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SYMPLECTIC EIGENVALUES OF POSITIVE-SEMIDEFINITE MATRICES

AND THE TRACE MINIMIZATION THEOREM∗

NGUYEN THANH SON† AND TATJANA STYKEL‡

Abstract. Symplectic eigenvalues are conventionally defined for symmetric positive-definite matrices via Williamson’s

diagonal form. Many properties of standard eigenvalues, including the trace minimization theorem, have been extended to

the case of symplectic eigenvalues. In this note, we will generalize Williamson’s diagonal form for symmetric positive-definite

matrices to the case of symmetric positive-semidefinite matrices, which allows us to define symplectic eigenvalues, and prove

the trace minimization theorem in the new setting.
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1. Introduction. Let us first recall that a matrix S ∈ R2n×2n is referred to as a symplectic matrix if

it satisfies the relation:

STJ2nS = J2n with J2n =

[
0 In

−In 0

]
,

where In denotes the n× n identity matrix. The set of such matrices forms a multiplicative group [10] and

is denoted by Sp(2n). We also employ the set of rectangular symplectic matrices defined as:

Sp(2k, 2n) = {S ∈ R2n×2k : STJ2nS = J2k},

for some k with 1 ≤ k ≤ n. In [11, Proposition 3.1], this set was shown to be an embedded Riemannian

manifold of R2n×2k.

Derived from Williamson’s work [28], for a 2n × 2n symmetric positive-definite (SPD) real matrix A,

there exists a matrix S ∈ Sp(2n) such that

(1.1) STAS =

[
D 0

0 D

]
,

where D = diag(d1, . . . , dn) is a diagonal matrix with positive diagonal entries. The equality (1.1) looks

very like the eigenvalue decomposition of SPD matrices except for the fact that the transformation matrix S

is symplectic instead of orthogonal. The right-hand side of (1.1) is termed as Williamson’s diagonal form

of A. The positive numbers d1, . . . , dn are referred to as symplectic eigenvalues. They form the symplectic

spectrum of A. The symplectic spectrum of an SPD matrix is unique, while the so-called diagonalizing
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matrix S in (1.1) is not unique. The set of diagonalizing matrices for a given SPD matrix was characterized

via a symplectic version of Autonne’s uniqueness theorem in [27, Theorem 3.5].

The symplectic eigenvalues of A are strongly related to the standard eigenvalues of the Hamiltonian ma-

trix J2nA or the symmetric/skew-symmetric matrix pencil A−λJ2n, and the Hermitian matrix iA1/2J2nA
1/2

with i =
√
−1 and A1/2 being the symmetric square root of A or the Hermitian pencil A − λiJ2n, which

have been intensively investigated in [18, 24, 1, 20, 22, 25, 23, 17]. They find wide applications in quantum

mechanics, optics, and structured mechanical systems [14, 2, 19]. Symplectic eigenvalues and eigenvectors,

defined below, can be numerically computed using a symplectic Lanczos method via the connection with

positive-definite Hamiltonian matrices [1] or by solving a trace minimization problem using a Riemannian

optimization method [11, 12, 27].

Many properties of symplectic eigenvalues for SPD matrices have been investigated. Besides trace mi-

nimization mentioned above, these are Cauchy’s interlacing theorem [4], variational principles and Weyl

inequality [6], Schur-Horn theorem [5], Szegő-type theorem [3], and Lidskii’s (or the majorization) theo-

rem [17], just to name a few.

It is noteworthy that in the original work [28], A is not necessarily SPD but solely symmetric. It would

be a reasonable question to ask whether it is still possible to define symplectic eigenvalues and investigate

their properties for a more general case in which A is symmetric positive-semidefinite (SPSD). Such matrices

arise, for example, in stability analysis of gyroscopic systems with an SPSD stiffness matrix, see, e.g., [21,

Section 2], and in quantization process of superconducting networks modeled by Hamiltonian systems with

positive-semidefinite Hamiltonians [7, 9]. It turns out that not every SPSD matrix is appropriate for this

purpose and even in the case that symplectic eigenvalues are definable, some properties that are already

known for symplectic eigenvalues of SPD matrices are nontrivially extendable to the new setting. In this

note, we will set the condition under which an SPSD matrix enjoys Williamson’s diagonal form which enables

the definition of symplectic eigenvalues. Moreover, we prove the trace minimization theorem for symplectic

eigenvalues of such matrices which can be exploited for not only computing symplectic eigenpairs [27] but also

deriving the majorization inequality similar to [14, Theorem 1]. Our proof is based on considering positive-

semidefinite real pencils studied in [18]. In the case of SPD matrices, a similar result has been independently

derived in [23] by exploiting the properties of positive-definite complex pencils discussed in [22].

