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SPECTRALLY ARBITRARY TREE SIGN PATTERNS OF ORDER 4∗
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Abstract. A sign pattern matrix (or a sign pattern, or a pattern) is a matrix whose entries

are from the set {+,−, 0}. An n × n sign pattern matrix is a spectrally arbitrary pattern (SAP) if

for every monic real polynomial p(x) of degree n, there exists a real matrix B whose entries agree

in sign with A such that the characteristic polynomial of B is p(x). An n × n sign pattern A is

an inertially arbitrary pattern (IAP) if (r, s, t) belongs to the inertia set of A for every nonnegative

integer triple (r, s, t) with r + s + t = n. Tree sign patterns are investigated, with a special emphasis

on 4×4 tridiagonal sign patterns. The set of spectrally arbitrary sign patterns is a subset of the set of

potentially stable sign patterns, and for tree sign patterns of order 4, the set of all potentially stable

sign patterns is known. The main results are obtained by determining which of these potentially

stable sign patterns are SAPs. Necessary and sufficient conditions for an irreducible 4×4 tridiagonal

pattern to be an SAP are found. As a result, all 4 × 4 tree sign patterns that are SAPs are

characterized. A new technique, an innovative application of Gröbner bases for demonstrating that

a sign pattern is not potentially nilpotent, is introduced. Connections between the SAP classes and

the classes of potentially nilpotent and potentially stable patterns are explored. Some interesting

open questions are also provided.
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1. Introduction and Preliminaries. In qualitative and combinatorial matrix

theory, properties of a matrix based on combinatorial information, such as the signs of

entries in the matrix, are studied. A matrix whose entries are from the set {+,−, 0}

is called a sign pattern matrix (or sign pattern, or pattern). We denote the set of all

n × n sign pattern matrices by Qn. For a real matrix B, sgn(B) is the sign pattern

matrix obtained by replacing each positive (respectively, negative, zero) entry of B

by + (respectively, −, 0). For a sign pattern matrix A, the sign pattern class of A is

defined by

Q(A) = {B : sgn(B) = A }.
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A subpattern of a sign pattern A is a sign pattern matrix obtained from A by

replacing a number (possibly none) of the + or − entries in A with 0. If Â is a

subpattern of A, we also say that A is a superpattern of Â.

The sign pattern In ∈ Qn is the diagonal pattern of order n with + diagonal

entries. A sign pattern matrix P is called a permutation pattern if exactly one entry

in each row and column is equal to +, and all other entries are 0. Two sign pattern

matrices A1 and A2 are said to be permutationally similar if there is a permutation

pattern P such that A2 = PT A1P .

A signature (sign) pattern is a diagonal sign pattern all of whose diagonal entries

are nonzero. Two sign pattern matrices A1 and A2 are said to be signature similar if

there is a signature pattern S such that A2 = SA1S.

A sign pattern A ∈ Qn is said to be sign nonsingular (SNS) if every matrix

B ∈ Q(A) is nonsingular. It is well known that A is sign nonsingular if and only if

det A = + or det A = −, that is, in the standard expansion of det A into n! terms,

there is at least one nonzero term, and all the nonzero terms have the same sign. This

means that det B is positive (or negative) for all B ∈ Q(A).

A combinatorially symmetric sign pattern matrix is a square sign pattern A where

aij 6= 0 if and only if aji 6= 0. The graph G(A) of a combinatorially symmetric n×n

sign pattern matrix A = [aij ] is the graph with vertex set {1, 2, 3, . . . , n} where {i, j} is

an edge if and only if aij 6= 0. A tree sign pattern (tsp) is a combinatorially symmetric

sign pattern matrix whose graph is a tree (possibly with loops).

The set of all eigenvalues (counting multiplicities) of a square matrix B is denoted

by σ(B), and the inertia of matrix B is the ordered triple

i(B) = (i+(B), i−(B), i0(B)),

in which i+(B) , i−(B) and i0(B) are the numbers of elements of σ(B) with positive,

negative and zero real parts, respectively. The inertia set of a square sign pattern A

is the set of ordered triples i(A) = {i(B) : B ∈ Q(A) }. An n × n sign pattern A is

said to be an inertially arbitrary pattern (IAP) if (r, s, t) ∈ i(A) for every nonnegative

integer triple (r, s, t) with r + s + t = n.

