∗

1BW2 +W ∗
2B

∗W1 +W ∗
2DW2.

Hence,

[

Im − 1

2
W ∗

1 A−W ∗
2B

∗

0 In

][

M3 W ∗
1

W1 0

][

Im 0

− 1

2
AW1 −BW2 In

]

=

[

M3 −W ∗
1 AW1 −W ∗

1BW2 −W ∗
2B

∗W1 W ∗
1

W1 0

]

=

[

W ∗
2 DW2 W ∗

1

W1 0

]

.

Applying (1.10) to these equalities gives

r

[

M3 W ∗
1

W1 0

]

= r

[

W ∗
2DW2 W ∗

1

W1 0

]

and i∓

[

M3 W ∗
1

W1 0

]

= i∓

[

W ∗
2DW2 W ∗

1

W1 0

]

.

Substituting these equalities into (2.8) and (2.11) leads to (2.3) and (2.6). Equations

(2.5) and (2.7) can be shown similarly.

Note that

[

Im −W ∗
1A−W ∗

2B
∗

0 In

][

M3 W ∗
2

W1 0

][

Im 0

−DW2 In

]

=

[

M3 −W ∗
1 AW1 −W ∗

2B
∗W1 −W ∗

2 DW2 W ∗
1

W1 0

]

=

[

W ∗
1BW2 W ∗

2

W1 0

]

.

Hence,

r

[

M3 W ∗
2

W1 0

]

= r

[

W ∗
1BW2 W ∗

2

W1 0

]

.

Substituting this equality into (2.9) leads to (2.4). Results (a)–(i) follow from (2.3)–

(2.7) and Lemma 1.2.

We next obtain some consequences of Theorem 2.1 under various assumptions for

M in (1.1).

Corollary 2.2. Let M and M † be given by (1.1) and (1.2), and assume that

M satisfies the rank additivity condition

r(M) = r[A, B ] + r[B∗, D ], i.e., R([A, B ]∗) ∩ R([B∗, D ]∗) = {0}. (2.13)
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Then,

r(G1) = r(D) + r[A, B ]− r[B∗, D ], (2.14)

r(G2) = r(B), (2.15)

r(G3) = r(A) + r[B∗, D ]− r[A, B ], (2.16)

r(G1) + r(G3) = r(A) + r(D), (2.17)

i±(G1) = i∓(D) + r[A, B ]− i∓(M), (2.18)

i±(G3) = i∓(A) + r[B∗, D ]− i∓(M), (2.19)

i±(G1) + i∓(G3) = i±(A) + i∓(D). (2.20)

In particular, if M is nonsingular, then

r(G1) = r(D) +m− n, r(G2) = r(B), r(G3) = r(A) + n−m, (2.21)

i±(G1) = i∓(D) +m− i∓(M), i±(G3) = i∓(A) + n− i∓(M). (2.22)

Proof. Under (2.13), it follows from Lemmas 1.1(c) and 1.4(c) that

r

[

W ∗
2DW2 W ∗

1

W1 0

]

= r(W2DW2) + 2r(W1), (2.23)

i∓

[

W ∗
2DW2 W ∗

1

W1 0

]

= i∓(W
∗
2DW2) + r(W1), (2.24)

where the matrix W ∗
2DW2 =

[

BDB∗ BD2

D2B∗ D3

]

satisfies

[

Im −BD†

0 In

][

BDB∗ BD2

D2B∗ D3

][

Im 0

−D†B∗ In

]

=

[

0 0

0 D3

]

.

Hence, it follows from (1.10), (1.12) and (1.13) that

r(W ∗
2 DW2) = r(D3) = r(D), i∓(W

∗
2DW2) = i∓(D

3) = i∓(D). (2.25)

Substituting (2.25) into (2.23) and (2.24), and (2.23) and (2.24) into (2.3) and (2.6),

leads to (2.14) and (2.18). Equations (2.15), (2.16) and (2.19) can be shown similarly.

Adding (2.14) and (2.16) yields (2.17). Adding (2.18) and (2.19) yields (2.20). If M

is nonsingular, then r[A, B ] = m and r[B∗, D ] = n. Hence, (2.14)–(2.20) reduce to

(2.21) and (2.22).

The three formulas in (2.21) were given in [4] in the form of nullity of matrices, and

the corresponding results are usually called the nullity theorem; see also [3, 15, 20].

Note that

i∓(A) = m− i±(A)− i0(A), i∓(D) = n− i±(D)− i0(D), i±(M) + i∓(M) = m+ n.
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Hence, (2.22) can alternatively be written as

i±(M) = i±(D) + i0(D) + i±(G1) and i±(M) = i±(A) + i0(A) + i±(G3).

These formulas were given in [10, 11].

