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NULLITIES OF CYCLE-SPLICED BIPARTITE GRAPHS∗

SARULA CHANG† , JIANXI LI†‡ , AND YIRONG ZHENG§

Abstract. For a simple graph G, let η(G) and c(G) be the nullity and the cyclomatic number of G, respectively. A cycle-

spliced bipartite graph is a connected graph in which every block is an even cycle. It was shown by Wong et al. (2022) that for

every cycle-spliced bipartite graph G, 0 ≤ η(G) ≤ c(G)+1. Moreover, the extremal graphs with η(G) = c(G)+1 and η(G) = 0,

respectively, have been characterized. In this paper, we prove that there is no cycle-spliced bipartite graphs G of any order

with nullity η(G) = c(G). Furthermore, we also provide a structural characterization on cycle-spliced bipartite graphs G with

nullity η(G) = c(G) − 1.
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1. Introduction. All graphs considered in this paper are finite, undirected, and simple. Let G be a

graph with n(G) vertices and e(G) edges. Let θ(G) be the number of connected components of G. The

cyclomatic number of G is c(G) = e(G)− n(G) + θ(G). In particular, for a connected graph G, if c(G) = 0,

c(G) = 1, or c(G) = 2, then G is a tree, a unicyclic graph or a bicyclic graph, respectively. A pendant vertex

(i.e., a vertex of degree 1) is also called a leaf. A graph without leaves is said to be leaf-free. A block in

a graph is a maximal connected subgraph with no cut vertex. A block graph is a graph in which all blocks

are cliques (complete subgraphs). A tree can be viewed as a graph in which every block is K2, thus it is a

special block graph. We call a graph G to be a cycle-spliced graph if G is connected and every block in G is

a cycle. A cycle-spliced bipartite graph is a cycle-spliced graph without odd cycle. An induced subgraph H

of a graph G is called a pendant subgraph of G if H has at least two vertices and there is exactly one vertex

in H, referred to as the root of H, that has at least one neighbor not in H. If, in addition, H is an induced

cycle of G, then we refer to H as a pendant cycle of G. We call a pendant subgraph H of G a maximal

pendant subgraph of G if there does not exist a pendant subgraph H ′ with V (H ′) % V (H) (or, equivalently,

E(H ′) % E(H)).

The adjacency matrix A(G) = (aij) of G with vertex set V (G) = {v1, . . . , vn} is defined to be an n× n
symmetric matrix such that aij = 1 if vertices vi and vj are adjacent; and aij = 0, otherwise. The rank of

a graph G, denoted by r(G), is the rank of A(G). The multiplicity of the eigenvalue zero of A(G) is called

the nullity of G and is denoted by η(G). It is obvious that η(G) = n(G)− r(G). The chemical importance

of the nullity of graphs lies in the fact, that within the Hückel molecular orbital model, if η(G) > 0 for

the molecular graph G, then the corresponding chemical compound is highly reactive and unstable, or
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nonexistent (see [1,6]). A graph is said to be singular (resp. nonsingular) if its adjacency matrix is singular

(resp. nonsingular). In 1957, Collatz and Sinogowitz [3] first posed the problem of characterizing all singular

graphs (η(G) 6= 0). Motivated by this problem, there have been lots of research work on bounding the

nullities (or ranks) of graphs with given order in terms of various graph parameters. Ma et al. [9] proved

that η(G) ≤ 2c(G) +p(G)− 1 unless G is a cycle of order a multiple of 4, where p(G) is the number of leaves

in G. Chang et al. [4] characterized the leaf-free graphs with nullity 2c(G)−1. Wang [11] and Chang et al. [5]

characterized all graphs with nullity 2c(G)+p(G)−1, respectively. Recently, Wong et al. [12] considered the

singularity and the nullity of cycle-spliced bipartite graphs and proved that for every cycle-spliced bipartite

graph G, 0 ≤ η(G) ≤ c(G) + 1 and characterized all cycle-spliced bipartite graphs with η(G) = c(G) + 1 and

η(G) = 0, respectively. Their result can be read as follows.

Theorem 1.1 ([12, Theorem 1.1]). Let G be a cycle-spliced bipartite graph with c(G) cycles. Then

(i) 0 ≤ η(G) ≤ c(G) + 1;

(ii) η(G) = c(G) + 1 if and only if all cycles of G are with a multiple of 4;

(iii) G is nonsingular (or η(G) = 0) if and only if G has a perfect matching, and G has a maximum matching

M such that M
⋂
E(C) is not a perfect matching of C for every 0-type cycle C in G, where 0-type

cycle is a cycle whose order is equal to 0(mod 4).

In this paper, we further consider the nullity of cycle-spliced bipartite graphs and prove that there is

no cycle-spliced bipartite graphs G of any order with nullity η(G) = c(G). Moreover, we also explore some

structural characterization for cycle-spliced bipartite graphs G with nullity η(G) = c(G) − 1. Our main

results can be read as follows, respectively.

