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A NEW DECOMPOSITION FOR SQUARE MATRICES∗

JULIO BENı́TEZ†

Abstract. A new decomposition is derived for any complex square matrix. This decomposition

is based on the canonical angles between the column space of this matrix and the column space of

its conjugate transpose. Some applications of this factorization are given; in particular some matrix

partial orderings and the relationship between the canonical angles and various classes of matrices

are studied.
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1. Introduction. Let Cm,n be the set of m × n complex matrices, and let A∗,

R(A), N (A), and rank(A) denote the conjugate transpose, column space, null space,

and rank, respectively, of A ∈ Cm,n. For a nonsingular A ∈ Cn,n, we shall denote

A−∗ = (A−1)∗ = (A∗)−1. Furthermore, let A† stand for the Moore-Penrose inverse

of A, i.e., for the unique matrix satisfying the equations

AA†A = A, A†AA† = A†, AA† = (AA†)∗, A†A = (A†A)∗.

Given a matrix A ∈ Cn,n, it can be proved that the set {X ∈ Cn,n : AXA =

A, XAX = X, AX = XA} is empty or a singleton. When it is a singleton, it

is customary to denote by A# its unique element, called the group inverse of A.

Furthermore, In means the identity matrix of order n. We shall denote by 0n,m the

zero matrix in Cn,m, and when there is no danger of confusion, we will simply write 0.

In addition, 1n and 0n will denote the n× 1 column vectors all of whose components

are 1 and 0, respectively.

Hartwig and Spindelböck arrived at the following result, given in [14] as Corol-

lary 6.

Theorem 1.1. Let A ∈ Cn,n and r = rank(A). There exist a unitary U ∈ Cn,n,

Σ = σ1Ir1 ⊕ · · · ⊕ σtIrt , r1 + · · · + rt = r, σ1 > · · · > σt > 0, L ∈ Cr,n−r, K ∈ Cr,r
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such that

A = U

[
ΣK ΣL

0 0

]
U∗(1.1)

and

KK∗ + LL∗ = Ir .(1.2)

Straightforward computations show that if A is written as in (1.1), then

A† = U

[
K∗Σ−1 0

L∗Σ−1 0

]
U∗.(1.3)

The usefulness of the representation provided in Theorem 1.1 to explore various classes

of matrices, was demonstrated in [2, 3, 24].

In the sequel, ‖K‖ with K ∈ Cm,n will be the matrix norm induced by the

Euclidean vector norm (known as the spectral norm); see [18, pp 270, 281]. One has

that if U, V are unitary, then ‖UAV ∗‖ = ‖A‖ for any matrix A such that the product

UAV ∗ is meaningful ([18, p 283]). Also it will be needed that ‖A‖2 = ‖A∗‖2 =

‖A∗A‖ = ‖AA∗‖ holds for any complex matrix.

The canonical angles (also called principal angles) between two subspaces provide

the best available characterization of the relative position of two given subspaces. This

concept allows us to characterize or measure, in a natural way, how two subspaces

differ, which is the main connection with perturbation theory. In [9, 20, 22] we can find

how these angles were discovered and rediscovered again several times. Computation

of canonical angles between subspaces is important in many applications including

statistics [8, 15], information retrieval [16], and analysis of algorithms [23]. There are

many equivalent definitions of the canonical angles (see [11]). But, for our purposes,

the most convenient is the following:

Let X and Y be two nontrivial subspaces of Cn and r = min{dimX , dimY}. We

define the canonical angles θ1, . . . , θr ∈ [0, π/2] between X and Y by

cos θi = σi(PXPY), i = 1, . . . , r,(1.4)

where the nonnegative real numbers σ1(PXPY), . . . , σr(PXPY) are the singular values

of PXPY . Here, PS stands for the orthogonal projector onto the subspace S ⊂ Cn.

We will have in mind the possibility that one canonical angle is repeated.

See also [11, 12, 21, 25] for the study of this definition and [5] for the simultaneous

study of two orthogonal projectors by means of the canonical angles between the

column spaces of these orthogonal projectors.
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2. Main result. The following theorem is the main result of the paper.

Theorem 2.1. Let A ∈ Cn,n, let r = rank(A), and let θ1, . . . , θp be the canon-

ical angles between R(A) and R(A∗) belonging to ]0, π/2[. Denote by x and y the

multiplicities of the angles 0 and π/2 as a canonical angle between R(A) and R(A∗),

respectively. There exists a unitary matrix Y ∈ Cn,n such that

A = Y

[
MC MS

0 0

]
Y ∗,(2.1)

where M ∈ Cr,r is nonsingular,

C = diag(0y, cos θ1, . . . , cos θp,1x),(2.2)

S =

[
diag(sin θ1, . . . , sin θp,1y) 0p+y,n−(r+p+y)

0x,p+y 0x,n−(r+p+y)

]
,

and r = y+ p+ x. Furthermore, x and y+n− r are the multiplicities of the singular

values 1 and 0 in PR(A)PR(A∗), respectively.