An n× n matrix B is stable if i(B) = (0, n, 0). An n× n pattern A is sign stable

if i(A) = {(0, n, 0) }, and potentially stable (PS) if (0, n, 0) ∈ i(A).

An n × n pattern A is a spectrally arbitrary pattern (SAP) if, for any given real

monic polynomial r(x) of degree n, there is a matrix B ∈ Q(A) with characteristic

polynomial r(x). That is, A is an SAP if for any possible spectrum of a real matrix

(namely, any set of n complex numbers with nonreals occuring as conjugate pairs),

there exists B ∈ Q(A) with that spectrum. Clearly, if A is an SAP, then A is an IAP.
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However, it is known that the converse does not hold, see for example [2].

It is easily seen that the class of n × n SAPs (IAPs) is closed under negation,

transposition, permutation similarity, and signature similarity. We say that two sign

patterns are equivalent if one can be obtained from the other by using a sequence of

such operations.

Every SAP A must allow nilpotence (that is to say, A is potentially nilpotent

(PN)). This follows by using r(x) = xn. Also, by using r(x) = (x + 1)n, we see that

every SAP A is potentially stable. In fact, every IAP is potentially stable, since in

particular, (0, n, 0) ∈ i(A).

Of course, not every potentially nilpotent pattern is even an IAP. For instance,
[

0 +

0 0

]

is a potentially nilpotent pattern that is not an IAP. Also,

[

− +

0 −

]

is an

example of a potentially stable pattern that is not an IAP.

A sign pattern A is a minimal inertially arbitrary pattern (MIAP) if A is an IAP,

but is not an IAP if one or more nonzero entries is replaced by zero. Analogously, A

is a minimal spectrally arbitrary pattern (MSAP) if A is an SAP, but is not an SAP

if one or more nonzero entries is replaced by zero.

There has been considerable interest recently in spectrally arbitrary sign patterns,

which were introduced in [6]. In [1] it was established that any spectrally arbitrary

sign pattern of order n must have at least 2n − 1 nonzero entries and conjectured that

any spectrally arbitrary sign pattern of order n must have at least 2n nonzero entries.

(This is known as the 2n-conjecture). In [1] and also in [2], the 3 × 3 spectrally

arbitrary sign patterns were classified and demonstrated to have at least six nonzero

entries.

Spectrally arbitrary tree sign patterns, especially those whose graphs (excluding

loops) are paths, are considered in [6]. A method, based on the implicit function

theorem, for proving that a sign pattern (and all superpatterns) is an SAP is developed

there. A class of spectrally arbitrary patterns is constructed in [12] by using a Soules

matrix. The implicit function theorem method is used in [1] to show that some

Hessenberg sign patterns are minimal SAPs, the first such families for all orders to be

presented. Other spectrally arbitrary sign pattern classes are constructed in [2] also

by using the implicit function theorem method. In [4] the authors characterize all the

4 × 4 zero-nonzero patterns that are spectrally arbitrary. All potentially stable star

sign patterns are characterized in [9]. The inertias of matrices having a symmetric

star sign pattern are characterized in [16]. Potentially nilpotent star sign patterns are

considered in [17], in which explicit characterizations are given for star sign patterns

of orders two and three, and a recursive characterization for star sign patterns of

general order n is proved. In [14], it is shown that all potentially nilpotent entrywise
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nonzero sign patterns are spectrally arbitrary.

In this paper, tree sign patterns are investigated, with a special emphasis on

4 × 4 tridiagonal sign patterns. The set of spectrally arbitrary sign patterns is a

subset of the set of potentially stable sign patterns, and for tree sign patterns of

order 4, the set of all potentially stable sign patterns is known (from [10] and [11]

for paths and from [13] for stars). The main results are obtained by determining

which of these potentially stable sign patterns are SAPs. All irreducible tridiagonal

4× 4 SAPs are identified. Necessary and sufficient conditions for an irreducible 4× 4

tridiagonal pattern to be an SAP are found. As a result, all 4×4 tree sign patterns that

are SAPs are characterized. A new technique, an innovative application of Gröbner

bases for demonstrating that a sign pattern is not potentially nilpotent, is introduced.

Connections between the SAP (IAP) classes and the classes of potentially nilpotent

and potentially stable patterns are explored. Some interesting open questions are also

provided.