Theorem 1.2. For any cycle-spliced bipartite graph G of order n with c(G) cycles, η(G) 6= c(G).

Theorem 1.3. Let G be a cycle-spliced bipartite graph with c(G) ≥ 2 and all pendant cycles have length

congruent to 2(mod 4). Then η(G) = c(G)− 1 if and only if the distance between any two cut vertices of G

is even.

Theorem 1.4. For any cycle-spliced bipartite graph G with c(G) cycles, η(G) = c(G)− 1 if and only if

G is a graph obtained from a cycle-spliced bipartite graph H with η(H) = c(H) − 1 in which every pendant

cycle (if any) has length congruent to 2(mod 4) by attaching c(G)− c(H) cycles having length divisible by 4

on arbitrary vertex of H.

The rest of this paper is organized as follows. In Section 2, we give some notations and preliminary

lemmas which will be used in our proofs. In Section 3, the property on cycle-spliced bipartite graph with

nullity η(G) = c(G)+1 is given and the proof of Theorem 1.2 is presented. In Section 4, a number of auxiliary

results involving properties on cycle-spliced bipartite graph with nullity η(G) = c(G) − 1 are presented. In

Section 5, we give the proofs for Theorems 1.3 and 1.4.

2. Preliminaries. For v ∈ V (G), let dG(v) and NG(v) be the degree and the set of neighbors of v,

respectively. Clearly, dG(v) = |NG(v)|. If H is an induced subgraph of G, we use NH(v) to denote the set of

neighbors of v in H. If S ⊆ V (G), we denote by G−S the (induced) subgraph obtained from G by deleting

vertices in S (together with the incident edges). If S = {u} or {u, v}, then G − S is abbreviated to G − u
or G− u− v. If H is an induced subgraph of G with V (H)

⋂
S = ∅, we use H + S to denote the subgraph

of G induced by the vertex set V (H)
⋃
S.
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The following is a frequently used result in this topic:

Lemma 2.1 ([8]). For any vertex v ∈ V (G), η(G)− 1 ≤ η(G− v) ≤ η(G) + 1.

Lemma 2.2 ([6, 10]). If v is a pendant vertex of a graph G and u is its unique neighbor, then η(G) =

η(G− u− v).

Following [10], if v is a pendant vertex of G and u is its unique neighbor, we call the operation of

obtaining G− u− v from G a pendant K2 deletion. Lemma 2.2 says that upon the application of a pendant

K2 deletion, the nullity of a graph is unchanged.

Lemma 2.3 ([2]). Let Pn and Cn be the cycle and path of order n, respectively. Then

η(Pn) =

{
1 if n is odd

0 if n is even
, η(Cn) =

{
2 if n is a multiple of 4

0 otherwise
.

Recall that if H is a pendant subgraph of G with root u, then u is a cut vertex of G. Thus [7], Theorem

2.3 and Theorem 2.4] can be reformulated, respectively, as follows:

Lemma 2.4. Let G1 be a pendant subgraph of G with root u.

(i) If η(G1 − u) = η(G1) + 1, then η(G) = η(G1) + η(G−G1).

(ii) If η(G1 − u) = η(G1)− 1, then η(G) = η(G1) + η(G−G1 + u)− 1.

Corollary 2.5. Let C be a pendant even cycle of G with root u.

(i) If C has length divisible by 4, then η(G) = η(G− C + u) + 1.

(ii) If C has length congruent to 2(mod 4), then η(G) = η(G− C).

3. A Proof of Theorem 1.2. For u, v ∈ V (G), the distance between u and v, denoted by dG(u, v),

is the shortest length of paths between u and v. The notation dG(v, S) to stand for the distance between a

vertex v ∈ V (G) and a subset S ⊆ V (G), i.e., the length of the shortest path from v to a vertex of S. In

order to prove Theorem 1.2, the following property on a cycle-spliced bipartite graph with η(G) = c(G) + 1

is needed.

Lemma 3.1. Let G be a cycle-spliced bipartite graph with c(G) cycles. If η(G) = c(G)+1, then η(G−x) =

η(G)− 1 for any x ∈ V (G).

Proof: We proceed by induction on c(G) to prove η(G− x) = η(G)− 1 for any x ∈ V (G). If c(G) = 1,

since η(G) = c(G) + 1 = 2, then G is a cycle having length divisible by 4. It follows from Lemma 2.3 that

η(G − x) = η(G) − 1 for any x ∈ V (G), as required. Assume the assertion holds for cycle-spliced bipartite

graphs with m cycles and let G have m+ 1 cycles. Theorem 1.1(ii) implies that all cycles in G have length a

multiple of 4. Let C be a pendant cycle of G with root u and H = G−C+u. Since H is a subgraph of G, H

is a cycle-spliced bipartite graph with consists of cycles having length divisible by 4. By Theorem 1.1(ii), we

have η(H) = c(H)+1. Note that c(H) = m. Then by the induction hypothesis, we have η(H−v) = η(H)−1

for any v ∈ V (H). Let x be an arbitrary vertex in G. We now consider the following two cases according to

the position of x in G.