For ease of presentation, we now collect some necessary materials following [8, 17, 27]. The Kronecker

delta is defined as:

δij =

{
1, if i = j,

0, if i ̸= j.

The set of all 2n× 2n SPSD real matrices will be denoted by SPSD(2n). Given a square matrix M , tr(M)

denotes the trace of M ; the kernel or the null space of M is the set kerM = {x : Mx = 0}; a square root of M

is a square matrix K of the same size such that K2 = M ; MT denotes the transpose of real M and M∗ is

the complex conjugate and transpose of complex M . Furthermore, span{v1, . . . , vℓ} stands for the subspace

spanned by the vectors v1, . . . , vℓ; applied to a matrix, it means the subspace spanned by the columns of this

matrix. Given Aj ∈ Rnj×nj , j = 1, . . . , ℓ, diag(A1, . . . , Aℓ) denotes the (block) diagonal matrix with Aj on

the diagonal. A subset U ⊂ R2n is said to be symplectically orthogonal to a subset V ⊂ R2n if uTJ2nv = 0

for all u ∈ U, v ∈ V . Two pairs of vectors (u1, v1) and (u2, v2) in R2n × R2n are said to be symplectically

normalized if

uT
i J2nvj = δij and uT

i J2nuj = vTi J2nvj = 0 for i, j = 1, 2.
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Note that this definition is slightly different from that in [27]. The symplecticity of the matrix [x1, . . . , x2k]

is equivalent to the fact that each two pairs (xi, xk+i) and (xj , xk+j) are symplectically normalized for

i, j = 1, . . . , k and i ̸= j. It was shown in [8, Theorem 1.15] that a symplectically normalized set of vectors

are linear-independent. Therefore, when k = n, such vectors form a basis of R2n. In that case, it is called

a symplectic basis. A subspace W ⊂ R2n is called a symplectic subspace if for any x ∈ W\{0}, there exists

y ∈ W such that xTJ2ny = 1. It turns out that we can always construct a symplectic basis for a symplectic

subspace [8, Theorem 1.15]. Conversely, a given subspace is symplectic if it owns a symplectic basis as shown

in Lemma 2.1 below. Two nonzero vectors written as a matrix [u, v] ∈ R2n×2 form a symplectic eigenvector

pair corresponding to the symplectic eigenvalue d of A ∈ SPSD(2n) if it holds

(1.2) Au = dJ2nv, Av = −dJ2nu.

The set ([u, v], d) is then generally referred to as a symplectic eigenpair. The existence of Williamson’s

diagonal form for any given 2n×2n SPD matrix tells us that there exists a symplectic basis of R2n consisting

of its symplectic eigenvectors.

2. Williamson’s diagonal form of symmetric positive-semidefinite matrices. In this section,

we will extend the definition of symplectic eigenvalues to the case of SPSD matrices by explicitly constructing

Williamson’s diagonal forms. For further discussion, we will need the following technical property.

Lemma 2.1. If a subspace W ⊂ R2n admits a symplectic basis, then it is a symplectic subspace.

Proof. Assume that the columns of [w1, . . . , wm, wm+1, . . . , w2m] with 1 ≤ m ≤ n form a symplectic

basis of W. Then, any x ∈ W\{0} can be represented via this basis as x =
∑m

j=1(λjwj + λm+jwm+j) with∑2m
j=1 λ

2
j ̸= 0. Setting

y =

m∑
j=1

(λjwm+j − λm+jwj)

2m∑
j=1

λ2
j

,

we can verify that xTJ2ny = 1. This implies that the subspace W is symplectic.

For a moment, we consider an SPD matrix A which has Williamson’s diagonal form (1.1). Multiplying (1.1)

with S−T = J2nSJ
T
2n from the left and with S−1 = JT

2nS
TJ2n from the right, we derive

A = J2nS

[
D 0

0 D

]
(J2nS)

T .