Proof. Let us represent A as in (1.1). From this representation and (1.3) we have

A†A = U

[
K∗K K∗L

L∗K L∗L

]
U∗.

Now, let us observe ‖K‖2 = ‖K∗K‖ ≤ ‖AA†‖ = 1, since the norm of a submatrix

cannot be greater than the norm of the matrix [1, Lemma 2] and the spectral norm of

any orthogonal projector is 1. Let K = V CW ∗ be the singular value decomposition

of K, where V,W ∈ Cr,r are unitary and C ∈ Cr,r is diagonal with nonnegative real

numbers on its diagonal. Since ‖C‖ = ‖K‖ ≤ 1, we can write

C = diag(0y, cos θ1, . . . , cos θp,1x),(2.3)

where y, p, x ∈ N ∪ {0} satisfy y + p+ x = r, and θ1, . . . , θp ∈]0, π/2[.

Let us define

Ĉ = diag(0y, cos θ1, . . . , cos θp) and Ŝ = diag(1y, sin θ1, . . . , sin θp).(2.4)

Obviously, Ŝ is nonsingular and

Ĉ2 + Ŝ2 = Iy+p.(2.5)

Now, let us partition V and W as follows:

V =
[
V1 V2

]
, W =

[
W1 W2

]
, V1,W1 ∈ Cr,y+p, V2,W2 ∈ Cr,x.(2.6)
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Since V is unitary,

[
Iy+p 0

0 Ix

]
= Ir = V ∗V =

[
V ∗
1

V ∗
2

] [
V1 V2

]
=

[
V ∗
1 V1 V ∗

1 V2

V ∗
2 V1 V ∗

2 V2

]
,

hence

Iy+p = V ∗
1 V1, 0 = V ∗

1 V2, 0 = V ∗
2 V1, Ix = V ∗

2 V2.(2.7)

Using again that V is unitary we get

Ir = V1V
∗
1 =

[
V1 V2

] [ V ∗
1

V ∗
2

]
= V1V

∗
1 + V2V

∗
2 .(2.8)

Similarly, we get

Iy+p = W ∗
1 W1, 0 = W ∗

1W2, 0 = W ∗
2W1, Ix = W ∗

2W2(2.9)

and Ir = W1W
∗
1 +W2W

∗
2 .

From the singular value decomposition of K, (2.4), and (2.6) we get

K = V CW ∗ =
[
V1 V2

]
[

Ĉ 0

0 Ix

][
W ∗

1

W ∗
2

]
= V1ĈW ∗

1 + V2W
∗
2 .(2.10)

Now, let us prove

LL∗ = V1Ŝ
2V ∗

1 .(2.11)

In fact, the combination of (1.2), (2.5), (2.8), (2.9), and (2.10) leads to

LL∗ = Ir −KK∗

= Ir − (V1ĈW ∗
1 + V2W

∗
2 )(V1ĈW ∗

1 + V2W
∗
2 )

∗

= Ir − (V1ĈW ∗
1 + V2W

∗
2 )(W1ĈV ∗

1 +W2V
∗
2 )

= Ir − V1Ĉ
2V ∗

1 − V2V
∗
2

= V1V
∗
1 − V1Ĉ

2V ∗
1

= V1(Ip+y − Ĉ2)V ∗
1

= V1Ŝ
2V ∗

1 .

Now, we have from (2.7) and (2.11)

V ∗
1 LL

∗V1 = V ∗
1 V1Ŝ

2V ∗
1 V1 = Ŝ2.(2.12)

Let us define

X1 = L∗V1Ŝ
−1, X1 ∈ Cn−r,y+p.(2.13)
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Apply (2.12) and the definition of X1 to obtain X∗
1X1 = Ŝ−1V ∗

1 LL
∗V1Ŝ

−1 = Iy+p,

therefore, the columns of X1 are orthonormal. As X1 has y+ p orthonormal columns

belonging to Cn−r, we have y+p ≤ n−r. Let us define t = (n−r)−(y+p) ∈ N∪{0}.

We can find X2 ∈ Cn−r,t such that X = [X1 X2] is unitary. Finally, let us define

S =

[
Ŝ 0y+p,t

0x,y+p 0x,t

]
∈ Cr,n−r.(2.14)

From Ĉ2 + Ŝ2 = Iy+p and ĈŜ = ŜĈ we get

C2 + SS∗ = Ir, (Ĉ ⊕ It)
2 + S∗S = In−r , CS = S(Ĉ ⊕ It).(2.15)

Since X is unitary we get

X∗
1X2 = 0.(2.16)

From (2.7) and (2.11) we get (L∗V2)
∗(L∗V2) = V ∗

2 LL
∗V2 = V ∗

2 V1Ŝ
2V ∗

1 V2 = 0, hence

L∗V2 = 0.(2.17)

Taking into account (2.13) and (2.17),

L∗V = L∗
[
V1 V2

]
=

[
L∗V1 L∗V2

]
=

[
X1Ŝ 0

]
.