2. Tree Sign Patterns. For a sign pattern matrix whose undirected graph is

a tree, the matrix is irreducible if and only if it is combinatorially symmetric , i.e.,

aij 6= 0 whenever aji 6= 0. Recall that we call such an irreducible sign pattern matrix

a tree sign pattern (tsp). Suppose A is an n × n tsp. Since G(A) is a tree, G(A) has

n − 1 edges. So, A has 2(n − 1) off-diagonal nonzero entries. In addition, if A is an

SAP, then it has at least one positive and one negative diagonal entry. Hence, A has

at least 2n nonzero entries.

It is easily proved that up to equivalence, the tsp

T2 =

[

− +

− +

]

is the only 2 × 2 SAP, IAP, MSAP and MIAP. The following result is also easily

shown.

Proposition 2.1. For n = 3, if A is a tsp, then A is permutation similar to a

tridiagonal pattern.

¿From [6], we have the following result.

Proposition 2.2. Up to equivalence,

T3 =





− + 0

− 0 +

0 − +



 , U =





− + 0

− + +

0 + −



 , T̃3 =





− + 0

− + +

0 − +





are the only 3 × 3 tsp SAPs.

Generalizing T3, we have the following n × n antipodal sign pattern Tn.
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Theorem 2.3. For 2 ≤ n ≤ 16,

Tn =



























− + 0 · · · · · · 0

− 0 +
. . .

...

0 − 0 +
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . − 0 +

0 · · · · · · 0 − +



























is an SAP.

This follows from results in [6] and [7]. For 2 ≤ n ≤ 16, Tn is in fact an MSAP.

Up to equivalence, a 4 × 4 tsp A is a star pattern or a tridiagonal pattern.

First, consider the 4 × 4 tsp SAPs with 8 nonzero entries. As indicated in [6], up to

equivalence, we have just

T4 =









− + 0 0

− 0 + 0

0 − 0 +

0 0 − +









and H =









− + 0 0

+ 0 + 0

0 − 0 +

0 0 + +









.

These patterns are actually MSAPs as they have the smallest possible number (8) of

nonzero entries. We also note that the pattern H is the last pattern given in Appendix

A in [4].

What about the 4×4 tsp SAPs with more than 8 nonzero entries? For n×n star

patterns we have the following result from [13].

Proposition 2.4. If n ≥ 2 and Sn is a star sign pattern, then the following are

equivalent:

1. Sn is equivalent to one of the patterns Yn, Znp, Z+
np or Z−

np defined in [13]

(for appropriate p).

2. Sn is spectrally arbitrary.

3. Sn is inertially arbitrary.

4. Sn is potentially nilpotent and potentially stable.

We can then characterize the 4 × 4 SAP star sign patterns.

Corollary 2.5. S4 is a star SAP if and only if S4 is equivalent to one of the

following patterns:
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Y4 =









+ + + +

− − 0 0

+ 0 − 0

− 0 0 −









, Z41 =









0 + + +

− − 0 0

+ 0 + 0

− 0 0 +









, Z42 =









0 + + +

− − 0 0

+ 0 − 0

− 0 0 +









,

Z+
41 =









+ + + +

− − 0 0

+ 0 + 0

− 0 0 +









, Z−

41 =









− + + +

− − 0 0

+ 0 + 0

− 0 0 +









, Z+
42 =









+ + + +

− − 0 0

+ 0 − 0

− 0 0 +









,

Z−

42 =









− + + +

− − 0 0

+ 0 − 0

− 0 0 +









.

We next analyze the 4 × 4 tridiagonal patterns.

3. 4×4 Tridiagonal Spectrally Arbitrary Sign Patterns. In the article [10],

the authors identify the 4× 4 potentially stable (PS) tridiagonal tsp’s (although four

additional patterns are given in [11]). Since an SAP is a PS pattern, to investigate

the 4 × 4 tridiagonal SAPs we can consider these PS tridiagonal patterns.

The results of analyzing all of the potentially stable 4 × 4 tridiagonal tsp’s given

in [10] are contained in Proposition 3.1, Theorem 3.3, Remark 3.4, Theorem 3.6 and

Theorem 3.7. Analogous results for the 4× 4 potentially stable sign patterns that are

not included in [10] are given after Theorem 3.7.

Proposition 3.1.