Then, for 0 ≤ m < n, we set

Â = J2nS

[
D̂m+1:n 0

0 D̂m+1:n

]
(J2nS)

T ,

where D̂m+1:n = diag(0, . . . , 0, dm+1, . . . , dn) ∈ Rn×n. We reverse the above multiplications to obtain

ÂS = J2nS

[
0 −D̂m+1:n

D̂m+1:n 0

]
,
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and

(2.3) ST ÂS =

[
D̂m+1:n 0

0 D̂m+1:n

]
.

Several facts can be drawn from the above construction. First, Â is an SPSD matrix of rank 2n−2m. Second,

if we write S by its columns as S = [s1, . . . , s2n], then the kernel of Â is span{s1, . . . , sm, sn+1, . . . , sn+m}.
Moreover, it is a symplectic subspace of dimension 2m due to Lemma 2.1. And third, it is symplectically

orthogonal to the subspace span{sm+1, . . . , sn, sn+m+1, . . . , s2n} which is nothing else but the range of Â.

Obviously, the decomposition (2.3) is like (1.1), and therefore it can be thought of as Williamson’s

diagonal form of the SPSD matrix Â. This gives us a clear vision of how to construct Williamson’s diagonal

form of SPSD matrices and under which condition this is possible. In practice, we will proceed somewhat in

the reverse direction. Indeed, given A ∈ SPSD(2n) whose kernel is a symplectic space. As any symplectic

subspace must have even dimension [8, Sect. 1.1], we assume that dim(kerA) = 2m with 0 ≤ m < n. Let

W = [W1 W2] withW1, W2 ∈ R2n×m be a symplectic matrix whose columns form a symplectic basis of kerA.

Note that such a basis can be computed using the symplectic Gram-Schmidt process [8, Theorem 1.15]. We

adapt the procedure proposed in [25] for constructing Williamson’s diagonal form of SPD matrices to the

more general case where the matrix A is SPSD as follows.

First, it is worth to recall that any SPSD matrix has a unique SPSD square root, denoted by A1/2,

and that kerA1/2 = kerA [15, Theorem 7.2.6]. Next, we will show that ker(A1/2J2nA
1/2) = kerA1/2. It

is trivial that ker(A1/2J2nA
1/2) ⊇ kerA1/2. Now, consider any y ∈ R2n such that A1/2J2nA

1/2y = 0.

Assume that J2nA
1/2y ̸= 0. Because kerA1/2 is a symplectic subspace, there exists z ∈ kerA1/2 such that

zTJ2nJ2nA
1/2y = 1 which leads to yTA1/2z = −1. This contradicts to the fact that z ∈ kerA1/2 and hence

J2nA
1/2y = 0. As J2n is nonsingular, we deduce that A1/2y = 0. This implies the desired equality. Observe

moreover that the matrix A1/2J2nA
1/2 is skew-symmetric. Then, this matrix can be transformed into the

real Schur form:

(2.4) QTA1/2J2nA
1/2Q = diag

(
02×2, . . . , 02×2,

[
0 dm+1

−dm+1 0

]
, . . . ,

[
0 dn

−dn 0

])
,

where 0 < dm+1 ≤ · · · ≤ dn and Q ∈ R2n×2n is an orthogonal matrix, see, e.g., [13, Theorem 7.4.1]. After

that, we multiply both sides of (2.4) with the permutation matrix P = [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n] from

the right and with PT from the left, where ej denotes the j-th canonical unit vector in R2n. As a result, we

obtain

PTQTA1/2J2nA
1/2QP =

[
0 D

−D 0

]
,

where D = diag(0, . . . , 0, dm+1, . . . , dn). Finally, setting

(2.5) S̃ = J2nA
1/2QP


0m×(n−m) 0m×(n−m)

0(n−m)×(n−m) −D̃
−1/2
m+1:n

0m×(n−m) 0m×(n−m)

D̃
−1/2
m+1:n 0(n−m)×(n−m)

 =: [S̃1 S̃2] ∈ R2n×(2n−2m),

where D̃
−1/2
m+1:n = diag(1/

√
dm+1, . . . , 1/

√
dn) and S̃1, S̃2 ∈ R2n×(n−m), we define S = [W1 S̃1 W2 S̃2]. The

following theorem shows that S is a symplectic matrix which diagonalizes A.
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Theorem 2.2. Given a matrix A ∈ SPSD(2n) whose kernel is a symplectic subspace of R2n of dimen-

sion 2m. Then the matrix S constructed as above is symplectic and it holds

(2.6) STAS =

[
D 0

0 D

]
,

where D = diag(d1, . . . , dn) with 0 = d1 = · · · = dm < dm+1 ≤ · · · ≤ dn.