From which, and having in mind that V is unitary and Ŝ is Hermitian, we get

L = V

[
ŜX∗

1

0

]
=

[
V1 V2

]
[

ŜX∗
1

0

]
= V1ŜX

∗
1 .(2.18)

By using (2.16) and postmultiplying (2.18) by X2 we get

LX2 = 0.(2.19)

From (2.7), (2.11), (2.13), and (2.19) we obtain

LX =(2.20)

= L
[
X1 X2

]
=

[
LX1 LX2

]
=

[
LL∗V1Ŝ

−1 0
]
=

[
V1Ŝ 0

]
.

On the other hand, we have

V S =
[
V1 V2

]
[

Ŝ 0

0 0

]
=

[
V1Ŝ 0

]
.(2.21)
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Relations (2.20) and (2.21) prove L = V SX∗. Moreover, observe

A = U

[
ΣK ΣL

0 0

]
U∗

= U

[
ΣV CW ∗ ΣV SX∗

0 0

]
U∗

= U

[
ΣV C ΣV S

0 0

] [
W ∗ 0

0 X∗

]
U∗

= U

[
W 0

0 X

] [
W ∗ΣV C W ∗ΣV S

0 0

] [
W ∗ 0

0 X∗

]
U∗.

Thus, if we denote Y = U(W ⊕X) and M = W ∗ΣV , we have

A = Y

[
MC MS

0 0

]
Y ∗.

Notice that Y is unitary and M is nonsingular.

It remains to prove that θ1, . . . , θp are the canonical angles between R(A) and

R(A∗) belonging to ]0, π/2[, and x and y are the multiplicities of the singular values 0

and 1 in PR(A)PR(A∗), respectively. To this end, we will use (1.4). It is straightforward

by checking the four conditions of the Moore-Penrose inverse that if A is written as

in (2.1), then

A† = Y

[
CM−1 0

S∗M−1 0

]
Y ∗.(2.22)

Now, from (2.15), it is simple to verify

PR(A)PR(A∗) = AA†A†A

= Y

[
MC MS

0 0

] [
CM−1 0

S∗M−1 0

] [
CM−1 0

S∗M−1 0

] [
MC MS

0 0

]
Y ∗

= Y

[
Ir 0

0 0

] [
C2 CS

S∗C S∗S

]
Y ∗

= Y

[
C2 CS

0 0

]
Y ∗.(2.23)

Next, we are going to find the singular value decomposition of PR(A)PR(A∗). Let us

remark that from (2.15) we get that the matrix

T =

[
C S

−S∗ Ĉ ⊕ It

]
∈ Cn,n
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is unitary. Hence, the singular value decomposition of PR(A)PR(A∗) is

PR(A)PR(A∗) = Y (C ⊕ 0n−r,n−r)(TY
∗)

= Y diag(0, . . . , 0︸ ︷︷ ︸
y

, cos θ1, . . . , cos θp︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
x

︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n−r

)(TY ∗),

since Y and TY ∗ are unitary and C ⊕ 0n−r,n−r is a diagonal matrix with real and

nonnegative numbers on its diagonal. Therefore, these numbers are the singular values

of PR(A)PR(A∗).

3. Applications. In this section some applications of the decomposition given

in Theorem 2.1 are discussed. Let us remark that from (2.15), matrices C and S

“almost” commute and behave as the ordinary trigonometric functions x 7→ cosx and

x 7→ sinx. An evident fact is that C is Hermitian because C is diagonal with real

numbers on its diagonal. The following lemma will be used several times in the sequel.

Lemma 3.1. Assume that matrices C and S are defined as in Theorem 2.1 and

let q be an arbitrary positive integer. For R1, R2 ∈ Cr,q we have

CR1 = CR2 and S∗R1 = S∗R2 ⇐⇒ R1 = R2

and for T1, T2 ∈ Cq,r

T1C = T2C and T1S = T2S ⇐⇒ T1 = T2.

Proof. Let us prove the first equivalence (the another one has a similar proof).

The ⇐ part is trivial. To prove the ⇒ part, it is enough to premultiply CR1 = CR2

by C and premultiply S∗R1 = S∗R2 by S, add the last two obtained equalities and

use the first relation of (2.15).