(a). The nine tridiagonal superpatterns of T4 are SAPs.

(b). The nine tridiagonal superpatterns of H are SAPs.

(c). The following patterns are not SAPs because they are SNS:









0 + 0 0

− + + 0

0 − 0 +

0 0 − −









,









0 + 0 0

− + + 0

0 − − +

0 0 − −









,









+ + 0 0

− 0 + 0

0 − − +

0 0 − 0









,









0 + 0 0

− + + 0

0 − − +

0 0 − 0









.
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(d). The following patterns are not SAPs because they are not potentially nilpotent.

More specifically, A4 is not compatible (as defined in [8]) with the zero matrix.









0 + 0 0

− 0 + 0

0 − + +

0 0 − −









,









0 + 0 0

− 0 + 0

0 − − +

0 0 − +









,









0 + 0 0

− 0 + 0

0 + − +

0 0 − +









.

(e). The 30 sign patterns in [10] which do not have a positive diagonal entry are

not SAPs.

A very common and very well known method to show that a pattern is an SAP

is the Nilpotent-Jacobian method (N-J method) which first appeared in [6]. The N-J

method was restated in [1] as follows.

Theorem 3.2. Let A be an n×n sign pattern, and suppose that there exists some

nilpotent B ∈ Q(A) with at least n nonzero entries (b1, . . . , bn). Let X be a matrix

obtained by replacing these entries in B by variables (x1, . . . , xn). Let

PB(t) = tn + c1t
n−1 + c2t

n−2 + . . . + cn−1t + cn.

If the Jacobian matrix J of c1, c2, . . . , cn with respect to x1, . . . , xn is nonsingular at

(x1, . . . , xn) = (b1, . . . , bn), then A and every superpattern of A is an SAP.

Theorem 3.3. The following tridiagonal tsp’s are SAPs:









+ + 0 0

− − + 0

0 + 0 +

0 0 − −









,









+ + 0 0

− 0 + 0

0 − − +

0 0 − +









,









+ + 0 0

− 0 + 0

0 + − +

0 0 − +









,









− + 0 0

− + + 0

0 − − +

0 0 − 0









,









0 + 0 0

− − + 0

0 + − +

0 0 − +









,









0 + 0 0

+ + + 0

0 − − +

0 0 + −









.

Proof. The proof uses the N-J method. We give below the sign pattern, its

nilpotent realization, and the matrix used for computing the Jacobian which turns

out to be nonsingular.








+ + 0 0

− − + 0

0 + 0 +

0 0 − −









,









15 625/3 0 0

−1 −14 1/3 0

0 1 0 3

0 0 −1 −1









,









x1 x2 0 0

−1 −14 x3 0

0 1 0 x4

0 0 −1 −1









;

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 180-197, March 2010



ELA

Spectrally Arbitrary Tree Sign Patterns 187









+ + 0 0

− 0 + 0

0 − − +

0 0 − +









,









1 1 0 0

−1 0 1 0

0 −1 −2 1

0 0 −1 1









,









x1 x2 0 0

−1 0 x3 0

0 −1 −2 x4

0 0 −1 1









;









+ + 0 0

− 0 + 0

0 + − +

0 0 − +









,









3 1 0 0

−1 0 55 0

0 1 −186

55

194481

3025

0 0 −1 21

55









,









3 x1 0 0

−1 0 x2 0

0 1 −186

55
x3

0 0 −1 x4









;









− + 0 0

− + + 0

0 − − +

0 0 − 0









,









−6 48 0 0

−1 8 1 0

0 −1 −2 3

0 0 −1 0









,









−6 x1 0 0

−1 8 x2 0

0 −1 −x3 x4

0 0 −1 0









;









0 + 0 0

− − + 0

0 + − +

0 0 − +









,









0 2 0 0

−1 −1 1 0

0 1 −1 2

0 0 −1 2









,









0 x1 0 0

−1 −1 x2 0

0 1 −x3 x4

0 0 −1 2









;









0 + 0 0

+ + + 0

0 − − +

0 0 + −









,









0 1 0 0

4 2 1 0

0 −8 −1 1

0 0 1 −1









,









0 x1 0 0

4 2 x2 0

0 −8 −x3 1

0 0 1 x4









.