Case 1. x does not lie on C.

In this case, C is also a pendant cycle of G− x with root u. Let H − x = (G− x)−C + u. Then Corollary

2.5(i) implies that η(G− x) = η(H − x) + 1. Hence, η(G− x) = (η(H)− 1) + 1 = η(G)− 1, as desired.
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Case 2. x lies on C.

If dG(x, u) is even (possibly zero), applying pendant K2 deletions on G − x, we have η(G − x) = η(H −
u) + 1 = (η(H) − 1) + 1 = η(G) − 1; if dG(x, u) is odd, applying pendant K2 deletions on G − x, we have

η(G− x) = η(H) = η(G)− 1, which completes the proof. �

Proof of Theorem 1.2: We proceed by induction on c(G) to prove η(G) 6= c(G). If c(G) = 1, then G

is a cycle. Clearly, G is an even cycle since G is bipartite. It follows from Lemma 2.3 that η(G) 6= c(G), as

required. Assume the assertion holds for cycle-spliced bipartite graphs with m cycles and let G have m+ 1

cycles. Let C be a pendant cycle of G with root u and H = G − C + u. Note that H is a cycle-spliced

bipartite graph and c(H) = m. Then by the induction hypothesis, we have η(H) 6= c(H). Thus Theorem

1.1(i) implies that η(H) = c(H) + 1 or η(H) ≤ c(H)− 1. We now consider the following two cases.

Case 1. η(H) = c(H) + 1.

Recall that C is an even cycle of G. If C has length a multiple of 4, by Corollary 2.5(i), then η(G) =

η(H) + 1 = (c(H) + 1) + 1 = c(G) + 1. If C has length congruent to 2(mod 4), by Corollary 2.5(ii), then

η(G) = η(G − C) = η(H − u). Note that H is a cycle-spliced bipartite graphs with η(H) = c(H) + 1, we

know from Lemma 3.1 that η(H − u) = η(H)− 1. Hence, η(G) = η(H)− 1 = (c(H) + 1)− 1 = c(G)− 1.

Case 2. η(H) ≤ c(H)− 1.

Let x be a vertex in C which adjacent with u. By Lemma 2.1, we have η(G) ≤ η(G−x)+1. Applying pendant

K2 deletions on G− x, we have η(G− x) = η(H). Hence, η(G) ≤ η(H) + 1 ≤ (c(H)− 1) + 1 = c(G)− 1.

By the above arguments, we see that η(G) 6= c(G), which completes the proof of Theorem 1.2. �

4. Properties on cycle-spliced bipartite graphs G with η(G) = c(G) − 1. In this section, we

present some properties on cycle-spliced bipartite graphs G with η(G) = c(G)− 1.

Lemma 4.1. Let G be a graph obtained from two cycle-spliced bipartite graphs G1 and G2 by identifying

the unique common vertex u. If η(G1) ≤ c(G1)− k and η(G2) ≤ c(G2)− 1, then η(G) ≤ c(G)− k.

Proof: Firstly, Lemma 2.1 implies that η(G1) − 1 ≤ η(G1 − u) ≤ η(G1) + 1. We now consider the

following three cases.

Case 1. η(G1 − u) = η(G1) + 1.

Clearly, G1 is a pendant subgraph of G with root u. By Lemma 2.4(i), we have

η(G) = η(G1) + η(G−G1)

= η(G1) + η(G2 − u)

≤ η(G1) + (η(G2) + 1)

≤ (c(G1)− k) + (c(G2)− 1) + 1 = c(G)− k.

Case 2. η(G1 − u) = η(G1).

Clearly, G2 is also a pendant subgraph of G with root u. If η(G2 − u) = η(G2) + 1, then by Lemma 2.4(i),

we have

η(G) = η(G2) + η(G−G2)

= η(G2) + η(G1 − u)

= η(G2) + η(G1)

≤ (c(G2)− 1) + (c(G1)− k) < c(G)− k;
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if η(G2 − u) ≤ η(G2), then Lemma 2.1 implies that

η(G) ≤ η(G− u) + 1

= η(G1 − u) + η(G2 − u) + 1

≤ η(G1) + η(G2) + 1

≤ (c(G1)− k) + (c(G2)− 1) + 1 = c(G)− k.

Case 3. η(G1 − u) = η(G1)− 1.

Note that G1 is a pendant subgraph of G with root u. Then Lemma 2.4(ii) implies that

η(G) = η(G1) + η(G2)− 1

≤ (c(G1)− k) + (c(G2)− 1)− 1 < c(G)− k,

as desired. This completes the proof. �

In particular, for k = 2 in Lemma 4.1, we immediately obtain the following corollary.

Corollary 4.2. Let G be a graph obtained from two cycle-spliced bipartite graphs G1 and G2 by iden-

tifying the unique common vertex u. If η(G1) ≤ c(G1)− 2 and η(G2) ≤ c(G2)− 1, then η(G) ≤ c(G)− 2.