3.1. The dimension of R(A)∩R(A∗) and R(A)∩R(A∗)⊥. We apply Theorem

2.1 to find the dimension ofR(A)∩R(A∗) andR(A)∩R(A∗)⊥ in terms of the canonical

angles between R(A) and R(A∗).

Theorem 3.2. For any square complex matrix A, one has

(i) the dimension of R(A)∩R(A∗) is the multiplicity of the angle 0 as a canonical

angle between R(A) and R(A∗).

(ii) the dimension of R(A) ∩ R(A∗)⊥ is the is the multiplicity of the angle π/2

as a canonical angle between R(A) and R(A∗).

Proof. Let us represent A as in (2.1).
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(i) First of all let us compute the dimension of N (A) ∩ N (A∗). Let x ∈ N (A) ∩

N (A∗) be represented as

x∗ = [u∗ v∗]Y ∗, u ∈ Cr,1, v ∈ Cn−r,1.(3.1)

Since Ax = 0 and A∗x = 0 we get, respectively,

[
MC MS

0 0

] [
u

v

]
= 0,

[
CM∗ 0

S∗M∗ 0

] [
u

v

]
= 0,

which, in view of the invertibility of M , reduces to

Cu+ Sv = 0, CM∗u = 0 and S∗M∗u = 0.

From Lemma 3.1, we obtain M∗u = 0, which implies u = 0. Hence Sv = 0. Thus,

we obtain that for x represented as in (3.1), one has x ∈ N (A)∩N (A∗) if and only if

u = 0 and Sv = 0. Having in mind the representation (2.14) and the nonsingularity

of Ŝ (obtained from (2.4)), we have

dim [N (A) ∩ N (A∗)] = dimN (S) = (n−r)−rank(S) = n−r−rank(Ŝ) = n−r−(y+p).

Since

[R(A) ∩R(A∗)]⊥ = R(A)⊥ +R(A∗)⊥ = N (A∗) +N (A)

and

dim [N (A) +N (A∗)] = dimN (A) + dimN (A∗)− dim [N (A) ∩ N (A∗)] ,

we obtain, recalling dimN (A) = N (A∗) = n− r, that

dim [R(A) ∩R(A∗)] = n− dim
(
[R(A) ∩R(A∗)]

⊥
)

= n− dim (N (A) +N (A∗))

= n− [2(n− r)− (n− r − y − p)]

= r − y − p

= x.

(ii) Let us recall R(A∗)⊥ = N (A). We will prove

R(A) ∩ N (A) =

{
Y

[
u

0

]
: u ∈ Cr,1, Cu = 0

}
.(3.2)

To this end, let x ∈ R(A) ∩ N (A) be represented as x∗ = [u∗ v∗]Y ∗, where u ∈ Cr,1

and v ∈ Cn−r,1. Since x ∈ R(A) and AA† is the orthogonal projector onto R(A), we
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have AA†x = x. Therefore using the representations (2.1) and (2.22) we easily get

v = 0. Since x ∈ N (A), using again representation (2.1) and the nonsingularity of M

we get Cu = 0. The reverse inclusion of (3.2) is trivial to be obtained. Thus, from

(2.3) we get

dim [R(A) ∩ N (A)] = dimN (C) = r − rank(C) = y.

Using again Theorem 2.1, Theorem 3.2 can be restated as follows

Theorem 3.3. For any square complex matrix A ∈ Cn,n, one has

(i) the dimension of R(A) ∩R(A∗) is the multiplicity of the singular value 1 in

the matrix PR(A)PR(A∗).

(ii) if k is the multiplicity of the singular value 0 in the matrix PR(A)PR(A∗), then

the dimension of R(A) ∩R(A∗)⊥ is the rank(A) + k − n.

3.2. How far is a matrix from being EP?. The following consequence is a

clean measure of the departure of a square matrix from being EP (recall that a square

matrix A is said to be EP when AA† = A†A). More precisely, we have the following

result.

Theorem 3.4. Let A ∈ Cn,n. Then

‖AA† −A†A‖ = max{sin θ : θ is a canonical angle between R(A) and R(A∗)}.

Proof. Let us represent A as in (2.1). From (2.15) and by following the compu-

tations made in (2.23), we have

AA† −A†A = Y

{[
Ir 0

0 0

]
−

[
C2 CS

S∗C S∗S

]}
Y ∗ = Y

[
SS∗ −CS

−S∗C −S∗S

]
Y ∗.

If we denote T = Y ∗(AA† −A†A)Y , then ‖AA† −A†A‖2 = ‖T ‖2 = ‖TT ∗‖. Thus, to

calculate ‖AA†−A†A‖, we must first calculate TT ∗. It is straightforward to see that

TT ∗ =

[
SS∗SS∗ + CSS∗C −SS∗CS + CSS∗S

−S∗CSS∗ + S∗SS∗C S∗C2S + S∗SS∗S

]
.