Proof. It follows from kerA1/2 = kerA = span(W ) that A1/2W = 0. Therefore, in view of (2.5),

WTJ2nS̃ = 0. Furthermore, taking into account the fact that the matrices W and S̃ are both symplectic,

we deduce that S is symplectic.

The diagonal form (2.6) follows directly from the equalities S̃T
i AS̃j = δijdiag(dm+1, . . . , dn), AWj = 0,

and WT
j A = 0 for i, j = 1, 2.

In view of the connection of dj , j = 1, . . . , n, determined in (2.6) with the standard eigenvalues of Hamiltonian

matrix J2nA, see [27, Proposition 3.2] and references therein, we can conclude that dj , j = 1, . . . , n, are

unique. This fact gives rise to the following definition.

Definition 2.3. For A ∈ SPSD(2n) with a symplectic kernel, the right-hand side of (2.6) is called

Williamson’s diagonal form of A. The nonnegative diagonal elements in this form 0 ≤ d1 ≤ · · · ≤ dn are

called the symplectic eigenvalues of A.

It immediately follows from (2.6) that the symplecticity of the kernel of A is also a necessary condition for

the existence of Williamson’s diagonal form of A. The SPSD matrices that do not satisfy this condition are

not difficult to find. Consider, for instance, A = diag(In, 0n×n). Then kerA = span{en+1, . . . , e2n}. One

can directly verify that xTJ2ny = 0 for all x, y ∈ kerA, which means that kerA is an isotropic subspace

[8, Section 1.2]. In fact, all SPSD matrices whose kernel is an isotropic subspace do not have Williamson’s

diagonal form.

The observation that owning a symplectic kernel is a necessary and sufficient condition for the existence

of Williamson’s diagonal form of an SPSD matrix was previously made in [17, Remark 2.6]. A justification

for this observation can be drawn from [17, Proposition 5.2] where one of the symplectic projections is

uniquely determined by the columns of W . Our proof here is however more constructive.

For the sake of convenience, in the rest of this paper, we restrict ourselves to the case of SPSD matrices

that satisfy the symplectic kernel condition mentioned in Theorem 2.2.

3. Trace minimization theorem. The trace minimization theorem for the symplectic eigenvalues of

SPD matrices was established in [14, 4]. This theorem was then exploited in [27] to compute symplectic

eigenpairs of SPD matrices. A popular way of justifying such a statement is to use minimax principles;

see [26, 24] for standard eigenvalues of Hermitian matrix pencils and [4] for symplectic eigenvalues of SPD

matrices. In [4], the derived minimax principles, however, invoke the reciprocals of symplectic eigenvalues.

This approach is certainly inapplicable to the case of SPSD matrices. In this section, we will prove the trace

minimization theorem for symplectic eigenvalues in a more general setting where A can be SPSD. Note that

restricted to the case of SPD matrices, our proof differs from the ones presented in [14, 4] and rather relates

to the results of [23, Appendix A2]. For completeness, we restate the trace minimization theorem in a more

general form in which the symplectic eigenvalues can be zero.
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Theorem 3.1. Let A ∈ SPSD(2n) have symplectic eigenvalues 0 ≤ d1 ≤ · · · ≤ dn. Then for any k with

1 ≤ k ≤ n, it holds that

(3.7) min
X∈Sp(2k,2n)

tr(XTAX) = 2

k∑
j=1

dj .

For a proof of this result, we need some preparation. We start with reformulating the definition of

symplectic eigenvalues and eigenvectors. Recalling (1.2), [u, v] ∈ R2n×2 is a symplectic eigenvector pair

corresponding to the symplectic eigenvalue d of A if and only if one of the following four equivalent conditions

holds [
A 0

0 A

] [
u

v

]
= d

[
0 J2n

−J2n 0

] [
u

v

]
,[

A 0

0 A

] [
v

u

]
= −d

[
0 J2n

−J2n 0

] [
v

u

]
,[

A 0

0 A

] [
v

−u

]
= d

[
0 J2n

−J2n 0

] [
v

−u

]
,[

A 0

0 A

] [
−u

v

]
= −d

[
0 J2n

−J2n 0

] [
−u

v

]
.