Lemma 4.3. Let G be a graph obtained from two cycle-spliced bipartite graphs G1 and G2 by identifying

the unique common vertex u. If η(G) = c(G)− 1, then we have the following two items.

(i) If η(G1) = c(G1) + 1, then η(G2) = c(G2)− 1;

(ii) if η(Gi) ≤ c(Gi)− 1 for i = 1, 2, then η(Gi) = c(Gi)− 1 for i = 1, 2.

Proof: (i) Firstly, Lemma 3.1 implies that η(G1 − u) = η(G1)− 1 since η(G1) = c(G1) + 1. Moreover,

by Lemma 2.4(ii), we have

η(G) = η(G1) + η(G2)− 1 and c(G)− 1 = c(G1) + 1 + η(G2)− 1.

It follows that η(G2) = c(G2)− 1 since η(G) = c(G)− 1.

(ii) Since η(G) = c(G)−1 and η(Gi) ≤ c(Gi)−1 for i = 1, 2, by Corollary 4.2, we have η(Gi) = c(Gi)−1

for i = 1, 2. �

Lemma 4.4. Let G be a cycle-spliced bipartite graph with c(G) cycles. If η(G) = c(G)−1, then η(G−x) 6=
η(G) for any x ∈ V (G).

Proof: We proceed by induction on c(G) to prove η(G−x) 6= η(G) for any x ∈ V (G). If c(G) = 1, then

G is a cycle of length congruent to 2(mod 4) since η(G) = c(G) − 1 = 0. It follows from Lemma 2.3 that

η(G − x) = η(G) + 1 6= η(G) for any x ∈ V (G), as required. Assume the assertion holds for cycle-spliced

bipartite graphs H with η(H) = c(H) − 1 which have less cycles than G. Now we assume that c(G) ≥ 2.

Hence, G has at least one pendant cycle.

Case 1. There is a pendant cycle C of length a multiple of 4.

Let u be the root of pendant cycle C and H = G−C+u. Then Corollary 2.5(i) implies that η(G) = η(H)+1.

Moreover, Lemma 4.3(i) implies that H is a cycle-spliced bipartite graph with η(H) = c(H)− 1. As H has

one cycle less than that of G, the induction hypothesis implies that η(H − v) 6= η(H) for any v ∈ V (H). Let

x be an arbitrary vertex in G. We consider the following two subcases according to the position of x in G.
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Subcase 1. x does not lie on C.

Similar with the proof of Case 1 in Lemma 3.1, we have η(G− x) = η(H − x) + 1 6= η(H) + 1 = η(G).

Subcase 2. x lies on C.

If dG(x, u) is even (possibly zero), applying pendant K2 deletions on G−x, we have η(G−x) = η(H−u)+1 6=
η(H) + 1 = η(G); if dG(x, u) is odd, applying pendant K2 deletions on G− x, we have η(G− x) = η(H) =

η(G)− 1 6= η(G).

Case 2. All pendant cycles have length congruent to 2(mod 4).

Let C be a pendant cycle of G with root u and H = G−C + u. Note that C is a cycle of length congruent

to 2(mod 4), then we have η(C − u) = η(C) + 1. By Corollary 2.5(ii), we have η(G) = η(H − u). On

the other hand, since all pendant cycles of G have length congruent to 2(mod 4), H contains at least one

cycle of length congruent to 2(mod 4). By Theorem 1.1(i), (ii) and Theorem 1.2, we have η(H) ≤ c(H)− 1.

Moreover, by Lemma 4.3(ii), we have η(H) = c(H)− 1 since η(C) = c(C)− 1 and η(G) = c(G)− 1. As H

has one cycle less than that of G, the induction hypothesis implies that η(H − v) 6= η(H) for any v ∈ V (H).

Let x be an arbitrary vertex in G. We consider the following two subcases according to the position of x

in G.

Subcase 1. x lies on one pendant cycle, say Ci.

Let ui be the root of pendant cycle Ci. If dG(x, ui) is even (possibly zero), applying pendant K2 deletions

on G− x, we have η(G− x) = η(H − ui) + 1 = η(G) + 1 6= η(G); if dG(x, ui) is odd, applying pendant K2

deletions on G− x, we have η(G− x) = η(H) 6= η(H − ui) = η(G).

Subcase 2. x does not lie on any pendant cycle.

Suppose x lies on cycle C ′. We can assume that all cut vertices in C ′ are u1, . . . , uk, where k ≥ 2 since C ′

is not a pendant cycle. Let Gi be the maximal pendant subgraph of G with root ui (i = 1, . . . , k). Then G

can be seen as a graph obtained by a cycle C ′ with Gi attached at ui (i = 1, . . . , k), respectively (see Fig.

1). Let Hi = η(G−Gi + ui).

Fig. 1. Graph G with a cycle C′ which is not a pendant cycle.