We shall use (2.15) in order to simplify each block of TT ∗. The upper-left block

simplifies to

SS∗SS∗ + CSS∗C = SS∗(Ir − C2) + C(Ir − C2)C

= (SS∗ + C2)(Ir − C2)

= Ir − C2

= SS∗.
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The upper-right block reduces to

−SS∗CS + CSS∗S = −(Ir − C2)CS + C(Ir − C2)S = 0.

Since TT ∗ is Hermitian and its upper-right block is zero, the lower-left block of TT ∗

is also zero. Now, the lower-right block of TT ∗ simplifies to

S∗C2S + S∗SS∗S = S∗C2S + S∗(Ir − C2)S = S∗S.

Hence, TT ∗ = SS∗ ⊕ S∗S and by using that ‖A1 ⊕ A2‖ = max{‖A1‖, ‖A2‖} holds

for any pair of matrices A1 and A2 (see, for example, relation 5.2.12 of [18]), we get

‖TT ∗‖ = max{‖SS∗‖, ‖S∗S‖} = ‖S‖2 and by observing the form of S in Theorem 2.1,

we obtain

‖S‖ = max{sin θ : θ is a canonical angle between R(A) and R(A∗)}.

The following application of Theorem 2.1 is another measure of the departure of

a square matrix from being EP. To state this result, let CEP

n denote the subset of Cn,n

composed of EP matrices. Furthermore, if X ∈ Cn,n and S ⊂ Cn,n, the expression

dist(X,S) will denote the distance between X and S (i.e., the infimum of ‖X − Y ‖

when Y ∈ S). The following simple lemma will be useful.

Lemma 3.5. Let A ∈ Cn,n be represented as in Theorem 2.1. Then ‖A‖ = ‖M‖.

Proof. Having in mind the first relation of (2.15), we have ‖A‖2 = ‖AA∗‖ =

‖MM∗ ⊕ 0‖ = ‖MM∗‖ = ‖M‖2.

Theorem 3.6. Let A ∈ Cn,n. Then

dist(A,CEP

n ) ≤

≤ 2‖A‖ sup{sin(θ/2) : θ is a canonical angle between R(A) and R(A∗)} .

Proof. Let us write A as in (2.1) and let B = Y (M ⊕0)Y ∗. Matrix B is obviously

EP because M is nonsingular. From the first relation of (2.15), a simple computation

shows (A−B)(A −B)∗ = Y [(2M(Ir − C)M∗)⊕ 0]Y ∗. Therefore,

dist(A,CEP

n )2 ≤ ‖A−B‖2 = ‖2M(Ir − C)M∗‖ ≤ 2‖M‖‖Ir − C‖‖M∗‖.

From Lemma 3.5, one has dist(A,CEP

n )2 ≤ 2‖A‖2‖Ir − C‖. From (2.3) we get

‖Ir − C‖ = sup{1− cos θ : θ is a canonical angle between R(A) and R(A∗)}.

The use of the trigonometric identity 2 sin2(θ/2) = 1 − cos θ for θ ∈ [0, π/2] finishes

the proof.
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3.3. Characterizations of various classes of matrices. As in [2] we provide

characterizations of various known classes of matrices.

Theorem 3.7. Let A be a square complex matrix represented as in Theorem 2.1.

Then

(i) A has group inverse if and only if none of the canonical angles between R(A)

and R(A∗) is π/2, or equivalently, C is nonsingular. In this case, one has

A# = Y

[
C−1M−1 C−1M−1C−1S

0 0

]
Y ∗.(3.3)

(ii) A is a partial isometry (i.e., A∗ = A†) if and only if M is unitary.

(iii) A is star-dagger (i.e., A∗A† = A†A∗) if and only if MM∗C = CM∗M .

(iv) A is normal (i.e., AA∗ = A∗A) if and only if all the canonical angles between

R(A) and R(A∗) are zero and M is normal.

(v) A is an oblique projector (i.e., A2 = A) if and only if CM = Ir.

(vi) A is an orthogonal projector (i.e., A2 = A = A∗) if and only if M = Ir and

all the canonical angles between R(A) and R(A∗) are 0.

(vii) A is EP (i.e., AA† = A†A, or equivalently, PR(A) = PR(A∗)) if and only if

all the canonical angles between R(A) and R(A∗) are 0.

(viii) A is bi-EP (i.e., AA†A†A = AA†A†A or PR(A)PR(A∗) = PR(A∗)PR(A)) if

and only if all the canonical angles between R(A) and R(A∗) are 0 or π/2.

(ix) A is a contraction (i.e., ‖A‖ ≤ 1) if and only if M is a contraction.

Proof. Let us write A as in (2.1).