Corollary 2.3. Let M and M † be given by (1.1) and (1.2), and assume that

M satisfies

R(A) ∩ R(B) = {0} and R(B∗) ∩ R(D) = {0}. (2.26)

Then,

r(G1) = r(A), r(G2) = r(B), r(G3) = r(D), (2.27)

i±(G1) = i±(A), i±(G3) = i±(D). (2.28)

Proof. Equation (2.26) is equivalent to

r(W1) = r(A) + r(B), r(W2) = r(B) + r(D), r(M) = r(A) + 2r(B) + r(D) (2.29)

by (1.3), (1.4) and (1.5). In this case, (2.14)–(2.16) reduce to (2.27). Also, substituting

Lemma 1.4(d) and (2.29) into (2.18) and (2.19) yields (2.28).

Corollary 2.4. Let M and M † be given by (1.1) and (1.2), and assume that

r(M) = r(A). (2.30)

Then,

r(G1) = r(A), r(G2) = r(B), r(G3) = r

[

A3 B

B∗ 0

]

− r(A), (2.31)

i±(G1) = i±(A), i±(G3) = i∓

[

A3 B

B∗ 0

]

− i∓(A). (2.32)

Proof. By Lemma 1.1(d), (2.30) is equivalent to EAB = 0 and D = B∗A†B,

which imply r(W1) = r(A), r(W2) = r(B), and R(W ∗
2 ) ⊆ R(W ∗

1 ) by (1.3). Applying
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(1.5) to (2.3)–(2.5), and simplifying by elementary block matrix operations, produces

r(G1) = r

[

W ∗
2DW2 W ∗

1

W1 0

]

− r(M) = r

[

0 W ∗
1

W1 0

]

− r(A) = r(A),

r(G2) = r

[

W ∗
1BW2 W ∗

2

W1 0

]

− r(M) = r

[

0 W ∗
2

W1 0

]

− r(A) = r(B),

r(G3) = r

[

W ∗
1AW1 W ∗

2

W2 0

]

− r(M) = r





A3 A2B B

B∗A2 B∗AB D

B∗ D 0



− r(A)

= r





A3 A2B B

0 0 0

B∗ D 0



− r(A)

= r





A3 0 B

0 0 0

B∗ 0 0



− r(A)

= r

[

A3 B

B∗ 0

]

− r(A),

as required for (2.31). Applying Lemma 1.4(b) and (e) to (2.6), and simplifying by

elementary block congruence matrix operations and by (1.10), produces

i±(G1) = i∓

[

W ∗
2DW2 W ∗

1

W1 0

]

− i∓(M) = r(W1)− i∓(A) = i±(A),

i±(G3) = i∓

[

W ∗
1AW1 W ∗

2

W2 0

]

− i∓(M) = i∓





A3 A2B B

B∗A2 B∗AB D

B∗ D 0



− i∓(A)

= i∓





A3 0 B

0 0 0

B∗ 0 0



− i∓(A)

= i∓

[

A3 B

B∗ 0

]

− i∓(A),

as required for (2.32).

Corollary 2.5. Let M and M † be given by (1.1) and (1.2), and assume that
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both A > 0 and D > 0. Then,

r(G1) = r

[

A BD

B∗ D2

]

+ r[A, B ]− r(M), (2.33)

r(G3) = r

[

A2 AB

B∗ D

]

+ r[B∗, D ]− r(M), (2.34)

i+(G1) = r[A, B ]− i−(M), i−(G1) = r

[

A BD

B∗ D2

]

− i+(M), (2.35)

i+(G3) = r[B∗, D ]− i−(M), i−(G3) = r

[

A2 AB

B∗ D

]

− i+(M). (2.36)

Under the condition M > 0,

r(G1) = i+(G1) = r(A) and r(G3) = i+(G3) = r(D). (2.37)

Proof. If D > 0, then W ∗
2DW2 > 0 and R(W ∗

2DW2) = R(W ∗
2D). In this case,

applying (1.6) to (2.3) gives

r(G1) = r

[

W ∗
2DW2 W ∗

1

W1 0

]

− r(M) = r[W ∗
2DW, W ∗

1 ] + r(W1)− r(M)

= r[W ∗
2D, W ∗

1 ] + r(W1)− r(M)

= r

[

A BD

B∗ D2

]

+ r(W1)− r(M),

as required for (2.33). Equation (2.34) can be shown similarly. Applying Lemma

1.4(a) to (2.6) gives

i+(G1) = i−

[

W ∗
2DW2 W ∗

1

W1 0

]

− i−(M) = r(W1)− i−(M)

= r[A, B ]− i−(M),

i−(G1) = i+

[

W ∗
2DW2 W ∗

1

W1 0

]

− i+(M) = r[W ∗
2D, W ∗

1 ]− i+(M)

= r

[

A BD

B∗ D2

]

− i+(M),

as required for (2.35). Equation (2.36) can be shown similarly.

If M > 0, then A > 0, D > 0, and

r

[

A BD

B∗ D2

]

= r

[

A2 AB

B∗ D

]

= r(M) = i+(M),

r[A, B ] = r(A), r[B∗, D ] = r(D).
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Hence (2.33)–(2.36) reduce to (2.37).

We next obtain a group of inequalities for the rank and inertia of G1 in (1.2).