Since all pendant cycles of G have length congruent to 2(mod 4), Gi and Hi both contain at least one

cycle of length congruent to 2(mod 4). By Theorem 1.1(i), (ii) and Theorem 1.2, we have η(Gi) ≤ c(Gi)− 1

and η(Hi) ≤ c(Hi)− 1. Moreover, by Lemma 4.3(ii), we have η(Gi) = c(Gi)− 1 and η(Hi) = c(Hi)− 1. As

Gi has less cycles than that of G, the induction hypothesis implies that η(Gi − ui) 6= η(Gi). We contend
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that η(Gi − ui) = η(Gi) + 1. Otherwise, there is a graph Gi such that η(Gi − ui) = η(Gi)− 1. By Lemma

2.4(ii), we have η(G) = η(Gi)+η(Hi)−1 = (c(Gi)−1)+(c(Hi)−1)−1 = c(G)−3, which is a contradiction.

Then Lemma 2.4(i) implies that

η(G) = η(G1) + · · ·+ η(Gk) + η(G−G1 − · · · −Gk)

=

k∑
i=1

η(Gi) + η(C ′ − u1 − · · · − uk)

=

k∑
i=1

(c(Gi)− 1) + η(C ′ − u1 − · · · − uk)

= c(G)− 1− k + η(C ′ − u1 − · · · − uk).

It follows that η(C ′ − u1 − · · · − uk) = k since η(G) = c(G) − 1. It means that dG(ui, uj) is even for any

i, j = 1, . . . , k and η(G) =
∑k

i=1 η(Gi) + k.

If x = ui, then we have η(G − x) = η(Gi − ui) + η(Hi − ui). In this case, Gj (j 6= i) is also a pendant

subgraph of Hi − ui with root uj and η(Gj − uj) = η(Gj) + 1. Applying Lemma 2.4(i), we have

η(G− x) = η(Gi − ui) + η(Hi − ui)

= (η(Gi) + 1) +
∑
j 6=i

η(Gj) + η(C ′ − u1 − · · · − uk)

=

k∑
i=1

η(Gi) + 1 + k = η(G) + 1 6= η(G).

Similarly, if x 6= ui, then we have

η(G− x) =

k∑
i=1

η(Gi) + η((C ′ − x)− u1 − · · · − uk)

6=
k∑

i=1

η(Gi) + k = η(G).

The inequality holds because η(C ′ − x− u1 − · · · − uk) 6= k since dG(ui, uj) is even. �

Lemma 4.5. Let G be a graph obtained from two cycle-spliced bipartite graphs G1 and G2 by identifying

the unique common vertex u. Then η(G) = c(G)−1 if and only if one of the following conditions is satisfied:

(i) There is one of Gi, say G1, such that η(G1) = c(G1) + 1 and η(G2) = c(G2)− 1;

(ii) η(Gi) = c(Gi)− 1 and η(Gi) = η(Gi − u)− 1 for i = 1, 2.

Proof: “Only if” part: If there is a graph, say G1, such that η(G1) = c(G1) + 1, then Lemma 4.3(i)

implies that η(G2) = c(G2)− 1, and (i) holds.

If η(Gi) 6= c(Gi) + 1 for i = 1, 2, then Theorem 1.1(i) and Theorem 1.2 imply that η(Gi) ≤ c(Gi) − 1.

Moreover, by Lemma 4.3(ii), we have η(Gi) = c(Gi)− 1 for i = 1, 2. From Lemma 4.4, we have η(Gi − u) 6=
η(Gi) since η(Gi) = c(Gi) − 1. We conclude that η(Gi − u) = η(Gi) + 1 for i = 1, 2. Otherwise, there is a

graph, say G1, such that η(G1−u) = η(G1)−1. Then Lemma 2.4(ii) implies that η(G) = η(G1)+η(G2)−1 =

(c(G1)− 1) + (c(G2)− 1)− 1 = c(G)− 3, which is a contradiction. Then (ii) holds.
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“If” part:(i) By Lemma 3.1, η(G1 − u) = η(G1) − 1 since η(G1) = c(G1) + 1. Therefore, by Lemma

2.4(ii), we have η(G) = η(G1) + η(G2)− 1 = (c(G1) + 1) + (c(G2)− 1) = c(G)− 1.

(ii) From Lemma 2.4(i), we have η(G) = η(G1)+η(G2−u) = η(G1)+η(G2)+1 = (c(G1)−1)+(c(G2)−
1) + 1 = c(G)− 1. �

Lemma 4.6. Let G be a cycle-spliced bipartite graph with c(G) ≥ 2 and all pendant cycles have length

congruent to 2(mod 4). If η(G) = c(G)− 1, then

(i) η(G− u) = η(G) + 1 for any cut vertex u of G;

(ii) dG(u, v) is even for any two cut vertices u and v in G;

(iii) η(G− v) = η(G) + 1 for v ∈ V (G) such that the distance between v and any cut vertex is even;

(iv) η(G− w) = η(G)− 1 for w ∈ V (G) such that the distance between w and any cut vertex is odd.