(i) One has that A has group inverse if and only if rank(A2) = rank(A) [4,

Sec. 4.4]. Moreover, as is easy to see from (2.2) we have that none of the canonical

angles between R(A) and R(A∗) is π/2 if and only if C is nonsingular. Furthermore,

we have

A2 = Y (MC ⊕ In−r)Y
∗A.(3.4)

Assume that C is nonsingular. From (3.4) we get rank(A2) = rank(A), because

premultiplying by nonsingular matrices does not change the rank.

Assume that C is singular. Since M∗ is nonsingular, there exists u ∈ Cr,1 such

that u 6= 0 and CM∗u = 0. Define

v = Y

[
u

0

]
∈ Cn,1.

Since u 6= 0 and Y is nonsingular (Y is unitary) we have v 6= 0. Furthermore, from
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(3.4) we get

(A∗)2v = A∗Y

[
CM∗ 0

0 In−r

]
Y ∗Y

[
u

0

]
= 0

and

A∗v = Y

[
CM∗ 0

S∗M∗ 0

]
Y ∗Y

[
u

0

]
= Y

[
0

S∗M∗u

]
.

If A∗v = 0, then S∗M∗u = 0. Recall that by the choice of u we have CM∗u = 0,

and now, from Lemma 3.1 we get M∗u = 0, which is a contradiction with u 6= 0 and

the nonsingularity of M∗. Hence v ∈ N ((A∗)2) and v /∈ N (A∗), therefore the null

spaces of A∗ and (A∗)2 are not equal, and thus, the ranks of A and A2 are not equal.

To finish the proof of this item, let us observe that the expression (3.3) can be

verified by direct verifications.

(ii) Using the expressions (2.1) and (2.22) we have A∗ = A† if and only if CM∗ =

CM−1 and S∗M∗ = S∗M−1. Lemma 3.1 leads to

CM∗ = CM−1 and S∗M∗ = S∗M−1 ⇐⇒ M−1 = M∗.

(iii) The proof is similar as in (ii).

(iv) We have AA∗ = A∗A if and only if the following four equalities are satisfied

MM∗ = CM∗MC, 0 = CM∗MS, 0 = S∗M∗MC, 0 = S∗M∗MS.

In view of the nonsingularity of M we have 0 = S∗M∗MS ⇔ 0 = (MS)∗(MS) ⇔

MS = 0 ⇔ S = 0. From the first relation of (2.15) we have S = 0 ⇔ C2 = Ir.

Having in mind that C is a diagonal matrix with nonnegative real numbers on its

diagonal, we have C2 = Ir ⇔ C = Ir. Therefore, AA∗ = A∗A if and only if C = Ir
and MM∗ = M∗M . From (2.3), the equality C = Ir is equivalent to saying that all

the canonical angles between R(A) and R(A∗) are zero.

(v) We have A2 = A if and only if MCMC = MC and MCMS = MS. Taking

into account that M is nonsingular we get A2 = A if and only if CMC = C and

CMS = S. Lemma 3.1 finishes the proof of this item.

(vi) Since M is nonsingular, we have A∗ = A if and only if MC = CM∗ and

S = 0. In view of (2.15) and item (v) we get A2 = A = A∗ if and only if C = M = Ir.

(vii) It follows from Theorem 3.4.

(viii) It is easily seen that

AA†A†A−A†AAA† = Y

[
0 CS

−S∗C 0

]
Y ∗.
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Thus, A is bi-EP if and only if CS = 0. If CS = 0, from the first equality of (2.15)

we get C3 = C. From (2.3), (2.4), and (2.14) we have

p = 0, C = 0y,y ⊕ Ix, S = Iy ⊕ 0x,t.(3.5)

Obviously, (3.5) implies CS = 0. Evidently, from Theorem 2.1, the conditions given in

(3.5) are equivalent to saying that all the canonical angles between R(A) and R(A∗)

are 0 or π/2.

(ix) It is trivial from Lemma 3.5.

3.4. Applications to some partial matrix orderings. In the following, three

partial orderings in Cn,n will be studied. The first of them is the star ordering

introduced in [10], which is defined by

A
∗

≤ B ⇐⇒ A†A = A†B and AA† = BA†,

or alternatively,

A
∗

≤ B ⇐⇒ A∗A = A∗B and AA∗ = BA∗.(3.6)

The second one is the sharp ordering defined in [19]:

A
#

≤ B ⇐⇒ A#A = A#B and AA# = BA#,

when A and B have group inverse. It is easy to verify that

A
#

≤ B ⇐⇒ AB = A2 = BA.(3.7)

Furthermore, we will consider the minus ordering defined in [13]. An equivalent

form of this ordering is the following [7, 17]:

A
−

≤ B ⇐⇒ AB†B = A, BB†A = A, AB†A = A.(3.8)

In [3], the authors provide handy tools to verify whether given matrices A and

B satisfy A
∗

≤ B, A
#

≤ B, or A
−

≤ B when A is written as in (1.1). However, the

characterizations given in [3] of B
∗

≤ A, B
#

≤ A, and B
−

≤ A, when A is written

as in (1.1), lead to various sets of matrix equations very difficult to handle. These

sets of equations, under particular situations, can be reduced, as the authors of [3]

showed. In the forthcoming Theorem 3.9 we find a more general situation where the

characterizations of B
∗

≤ A, B
#

≤ A, and B
−

≤ A, when A is written as in (2.1) are

easy to check.
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Before doing this, the following result, given by Cao in [6], will be helpful.