Corollary 2.6. Let M and M † be given by (1.1) and (1.2). Then,

r(G1) > max{ 2r[A, B ]− r(M), r(D)− 2r[B∗, D ] + r(M) }, (2.38)

r(G1) 6 r(D) + 2r[A, B ]− r(M), (2.39)

i±(G1) > max{ r[A, B ]− i∓(M), i∓(D)− r[B∗, D ] + i±(M) }, (2.40)

i±(G1) 6 i∓(D) + r[A, B ]− i∓(M). (2.41)

Proof. Applying (1.8) and (2.25) gives

2r(W1) 6 r

[

W2DW ∗
2 W1

W ∗
1 0

]

6 r(W2DW ∗
2 ) + 2r(W1) = r(D) + 2r(W1).

Substituting these two inequalities into (2.3), we obtain the first part of (2.38) and

(2.39). Applying (1.9) to the first expression in (2.1), and simplifying by elementary

block matrix operations, gives

r(G1) = r(P1M
†P ∗

1 ) > r

[

M P ∗
1

P1 0

]

− 2r[M, P ∗
1 ] + r(M)

= r(D)− 2r[B∗, D ] + r(M),

establishing the second part of (2.38). Applying (1.18), (1.20) and (2.25) gives

r(W1) 6 i±

[

W2DW ∗
2 W1

W ∗
1 0

]

6 i±(W2DW ∗
2 ) + r(W1) = i±(D) + r(W1),

i±(G1) = i±(P1M
†P ∗

1 ) > i∓

[

M P ∗
1

P1 0

]

− r[M, P ∗
1 ] + i±(M)

= i∓(D)− r[B∗, D ] + i±(M).

Substituting these inequalities into (2.6) leads to (2.40) and (2.41).

Inequalities for the rank and inertia of the two submatrices G2 and G3 in (1.2)

can be derived similarly. Setting D = 0 in Theorem 2.1, and simplifying, yields the

following result.

Corollary 2.7. Let

M1 =

[

A B

B∗ 0

]

, (2.42)
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where A ∈ C
m×m

h
and B ∈ Cm×n, and denote its Moore–Penrose inverse by

M
†
1 =

[

G1 G2

G∗
2 G3

]

, (2.43)

where G1 ∈ C
m×m

h
, G2 ∈ Cm×n and G3 ∈ C

n×n

h
. Then,

r(G1) = 2r[A, B ]− r(M1), (2.44)

r(G2) = r(B), (2.45)

r(G3) = r





A3 A2B B

B∗A2 B∗AB 0

B∗ 0 0



− r(M1), (2.46)

i±(G1) = r[A, B ]− i∓(M1), (2.47)

i±(G3) = i∓





A3 A2B B

B∗A2 B∗AB 0

B∗ 0 0



− i∓(M1). (2.48)

Under the condition A > 0,

r(G1) = i+(G1) = r[A, B ]− r(B), (2.49)

r(G3) = i−(G3) = r(A) + r(B) − r[A, B ]. (2.50)

Equalities for the rank and inertia of the submatrices in (2.42), (2.43) and their

operations, such as, A −AG1A and A+ BG3B
∗, can also be derived. The following

result was recently given in [18, Theorem 3.11].

Theorem 2.8. Let M1 and M
†
1 be given by (2.42) and (2.43). Then,

i±(M1) = i±(A) + r(B) − i±(A−AG1A ), (2.51)

i±(M1) = r(M) − i∓(A) − r(B) + i∓(A−AG1A ), (2.52)

i±(M1) = r[A, B ]− i∓(A+BG3B
∗ ), (2.53)

i±(M1) = r(M) − r[A, B ] + i±(A+BG3B
∗ ), (2.54)

r(M1) = r(A) + 2r(B) − r(A−AG1A ), (2.55)

r(M1) = 2r[A, B ]− r(A +BG3B
∗ ). (2.56)

Hence,

(a) A > AG1A ⇔ i−(M1) = i−(A) + r(B).

(b) A 6 AG1A ⇔ i+(M1) = i+(A) + r(B).

(c) A = AG1A ⇔ r(M1) = r(A) + 2r(B).
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(d) A+BG3B
∗ > 0 ⇔ i+(M1) = r[A, B ].

(e) A+BG3B
∗ 6 0 ⇔ i−(M1) = r[A, B ].

In addition to (1.2), other types of generalized inverses of M can also be written

in partitioned forms. For example, we can partition the Hermitian g-inverse of M in

(1.1) as

[

A B

B∗ D

]−

h

=

[

G1 G2

G∗
2 G3

]

,

where G1 ∈ C
m×m

h
, G2 ∈ Cm×n and G3 ∈ C

n×n

h
. Then, the rank and inertia of G1,

G2 and G3 may vary with respect to the choice of M−
h
. In such a case, it would be of

interest to consider the maximal and minimal possible ranks and inertias of G1, G2

and G3.

In an earlier paper [10], Johnson and Lundquist defined the inertia of Hermitian

operator in a Hilbert space, and gave some formulas for the inertias of Hermitian op-

erators and their inverses. Under this general frame, it would be of interest to extend

the results in this paper to inertias of Hermitian operators in a Hilbert space.
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