Proof: (i) Since c(G) ≥ 2, G has at least one cut vertex. Let u be an arbitrary cut vertex of G. Then

G can be seen as a graph obtained from two cycle-spliced bipartite graphs G1 and G2 by identifying the

unique common vertex u. Since all pendant cycles of G have length congruent to 2(mod 4), Gi (i = 1, 2)

contains at least one cycle of length congruent to 2(mod 4). By Theorem 1.1(i), (ii) and Theorem 1.2, we

have η(Gi) ≤ c(Gi)−1. Moreover, by Lemma 4.5(ii), we have η(Gi) = c(Gi)−1 and η(Gi−u) = η(Gi)+1 for

i = 1, 2 since η(G) = c(G)−1. In view of Lemma 2.4(i), we have η(G) = η(G1)+η(G−G1) = η(G1)+η(G2−
u) = η(G1)+η(G2)+1. Thus, we have η(G−u) = η(G1−u)+η(G2−u) = η(G1)+1+η(G2)+1 = η(G)+1.

(ii) There is nothing to prove when G has only one cut vertex. Suppose G has at least two cut vertices.

Let u and v be two arbitrary cut vertices of G. In order to prove that dG(u, v) is even, we only consider u

and v lie on same cycle, say C ′. It means that C ′ is not a pendant cycle. We can assume that all cut vertices

in C ′ are u1, . . . , uk (k ≥ 2). Clearly, u, v ∈ {u1, . . . , uk}. Let Gi be the maximal pendant subgraph of G

with root ui (i = 1, . . . , k). Then G can be seen as a graph obtained by a cycle C ′ with Gi attached at ui
(i = 1, . . . , k), respectively. By the argument given in the proof of Case 2 of Lemma 4.4, we have dG(ui, uj)

(i, j = 1, . . . , k) is even. It means that dG(u, v) is even.

(iii) Let v be a vertex such that the distance between v and any cut vertex is even. Without loss of

generality, we assume that v and a cut vertex u lie on same cycle C.

Case 1. C is a pendant cycle of G.

Clearly, u is the unique cut vertex in C. η(C − u) = η(C) + 1 since C has length congruent to 2(mod 4).

It follows from Corollary 2.5(ii), η(G) = η(C) + η(G − C) = η(G − C). Applying pendant K2 deletions on

G− v, we have η(G− v) = 1 + η(G− C) = η(G) + 1.

Case 2. C is not a pendant cycle of G.

In this case, there are at least two cut vertices in C. We can assume that all cut vertices in C are u1, . . . , uk
(k ≥ 2). Let Gi be the maximal pendant subgraph of G with root ui (i = 1, . . . , k). Then G can be seen as

a graph obtained by a cycle C with Gi attached at ui (i = 1, . . . , k), respectively. By the argument given in

the proof of Case 2 of Lemma 4.4, we have η(G) =
∑k

i=1 η(Gi) + k. Since the distance between any two cut

vertices is even, applying pendant K2 deletions on G−v, we have η(G−v) = 1+
∑k

i=1 η(Gi)+k = η(G)+1.

(iv) Let w be a vertex such that the distance between w and any cut vertex is odd. Then Lemma 4.4

implies that η(G − w) 6= η(G). To establish (iv), assume to the contrary that η(G − w) = η(G) + 1. Let

G′ be a graph obtained from G with a cycle C of length congruent to 2(mod 4) attached at w. By Lemma

4.5(ii), we have η(G′) = c(G′) − 1. Thus, G′ is a cycle-spliced bipartite graph with η(G′) = c(G′) − 1 and
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all pendant cycles have length congruent to 2(mod 4). Note that w and u are cut vertices of G′. Then

Lemma 4.6(ii) implies that dG′(w, u) is even. Also dG(w, u) is even, which contradicts the assumption. Then

η(G− w) = η(G)− 1, as desired. �

Remark 4.7. The condition that all pendant cycles of G have length congruent to 2(mod 4) in

Lemma 4.6 is necessary. See Fig. 2, where the graph G is obtained by attaching C4 and C6 at vertices u1
and u2 of C4, respectively. It is easy to see that η(G) = c(G)− 1. But for u1, we have η(G− u1) = η(G)− 1

and the distance between the two cut vertices (u1 and u2) is odd.

Fig. 2. An example of a cycle-spliced bipartite graph with η(G) = c(G) − 1.

Lemma 4.8. Let G be a cycle-spliced bipartite graph in which every nonpendant cycle has exactly two

cut vertices (see Fig. 3). If exactly one pendant cycle has length congruent to 2(mod 4), the other cycles all

have length a multiple of 4 and the distance between any two cut vertices of G is even, then

(i) η(G) = c(G)− 1;

(ii) η(G− u) = η(G) + 1 for any cut vertex u of G;

(iii) η(G− v) = η(G) + 1 for v ∈ V (G) such that the distance between v and any cut vertex of G is even.