Theorem 3.8. If A ∈ Cr,r, B ∈ Cr,s, C ∈ Cs,s, and M =

[
A B

0 C

]
, then there

exists M# if and only if there exist A# and C#, and in addition (Ir − AA#)B(Is −

CC#) = 0 holds. Furthermore, when M# exists, it is given by

M# =

[
A# (A#)2B(Is − CC#) + (Ir −AA#)B(C#)2 −A#BC#

0 C#

]
.

Theorem 3.9. Let A,B ∈ Cn,n and let A be of the form (2.1). Assume that A

has group inverse.

(i) B
∗

≤ A if and only if B can be written as

B = Y

[
B1 B2

0 0

]
Y ∗, B1 ∈ Cr,r, B2 ∈ Cn−r,r,(3.9)

where B1 and B2 satisfy

B∗
1B1 = B∗

1MC, B2 = B1C
−1S, B1C

−2B∗
1 = MC−1B∗

1(3.10)

(ii) If B has group inverse, then B
#

≤ A if and only if B can be written as in

(3.9) and B1, B2 satisfy

B1

#

≤ MC and B2 = C−1M−1B1MS.(3.11)

(iii) B
−

≤ A if and only if B can be written as in (3.9) and B1, B2 satisfy

B1C
−1M−1B1 = B1 and B1C

−1M−1B2 = B2.(3.12)

Proof. Let us write A as in (2.1). Since A has group inverse, by Theorem 3.7, C

is nonsingular. Also, let us write B as

B = Y

[
B1 B2

B3 B4

]
Y ∗, B1 ∈ Cr,r, B4 ∈ Cn−r,n−r.(3.13)

(i) We obtain from (2.1) and (3.13)

B∗B = Y

[
B∗

1B1 +B∗
3B3 B∗

1B2 +B∗
3B4

B∗
2B1 +B∗

4B3 B∗
2B2 +B∗

4B4

]
Y ∗,(3.14)

BB∗ = Y

[
B1B

∗
1 +B2B

∗
2 B1B

∗
3 +B2B

∗
4

B3B
∗
1 +B4B

∗
2 B3B

∗
3 +B4B

∗
4

]
Y ∗,(3.15)
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B∗A = Y

[
B∗

1MC B∗
1MS

B∗
2MC B∗

2MS

]
Y ∗,(3.16)

and

AB∗ = Y

[
MCB∗

1 +MSB∗
2 MCB∗

3 +MSB∗
4

0 0

]
Y ∗.(3.17)

Assume B
∗

≤ A. In particular we have BB∗ = AB∗, which in view of the (3.14),

(3.15), (3.16), and (3.17), leads to B3B
∗
3 + B4B

∗
4 = 0, i.e., B3 = 0 and B4 = 0.

Taking these relations into account, it is seen that B
∗

≤ A implies

B∗
1B1 = B∗

1MC, B∗
1B2 = B∗

1MS, B∗
2B1 = B∗

2MC, B∗
2B2 = B∗

2MS,(3.18)

and

B1B
∗
1 +B2B

∗
2 = MCB∗

1 +MSB∗
2 .(3.19)

The first equality of (3.18) implies that B∗
1MC is Hermitian, thus

M−∗C−1B∗
1 = B1C

−1M−1.(3.20)

From the second and third relations of (3.18) we obtain

B∗
1MS = B∗

1B2 = (B∗
2B1)

∗ = (B∗
2MC)∗ = CM∗B2.

Solving B2 and using (3.20) we get

B2 = M−∗C−1B∗
1MS = B1C

−1M−1MS = B1C
−1S.