Remark 3.4. There are three other sign patterns listed in [10] equivalent to

three sign patterns in Theorem 3.3. Also listed in [10] are 11 proper tridiagonal

superpatterns of sign patterns equivalent to sign patterns in Theorem 3.3.

The following discussion about Gröbner basis is based on [5]. Let R be a commu-

tative ring. Consider a subset S of the multivariable polynomial ring R[x1, x2, . . . , xn].

A zero or a solution of S in R (or some super-ring of R) is an n-tuple (r1, r2, . . . , rn) ∈

Rn with P (r1, r2, . . . , rn) = 0 for every polynomial P ∈ S. It can be seen that an

n-tuple (r1, r2, . . . , rn) ∈ Rn is a solution of S if and only if it is a solution of the

ideal generated by S. Hilbert’s Basis Theorem states that every ideal of a polyno-

mial ring over a field is finitely generated. From this point on, R is the field of real

numbers. Let M be a set of monomials in R[x1, x2, . . . , xn]. Suppose that a cer-

tain ordering of all the monomials is prescribed. Let init(P ), the initial monomial

of a polynomial P , be the largest monomial appearing in P . Let S be a subset of

R[x1, x2, . . . , xn] and init(S) the ideal generated by {init(s) : s ∈ S}. If I is an

ideal of R[x1, x2, . . . , xn], then a finite subset G = {g1, g2, . . . , gk} of I is called a
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Gröbner basis of I if {init(g1), init(g2), . . . , init(gk)} generates init(I). For any ideal

I of R[x1, x2, . . . , xn] the following are true.

(1) I has a Gröbner basis relative to any monomial ordering.

(2) Every Gröbner basis G of I generates I.

It can be seen that for every subset S of R[x1, x2, . . . , xn] and a Gröbner basis G

of the ideal generated by S, the solution set of S is the same as the solution set of G.

The following fact is somewhat well-known, but for completeness, we give a proof.

Lemma 3.5. An n × n complex matrix B is nilpotent if and only if tr(B) = 0,

tr(B2) = 0, tr(B3) = 0,. . . , tr(Bn) = 0.

Proof. Let σ(B) = {λ1, λ2, . . . , λn}. It is well known that the trace of a matrix

is equal to the sum of its eigenvalues. Thus, the necessity is obvious.

We now prove sufficiency. If all the eigenvalues are zero, then B is unitarily

similar to a strictly upper triangular matrix, and hence B is nilpotent. Now as-

sume that B has some nonzero eigenvalues. Let λ1, λ2, . . . , λk denote the distinct

nonzero eigenvalues of B, with multiplicities m1,m2, . . . ,mk. The system of equa-

tions tr(Bs) = 0, 1 ≤ s ≤ n, can be written as:

m1λ1 + m2λ2 + . . . + mkλk = 0

m1λ
2
1 + m2λ

2
2 + . . . + mkλ2

k = 0
...

m1λ
n
1 + m2λ

n
2 + . . . + mkλn

k = 0

Regarding m1,m2, . . . ,mk as the variables, the coefficient matrix F of the first k

equations in the above system is

F =











λ1 λ2 . . . λk

λ2
1 λ2

2 . . . λ2
k

...
...

λk
1 λk

2 . . . λk
k











=

















1 1 1 1

λ1 λ2 . . . λk

λ2
1 λ2

2 . . . λ2
k

...
...

λk−1
1 λk−1

2 . . . λk−1

k

















diag(λ1, λ2, . . . , λk),

where the first factor is a Vandermonde matrix. Thus F is nonsingular since the k

parameters λ1, λ2, . . . , λk are nonzero and distinct. Thus, the above system has only

the trivial solution m1 = m2 = . . . = mk = 0. But by assumption, m1,m2, . . . ,mk

are the multiplicities of distinct eigenvalues, and so cannot be zeros. Hence each

eigenvalue of B must be zero. That is, B is nilpotent.

Note that the above result remains valid when the last condition tr(Bn) = 0

is replaced by det(B) = 0. Indeed, det (B) = 0 implies that at least one of the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 180-197, March 2010



ELA

Spectrally Arbitrary Tree Sign Patterns 189

eigenvalues of B is zero. Hence, the above proof of sufficiency is still valid since

k ≤ n − 1.

An SAP must be potentially nilpotent. Using Maple to compute a Gröbner basis

of polynomials obtained using the necessary and sufficient conditions mentioned in

the above remark for a matrix to be nilpotent, we can get the following results.