Fig. 3. A cycle-spliced bipartite graph G in which every nonpendant cycle has exactly two cut vertices.

Proof: (i) Let C be the pendant cycle of G with length congruent to 2(mod 4). Clearly, η(C) = 0 =

c(C)− 1. Let u be the root of C and H = G−C + u. Then G can be seen as a graph obtained from C and

a cycle-spliced bipartite graph H by identifying an unique common vertex u. Theorem 1.1(ii) implies that

η(H) = c(H) + 1 since all cycles in H have length a multiple of 4. Then by Lemma 4.5(i), we immediately

have η(G) = c(G)− 1.

(ii) We proceed by induction on c(G) to prove η(G − u) = η(G) + 1 for any cut vertex u of G. If

c(G) = 2, then G is a graph obtained from two cycles C1 and C2 by identifying an unique common vertex u.

Without loss of generality, we assume that C1 has length congruent to 2(mod 4), C2 has length a multiple
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of 4. Clearly, we have η(G − u) = η(G) + 1. Assume the assertion holds for cycle-spliced bipartite graphs

satisfied above assumptions with less cycles than G. Now we assume that c(G) ≥ 3. Let u be an arbitrary

cut vertex of G. Then G can be seen as a graph obtained from two cycle-spliced bipartite graphs G1 and

G2 by identifying the unique common vertex u. Recall that G has exactly one pendant cycle with length

congruent to 2(mod 4), the other cycles all have length a multiple of 4. Without loss of generality, we

can assume that G1 contains the pendant cycle of length congruent to 2(mod 4). Note that G1 has less

cycles than that of G and the distance between any two cut vertices of G1 is even. Then by the induction

hypothesis, we have η(G1 − x) = η(G1) + 1 for any cut vertex x in G1. Let x′ be the cut vertex of G1

which lies on same cycle with u. Then dG1(x′, u) is even since x′ and u are cut vertices of G. Applying

pendant K2 deletions on G1 − u, we have η(G1 − u) = η(G1 − x′) = η(G1) + 1. Moreover, Theorem 1.1(ii)

implies that η(G2) = c(G2) + 1 since every cycle in G2 has length a multiple of 4. By Lemma 3.1, we

have η(G2 − u) = η(G2) − 1. Then Lemma 2.4(ii) implies that η(G) = η(G1) + η(G2) − 1. Thus, we have

η(G− u) = η(G1 − u) + η(G2 − u) = η(G1) + 1 + η(G2)− 1 = η(G) + 1.

(iii) Let v be a vertex such that the distance between v and any cut vertex is even. Without loss of

generality, we assume that v and the cut vertex, say u, lie on same cycle C.

Case 1. C is a pendant cycle of G.

Since C is even cycle, applying pendant K2 deletions on G− v, we have η(G− v) = η(G− u) = η(G) + 1.

Case 2. C is not a pendant cycle of G.

In this case, there is exactly two cut vertices in C, say u1 and u2. Without loss of generality, we assume

that u1 = u. Let Gi be the maximal pendant subgraph of G with root ui (i = 1, 2). Then G can be seen as

a graph obtained by a cycle C with Gi attached at ui (i = 1, 2), respectively. Recall that G has exactly one

pendant cycle with length congruent to 2(mod 4), the other cycles all have length a multiple of 4. Without

loss of generality, we can assume that G1 contains the pendant cycle of length congruent to 2(mod 4). Note

that G1 is a cycle-spliced bipartite graph and the distance between any two cut vertices of G1 is even. Then

Lemma 4.8(ii) implies that η(G1 − x) = η(G1) + 1 for any cut vertex x in G1. Let x′ be the cut vertex

of G1 which lies on same cycle with u1. Then dG1(x′, u1) is even since x′ and u1 are cut vertices of G.

Applying pendant K2 deletions on G1 − u1, we have η(G1 − u1) = η(G1 − x′) = η(G1) + 1. Moreover,

Theorem 1.1(ii) implies that η(G2) = c(G2) + 1 since all cycles in G2 are length a multiple of 4. By Lemma

3.1, we have η(G2 − u2) = η(G2) − 1. Then Lemma 2.4(ii) implies that η(G) = η(G1 + C) + η(G2) − 1 =

η(G1) + 1 + η(G2)− 1. Since dG(v, u) and dG(u, u2) are even, applying pendant K2 deletions on G− v, we

have η(G− v) = 1 + η(G1 − u1) + η(G2 − u2) = 1 + (η(G1) + 1) + (η(G2)− 1) = η(G) + 1. �

5. Proofs of Theorems 1.3 and 1.4. We now give the proofs of Theorems 1.3 and 1.4, respectively.

Proof of Theorem 1.3: “If” part: We proceed by induction on c(G) to prove η(G) = c(G) − 1. If

c(G) = 2, then G is a graph obtained from two cycles C1 and C2 by identifying an unique common vertex

u. And C1 and C2 both have length congruent to 2(mod 4) since they are pendant cycles. It is easy to

calculate that η(G) = c(G) − 1. Assume the assertion holds for cycle-spliced bipartite graphs satisfying

above assumptions with less cycles than G. Now we assume that c(G) ≥ 3. Let C be an arbitrary pendant

cycle of G with root u. Then G − C + u has at most one pendant cycle with length a multiple of 4. If all

pendant cycles of G − C + u have length congruent to 2(mod 4), then let G0 = C and H = G − G0 + u.