Now, we shall simplify each side of (3.19) by using (2.15):

B1B
∗
1 +B2B

∗
2 = B1B

∗
1 +B1C

−1SS∗C−1B∗
1

= B1B
∗
1 +B1(C

−1(Ir − C2)C−1)B∗
1

= B1C
−2B∗

1(3.21)

and

MCB∗
1 +MSB∗

2 = MCB∗
1 +MSS∗C−1B∗

1

= M(C + (Ir − C2)C−1)B∗
1

= MC−1B∗
1 .(3.22)

Hence the necessity is proved.
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Now, we will prove that if B is written as in (3.9) and the conditions (3.10)

are satisfied, then B
∗

≤ A. In other words, we will verify (3.18) and (3.19). By the

computations made in (3.21) and (3.22), condition (3.19) holds. Thus, it only remains

to prove the second, third, and fourth relations of (3.18):

B∗
1B2 = B∗

1B1C
−1S = B∗

1MCC−1S = B∗
1MS,

B∗
2B1 = S∗C−1B∗

1B1 = S∗C−1B∗
1MC = B∗

2MC,

and

B∗
2B2 = S∗C−1B∗

1B1C
−1S = S∗C−1B∗

1MCC−1S = B∗
2MS.

The sufficiency is proved.

(ii) From (2.1) and (3.13) it follows

AB = Y

[
MCB1 +MSB3 MCB2 +MSB4

0 0

]
Y ∗,

BA = Y

[
B1MC B1MS

B3MC B3MS

]
Y ∗,

and

B2 = Y

[
B2

1 +B2B3 B1B2 +B2B4

B3B1 +B4B3 B3B2 +B2
4

]
Y ∗.

Assume that B
#

≤ A, i.e., AB = BA = B2 holds. From AB = BA we get

MCB1+MSB3 = B1MC, MCB2+MSB4 = B1MS, B3MC = 0, B3MS = 0.

The nonsingularity of M and C leads to B3 = 0. Therefore, we obtain

MCB1 = B1MC, MCB2 +MSB4 = B1MS, B3 = 0.(3.23)

Taking into account that B3 = 0, from BA = B2 we get

B1MC = B2
1 , B1MS = B1B2 +B2B4, 0 = B2

4 .(3.24)

Since B = Y

[
B1 B2

0 B4

]
Y ∗, we can apply Theorem 3.8 obtaining that B4 has group

inverse. Since 0 = B2
4 , premultiplying by B#

4 we get B4 = 0. Hence (3.23) and (3.24)

reduce to

B2
1 = MCB1 = B1MC, B1B2 = MCB2 = B1MS, B3 = 0, B4 = 0.(3.25)
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In particular, from (3.25), we get B1

#

≤ MC and B2 = C−1M−1B1MS.

Let us prove that if B is written as in (3.9) and B1, B2 satisfy (3.11), then B
#

≤ A,

or in other words, let us prove AB = BA = B2. If we write A as in (2.1) and B

as in (3.9), we obtain AB = BA = B2 if and only if B1MC = MCB1 = B2
1 and

B1MS = MCB2 = B1B2. In view of the assumptions, it only remains to prove

B1B2 = B1MS:

B1B2 = B1C
−1M−1B1MS = C−1M−1B2

1MS = C−1M−1MCB1MS = B1MS.

(iii) Since B
−

≤ A, the corresponding version of (3.8) leads to AA†BB = B, which

yields B3 = 0 and B4 = 0. From BA†A = B we get B1C
2 + B2S

∗C = B1 and

B1CS +B2S
∗S = B2. Taking into account (2.15), these relations yield

B2S
∗C = B1SS

∗, B2(C ⊕ It)
2 = B1S(C ⊕ It).(3.26)

Since C is nonsingular, the second relation of (3.26) yields B2(C ⊕ It) = B1S. Paren-

thetically, let us remark that postmultiplying B2(C⊕ It) = B1S by S∗, and using the

third relation of (2.15) yields the first relation of (3.26). Therefore, the two relations

of (3.26) are equivalent to the simpler relation

B2(C ⊕ It) = B1S.(3.27)

It further follows that BA†B = B, obtained from the third condition of (3.8), is

equivalent to

(B1C +B2S
∗)M−1B1 = B1, (B1C +B2S

∗)M−1B2 = B2.(3.28)

Now let us simplify B1C +B2S
∗. To do this, we use (2.15) and (3.27). Observe that

the third relation of (2.15) can be equivalently written as S(Ĉ ⊕ It)
−1 = C−1S, and

(3.27) is equivalent to B2 = B1S(C ⊕ It)
−1. Therefore,

B1C +B2S
∗ = B1

[
C + S(C ⊕ It)

−1S∗
]

= B1

(
C + C−1SS∗

)

= B1C
−1(C2 + SS∗)

= B1C
−1.

And thus, (3.28) is equivalent to (3.12).

The equivalent conditions of B
∗

≤ A, B
#

≤ A, and B
−

≤ A given in [3] (without any

assumption on matrix B) are rather difficult to handle. In [3], the authors simplified

the aforementioned conditions under the assumption that A is idempotent or EP. Let
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us observe that conditions (3.10), (3.11), and (3.12) are much easier to manage, and

let us remark that these conditions were obtained under the assumption that A has

group inverse, a condition on A much more general that being idempotent or EP.
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