(3.8)

This fact suggests constructing the matrix pencil:

(3.9) A− λJ :=

[
A 0

0 A

]
− λ

[
0 J2n

−J2n 0

]
,

with the following properties.

Lemma 3.2. Let A ∈ SPSD(2n) and A − λJ be the matrix pencil as in (3.9). Then the following

statements hold:

1. The real number d is a symplectic eigenvalue of A if and only if d and −d are eigenvalues of multi-

plicities two of the matrix pencil A− λJ .

2. The matrix A is SPSD and the matrix J is symmetric and nonsingular.

3. The matrix J possesses only 1 and −1 as its eigenvalues. Moreover, both of them are of multiplici-

ty 2n.

Proof. The first statement follows immediately from (3.8), while the second one is straightforward. To

justify the last one, let X1 and X2 be any two basis matrices of Rn. Then it is direct to show that the

matrices 
X1 0

0 X2

0 −X2

X1 0

 ,


X1 0

0 X2

0 X2

−X1 0

 ,

consist of eigenvectors of J associated with eigenvalues 1 and −1, respectively.

The relations in (3.8) together with Lemma 3.2 establish a connection between symplectic eigenpairs of A

and eigenpairs of the matrix pencil (3.9). Hence, the result on trace minimization of positive-semidefinite
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matrix pencils derived in [18] is here helpful. Let us first collect the necessary facts from there. Given two

ℓ× ℓ symmetric real matrices A and B, the matrix pencil A− λB is said to be positive-semidefinite if there

is a number λ0 ∈ R such that A−λ0B is positive-semidefinite. Such constant λ0 is called a definitizing shift.

Obviously, the matrix pencil A− λJ in (3.9) is positive-semidefinite with a shift λ0 = 0.

Furthermore, it was shown in [18, Proposition 4.1] that the eigenvalues of the positive-semidefinite matrix

pencil A−λB with nonsingular B are real, and the number of non-positive (resp. non-negative) eigenvalues

of A − λB is the same as the number of negative (resp. positive) eigenvalues of B. In other words, if q

and p with q + p = ℓ is the number of negative and positive eigenvalues of B, respectively, then there are q

non-positive eigenvalues of A− λB, namely, α−
q ≤ · · · ≤ α−

1 ≤ 0, and p non-negative eigenvalues of A− λB,

namely, 0 ≤ α+
1 ≤ · · · ≤ α+

p . Thus, they can overall be arranged as:

α−
q ≤ · · · ≤ α−

1 ≤ α+
1 ≤ · · · ≤ α+

p .

The following theorem provides an important result on trace minimization for positive-semidefinite matrix

pencils.

Theorem 3.3. [18, Theorem 3.1] Let A, B ∈ Rℓ×ℓ be symmetric and let B be nonsingular with p positive

and q negative eigenvalues. Assume moreover that the matrix pencil A− λB is positive-semidefinite. Let p1
and q1 be two integers such that 0 ≤ p1 ≤ p, 0 ≤ q1 ≤ q, and 0 < p1 + q1. Then, the function

(3.10) Rℓ×(p1+q1) ∋ X 7→ tr(XTAX) ∈ R,

subjected to the condition:

(3.11) XTBX = diag(Ip1
,−Iq1),

is bounded from below by:

(3.12)

p1∑
j=1

α+
j −

q1∑
j=1

α−
j .

If, additionally, there exists a matrix X0 ∈ Rℓ×(p1+q1) satisfying (3.11) and consisting of eigenvectors of the

matrix pencil A− λB associated with the eigenvalues α+
1 , . . . , α

+
p1
, α−

1 , . . . , α
−
q1 , then the lower bound (3.12)

becomes the minimal value of the function (3.10) which is reached at X0.

Now, we are ready to prove the trace minimization Theorem 3.1 for symplectic eigenvalues of SPSD matrices.