Theorem 3.6. The following patterns with 9 nonzero entries are not potentially

nilpotent so they are not SAP’s:









− + 0 0

− + + 0

0 − − +

0 0 + 0









,









− + 0 0

− + + 0

0 + − +

0 0 − 0









,









− + 0 0

+ + + 0

0 − − +

0 0 + 0









,









0 + 0 0

− − + 0

0 − − +

0 0 − +









,









+ + 0 0

− + + 0

0 − − +

0 0 − 0









,









0 + 0 0

− + + 0

0 + − +

0 0 − +









,









0 + 0 0

− + + 0

0 − − +

0 0 + −









,









+ + 0 0

− − + 0

0 + 0 +

0 0 + −









,









− + 0 0

+ 0 + 0

0 − + +

0 0 − −









,









+ + 0 0

− 0 + 0

0 − − +

0 0 + −









,









− + 0 0

− 0 + 0

0 − + +

0 0 + −









.

Proof. Let B ∈ Q(A), where the absolute values of the nonzero entries of B are

independent variables and A is one of the above mentioned patterns. A Gröbner basis

of the ideal generated by the polynomials tr(B), tr(B2), tr(B3), and det(B) contains

a polynomial that does not have a positive zero. The following are the details of the

above mentioned process. Let

A =









− + 0 0

− + + 0

0 − − +

0 0 + 0









.

By performing a suitable diagonal similarity if necessary, we may assume that a matrix

B ∈ Q(A) has the following form

B =









−a b 0 0

−1 c d 0

0 −1 −e f

0 0 1 0









,
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where the variables can take on any positive values.

The polynomials tr(B), tr(B2), tr(B3), det(B) are as follows

−a + c − e,

a2 − 2b + c2 − 2d + e2 + 2f,

−a3 + 3ab − 3bc + c3 − 3cd + 3de − e3 − 3ef,

acf − bf

The Gröbner basis with total degree ordering tdeg(a, b, c, d, e, f) for the ideal

generated by the above polynomials consists of the following polynomials,

a− c + e, c2 − ce + e2 − b− d + f,−df + e2f + f2, fcd− dfe + ef2, e3 + cd− 2de + 2ef,

bdf + cef2, bdef + ef2d − cf3 − ef3, bd2f + d2f2 − 2df3 + f4.

Note that the solutions of the system of equations tr(B)=0, tr(B2)=0, tr(B3)=0,

det(B) = 0 are the same as the zeros of the set of polynomials in a Gröbner basis.

The equation bdf + cef2 = 0 cannot have a positive solution for a, b, c, d, e, f . Thus

the system cannot have a solution where all the variables are positive.

The following are the matrix realizations of the remaining sign patterns in the

theorem and the monomial orderings relative to which the Gröbner basis of the ideal

generated by {tr(B), tr(B2), tr(B3), det(B)} contains a polynomial with no positive

zero.









−a b 0 0

−1 c d 0

0 1 −e f

0 0 −1 0









, tdeg(a, b, c, d, e, f);









−a b 0 0

1 c d 0

0 −1 −e f

0 0 1 0









, tdeg(f, b, c, d, e, a);









0 a 0 0

−1 −b c 0

0 −1 −d e

0 0 −1 f









, tdeg(f, b, c, d, e, a);









a b 0 0

−1 c d 0

0 −1 −e f

0 0 −1 0









, tdeg(f, b, c, d, e, a);









0 a 0 0

−1 b c 0

0 1 −d e

0 0 −1 f









, tdeg(f, e, c, d, b, a);
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







0 a 0 0

−1 b c 0

0 −1 −d e

0 0 1 −f









, tdeg(f, b, c, d, e, a);









a b 0 0

−1 −c d 0

0 1 0 e

0 0 1 −f









, tdeg(a, b, c, d, e, f);









−a b 0 0

1 0 c 0

0 −1 d e

0 0 −1 −f









, tdeg(f, b, c, d, e, a);









a b 0 0

−b 0 c 0

0 −c −d 1

0 0 1 −f









, lexdeg([d], [a, b, c, f ]);









−a b 0 0

−b 0 c 0

0 −c d 1

0 0 1 −f









, lexdeg([d, a, c], [b, f ]).

Note that the second and the sixth patterns are actually equivalent.