Otherwise, G − C + u has exactly one pendant cycle with length a multiple of 4, say C1 with root u1. Let

G1 = C + C1, then G −G1 + u1 has at most one pendant cycle with length a multiple of 4. If all pendant

cycles of G − G1 + u1 have length congruent to 2(mod 4) or G − G1 + u1 is a cycle with length congruent
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to 2(mod 4), then let H = G − G1 + u. With similar way, we must obtain Gk = C + C1 + · · · + Ck and

H = G−Gk +uk. It is easy to see that Gk is a cycle-spliced bipartite graph in which each non-pendant cycle

of Gk has exactly two cut vertices, only one pendant cycle of Gk, say C, has length congruent to 2(mod 4) and

the other cycles of Gk all have length a multiple of 4. Moreover, the distance between any two cut vertices

of Gk is even since Gk is induced subgraph of G. Then Lemma 4.8(i) implies that η(Gk) = c(Gk) − 1.

Since uk is a vertex such that the distance between uk and the cut vertex uk−1 of Gk is even, by Lemma

4.8(iii), we have η(Gk − uk) = η(Gk) + 1. If c(H) ≥ 2, then H = G − Gk + uk is a cycle-spliced bipartite

graph with c(H) = c(G) − (k + 1) < c(G) and all pendant cycles of H have length congruent to 2(mod 4).

The distance between any two cut vertices of H is even since H is induced subgraph of G. The induction

hypothesis implies that η(H) = c(H) − 1. Since uk is a vertex such that the distance between uk and any

cut vertex of H is even, by Lemma 4.6(iii), we have η(H−uk) = η(H) + 1. Then Lemma 4.5(ii) implies that

η(G) = c(G)− 1. If c(H) = 1, then H = G−Gk + uk is a cycle with length congruent to 2(mod 4). Clearly,

η(H) = c(H)− 1 and η(H − uk) = η(H) + 1. By Lemma 4.5(ii), we have η(G) = c(G)− 1.

“Only if” part: Follows from Lemma 4.6(ii). �

Proof of Theorem 1.4: “If” part: When c(G) = 1, G = H is a cycle with length congruent to

2(mod 4) with attaching no cycles with length a multiple of 4 on arbitrary vertex. Clearly, η(G) = c(G)− 1.

When c(G) ≥ 2, if all pendant cycles of G have length congruent to 2(mod 4), then G = H is a graph

obtained from H with attaching no cycles with length a multiple of 4 on arbitrary vertex. Clearly, η(G) =

η(H) = c(H) − 1 = c(G) − 1. Otherwise, G must contain a pendant cycle with length a multiple 4.

By contracting all pendant cycles with length a multiple of 4 into a vertex, finally we have the graph

H which is a cycle with length congruent to 2(mod 4) or a graph with all pendant cycles have length

congruent to 2(mod 4). Then by Corollary 2.5(i), we have η(G) = η(C) + (c(G) − 1) = c(G) − 1 or

η(G) = η(H) + (c(G)− c(H)) = (c(H)− 1) + (c(G)− c(H)) = c(G)− 1.

“Only if” part: When c(G) = 1, G is a cycle with length congruent to 2(mod 4) since η(G) = c(G)− 1.

Then G is a cycle with length congruent to 2(mod 4) with attaching no cycles with length a multiple of

4 on arbitrary vertex. When c(G) ≥ 2, if all pendant cycles of G have length congruent to 2(mod 4),

then G is a graph obtained from G = H with attaching no cycles with length a multiple of 4 on arbitrary

vertex. Otherwise, G must contain a pendant cycle with length a multiple 4. By contracting all pendant

cycles with length a multiple of 4 into a vertex, finally we have the graph H which is a cycle with length

congruent to 2(mod 4) or a graph with all pendant cycles have length congruent to 2(mod 4). Then by

Lemma 4.5(i), we have η(H) = c(H)− 1. Thus, G is a graph obtained from a cycle-spliced bipartite graph

H with η(H) = c(H) − 1 and all pendant cycles have length congruent to 2(mod 4) or a cycle with length

congruent to 2(mod 4) by attaching c(G)− c(H) cycles with length a multiple of 4 on arbitrary vertex. �

Concluding remarks: In this paper, we only considered the nullity of a cycle-spliced graph whose

cycles are all even. In [12], the case when their cycles are all odd was considered and the problem of

identifying the nonsingular cycle-spliced graphs was only partly settled. The nullity of a cycle-spliced graph

whose cycles are of any length demands further study.
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