Proof of Theorem 3.1. Consider the matrix pencil A − λJ as in (3.9). By Theorem 2.2 and Lemma 3.2,

the eigenvalues of A− λJ , sorted in the nondecreasing order, are as follows:

−dn = −dn ≤ · · · ≤ −d1 = −d1 ≤ d1 = d1 ≤ · · · ≤ dn = dn,

where d1, . . . , dn are the symplectic eigenvalues of A. Thus, an application of Theorem 3.3 to the matrix

pencil A− λJ for p1 = q1 = 2k yields

(3.13) tr(X TAX ) ≥ 4

k∑
j=1

dj ,

for all X ∈ R4n×4k satisfying the constraint:

(3.14) X TJX = diag(I2k,−I2k).
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Next, for any X ∈ R2n×2k, we construct the matrix:

(3.15) X =
1√
2

[
X XJT

2k

XJT
2k X

]
∈ R4n×4k.

This matrix fulfills

tr(X TAX ) = tr(XTAX + J2kX
TAXJT

2k)

= tr(XTAX +XTAXJT
2kJ2k)

= 2 tr(XTAX).(3.16)

Moreover, taking X ∈ Sp(2k, 2n), one can verify by a direct calculation that the matrix X in (3.15) satisfies

(3.14). Then, using (3.16) and (3.13), we obtain that

min
X∈Sp(2k,2n)

tr(XTAX) =
1

2
min

X as in (3.15),

X ∈ Sp(2k, 2n)

tr(X TAX )(3.17)

≥ 1

2
min

X̃TJ X̃=diag(I2k,−I2k)
tr(X̃ TAX̃ )(3.18)

≥ 2

k∑
j=1

dj ,

in which (3.18) is due to the fact that the constraint set in the right-hand side of (3.17) is a subset of

that in (3.18). Finally, we choose X = [s1, . . . , sk, sn+1, . . . , sn+k] consisting of (symplectically) normalized

symplectic eigenvector pairs [sj , sn+j ] associated with the symplectic eigenvalue dj of A for j = 1, . . . , k. In

this case, we have tr(XTAX) = 2
∑k

j=1 dj which completes the proof.

Note that since {0} is itself a (trivial) symplectic subspace, Theorem 3.1 holds for SPD matrices too. For

such matrices, our proof is actually related to that in [23] via the embedding of 2n × 2n complex matrices

into 4n × 4n real matrices. An extension of the trace minimization theorem to the SPSD case has been

obtained in [23] by considering an SPD perturbation A+ϵI and taking the limit as ϵ → 0. However, utilizing

Williamson’s normal form (2.6), we can directly verify (3.7) for SPSD A by exploiting the spectral properties

of the Hermitian pencil A− λiJ2n similar to [23]. Indeed, consider the Kronecker product Q̃ = Q2 ⊗ Ik with

a unitary matrix:

Q2 =
1√
2

[
1 1

−i i

]
.

Clearly, Q̃ is also unitary, and for any X ∈ Sp(2k, 2n), we have

(XQ̃)∗ iJ2nXQ̃ = Q̃∗ iJ2kQ̃ = diag(Ik,−Ik).

In particular, setting Y = [s1, . . . , sk, sn+1, . . . , sn+k]Q̃, where sj , j = 1, . . . , k, n + 1, . . . , n + k, are the

columns of the diagonalizing symplectic matrix S in (2.6), one can show that the columns of Y are eigenvec-

tors associated with the eigenvalues d1, . . . , dk,−d1, . . . ,−dk of the Hermitian pencil A− λiJ2n and that Y

satisfies the constraint Y ∗iJ2nY = diag(Ik,−Ik). Then, we obtain

min
X∈Sp(2k,2n)

tr(XTAX) = min
X̃∗iJ2nX̃=diag(Ik,−Ik)

tr(X̃∗AX̃) = 2

k∑
j=1

dj ,
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where the first equality holds by taking X̃ = XQ̃ and the second minimum is attained at Y due to the complex

extension of Theorem 3.3, see [22, Theorem 1.1]. Obviously, the real matrix X = [s1, . . . , sk, sn+1, . . . , sn+k]

solves the first trace minimization problem with the real constraint.

Remark 3.4. For the computation of the smallest symplectic eigenvalues of the SPSD matrix A, a direct

use of the symplectic Lanczos procedure [1] will not work because it involves the inverse of A which does not

exist. On the other side, as the theoretical results in [27] still hold for SPSD matrices, Theorem 3.1 plays

a key role in enabling the use of the numerical method proposed there for computing the required symplectic

eigenpairs.
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