Theorem 3.7. The following patterns with 10 nonzero entries are not potentially

nilpotent so they are not SAP’s









+ + 0 0

− − + 0

0 + − +

0 0 + −









,









+ + 0 0

− − + 0

0 + + +

0 0 + −









,









+ + 0 0

− + + 0

0 − − +

0 0 + −









,









− + 0 0

− − + 0

0 − + +

0 0 + −









,









− + 0 0

+ − + 0

0 − + +

0 0 − −









,









+ + 0 0

− − + 0

0 − − +

0 0 + −









,
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







− + 0 0

+ + + 0

0 − + +

0 0 − −









,









+ + 0 0

+ − + 0

0 − + +

0 0 − −









,









− + 0 0

+ − + 0

0 + + +

0 0 − −









.

Proof. The following are the matrix realizations and the term orderings for

the Gröbner basis computation for the sign patterns in the theorem. In each case,

applying a suitable diagonal similarity and multiplying by a suitable scalar matrix,

we can make the absolute values of symmetric entries to be the same and the absolute

values of the (3, 4) and (4, 3) entries to be 1.









a b 0 0

−b −c d 0

0 d −e 1

0 0 1 −f









, tdeg(a, b, c, d, e, f).









a b 0 0

−b −c d 0

0 d e 1

0 0 1 −f









, lexdeg([a], [b, c, d, e, f ]).









a b 0 0

−b c d 0

0 −d −e 1

0 0 1 −f









, lexdeg([e], [a, b, c, d, f ]).









−a b 0 0

−b −c d 0

0 −d e 1

0 0 1 −f









, lexdeg([d, e, c], [a, b, f ]).









−a b 0 0

b −c d 0

0 −d e 1

0 0 −1 −f









, lexdeg([d, e, f ], [a, b, c]).









a b 0 0

−b −c d 0

0 −d −e 1

0 0 1 −f









, lexdeg([d, c, a], [b, e, f ]).
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







−a b 0 0

b c d 0

0 −d e 1

0 0 −1 −f









, lexdeg([c, d, e], [a, b, f ]).









a b 0 0

b −c d 0

0 −d e 1

0 0 −1 −f









, lexdeg([c, d, e], [a, b, f ]).









−a b 0 0

b −c d 0

0 d e 1

0 0 −1 −f









, lexdeg([c, d, e], [a, b, f ]).

The authors of [11] point out that Pang [15] conducted a systematic search of the

potentially stable tree sign patterns for dimensions less than five. Based on the work

in [15], the authors of [11] identify four minimally potentially stable sign patterns

represented by A4,8 to A4,11 that are not contained in [10]. The pattern A4,11 is the

SAP H discussed before. We convert A4,8 and A4,9 into tridiagonal form (which we

still call A4,8 and A4,9) using permutation similarities, and then examine each of the

tridiagonal superpatterns of A4,8, A4,9 and A4,10.

We first note that

A4,8 =









0 + 0 0

+ − + 0

0 − + +

0 0 + 0









is SNS, and hence not PN (and so it is not an SAP).

Note that the following two superpatterns of A4,8 are equivalent:









0 + 0 0

+ − + 0

0 − + +

0 0 + −









,









+ + 0 0

+ − + 0

0 − + +

0 0 + 0









.

Using a suitable Gröbner basis, we can show that the first (and hence, the second) is

not PN:








0 + 0 0

+ − + 0

0 − + +

0 0 + −









,









0 a 0 0

b −c d 0

0 −e f g

0 0 h −k









, lexdeg([e, f, d, g, a], [h, c, k, b]).
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The other six tridiagonal superpatterns of A4,8 are found to be SAPs since each

of these is equivalent to a superpattern of H or of a sign pattern in Theorem 3.3.

Next, we find that each of the tridiagonal superpatterns of

A4,9 =









+ − 0 0

+ − + 0

0 + − +

0 0 + 0









is not PN, by using Gröbner bases:

A4,9 =









+ − 0 0

+ − + 0

0 + − +

0 0 + 0









,









a −b 0 0

c −d e 0

0 f −g h

0 0 k 0









, tdeg(a, c, d, b, e, f, g, h, k);









+ − 0 0

+ − + 0

0 + − +

0 0 + +









,









a −1 0 0

b −c 1 0

0 d −e 1

0 0 f 1









, lexdeg([a, b, c], [d, e, f ]),

where the Gröbner basis contains a polynomial equal to (e − 1)2f + 2f + df + 1;









+ − 0 0

+ − + 0

0 + − +

0 0 + −









is the first matrix in Theorem 3.6.

Finally, the (4, 3) entry of the 4th power of

A4,10 =









− + 0 0

− + + 0

0 + 0 +

0 0 − 0









is −, so that A4,10 is not PN.

The only other tridiagonal superpattern of A4,10 that was found to be not PN

(by using Gröbner bases) is the following:









− + 0 0

− + + 0

0 + − +

0 0 − 0









,









−a 1 0 0

−b c 1 0

0 d −e 1

0 0 −f 0









, tdeg(a, b, c, d, e, f).
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The other seven tridiagonal superpatterns of A4,10 are found to be SAPs since

each of these is equivalent to a superpattern of a sign pattern in Theorem 3.3.

¿From the above discussion, theorems, propositions and remarks on tridiagonal

patterns, we obtain the following theorem which provides necessary and sufficient

conditions for a 4 × 4 irreducible tridiagonal pattern to be an SAP.

Theorem 3.8. A 4 × 4 irreducible tridiagonal sign pattern is an SAP if and

only if it is potentially stable and potentially nilpotent.

In fact, we have identified the 4× 4 minimal irreducible tridiagonal SAPs, which

are specified in the following theorem.

Theorem 3.9. A 4×4 irreducible tridiagonal sign pattern is an SAP if and only

if it is a superpattern of a sign pattern equivalent to one of the following minimal

irreducible tridiagonal SAPs:

T4 =









− + 0 0

− 0 + 0

0 − 0 +

0 0 − +









, H =









− + 0 0

+ 0 + 0

0 − 0 +

0 0 + +









,









+ + 0 0

− − + 0

0 + 0 +

0 0 − −









,









+ + 0 0

− 0 + 0

0 − − +

0 0 − +









,









+ + 0 0

− 0 + 0

0 + − +

0 0 − +









,









− + 0 0

− + + 0

0 − − +

0 0 − 0









,









0 + 0 0

− − + 0

0 + − +

0 0 − +









,









0 + 0 0

+ + + 0

0 − − +

0 0 + −









.

Proposition 2.4, Corollary 2.5, and Theorem 3.8 then give us the following cul-

minating result.

Theorem 3.10. A 4×4 tree sign pattern is an SAP if and only if it is potentially

stable and potentially nilpotent.

In the interesting paper [4], the authors characterize all the 4 × 4 zero-nonzero

patterns that are spectrally arbitrary. For each spectrally arbitrary zero-nonzero

pattern, a signing of that zero-nonzero pattern that is spectrally arbitrary is provided.

However, as the authors point out, not every signing of a spectrally arbitrary zero-

nonzero pattern will result in a spectrally arbitrary sign pattern. What we have done

in this section is to precisely characterize the 4 × 4 tsp SAP’s.
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4. Some Open Questions. It is known that if A is an irreducible 3×3 pattern

with a positive and negative diagonal entry, then A is an SAP if and only if A is

PN. How far can we extend this result? It is not true in general for irreducible 4 × 4

patterns, as shown in [1]. But, what about for the class of 4 × 4 tridiagonal sign

patterns? In this case, is PN (together with positive and negative diagonal entries)

equivalent to being SAP? (This is to say, can we drop the potential stability condition

in Theorem 3.8?)

More generally, can we determine (up to equivalence) the irreducible 4 × 4 PN

patterns with a positive and a negative diagonal entry?

Does Theorem 3.10 somehow extend to the 5 × 5 case?

For PN patterns, is a rational realization always possible? That is, if A is PN,

does there always exist a rational B ∈ Q(A) that is nilpotent?

In [3], the authors give (up to equivalence) the irreducible 4 × 4 MIAPs that are

not an SAP, namely









∗ ∗ 0 0

0 0 ∗ ∗

∗ 0 0

0 0 ∗ ∗









,









∗ ∗ ∗ 0

∗ ∗ 0

0 0 0 ∗

∗ 0 0









,









∗ ∗ ∗ 0

∗ ∗ 0

0 0 ∗

0 0 0









Can this result be extended to 5 × 5 patterns, or n × n, in general?
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