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A NEW METHOD TO IMPROVE THE EFFICIENCY AND ACCURACY OF

INCREMENTAL SINGULAR VALUE DECOMPOSITION∗

HANSI JIANG† AND ARIN CHAUDHURI†

Abstract. Singular value decomposition (SVD) has been widely used in machine learning. It lies at the root of data

analysis, and it provides the mathematical basis for many data mining techniques. Recently, interest in incremental SVD

has been on the rise because it is well suited to streaming data. In this paper, we propose a new algorithm of incremental

SVD that is designed to improve both efficiency and accuracy during computation. More specifically, our proposed algorithm

takes advantage of the special structures of arrowhead and diagonal-plus-rank-one matrices involved in updating SVD models

to expedite the updating process. Moreover, because the singular values are computed independently, the proposed method

can be easily parallelized. In addition, as this paper shows, increasing rank can lead to more accurate singular values in the

updating process. Experimental results from synthetic and real data sets demonstrate gains in efficiency and accuracy in the

updating process.
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1. Introduction. In recent years, with massive technological breakthroughs in data gathering and

real-time data transmission, the analysis of streaming data has received more attention. The Internet of

Things (IoT), in which a variety of objects can gather, transmit, and share information in real time [28], is

an example that analyzing streaming data more efficiently and accurately has become an inevitable trend.

Therefore, machine learning techniques that can perform fast real-time analysis have become more popular.

Batch processing methods are less suitable for analyzing streaming data because an entire procedure has

to be run every time, and running batch methods is usually costly in both space and time. Although data

can be collected to form small batches to feed such procedures, latency is inevitably accumulated. Online

methods, on the other hand, are built to handle streaming data. These methods are usually incremental,

and they process new data points one at a time by updating an existing model. Thus, they are more efficient

than batch methods. Plus they usually have small computational costs to update models, so latency is more

controllable. Some online methods can have accuracy close to that of batch methods [10, 16, 23, 38].

Singular value decomposition [25], or SVD, is one of the linear algebra techniques most widely used in

machine learning. It factorizes a matrix A into A = UΣV>, where U and V are orthogonal matrices and

Σ is a rectangular diagonal matrix with nonnegative values on its diagonal. SVD serves as a fundamental

part of principal component analysis (PCA) by performing dimension reduction and extracting the most

important information from data. It also provides the mathematical basis of many data mining and machine

learning applications, such as recommending systems [32], numerical weather prediction [29], community

detection [21], signal processing [25], and text mining [3]. Many attempts have been made to incorporate

SVD into an online or incremental method so it can fit a streaming data context. Berry et al. [4] used SVD

models in information retrieval and used SVD updating to adapt new information to systems. Zha and Simon
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[42] introduced an early model of incremental SVD. Brand [6] developed an extended version of Zha and

Simon’s method. Chin et al. [14] introduced a method to perform incremental kernel SVD. Iwen and Ong

[22] introduced a distributed hierarchical algorithm to compute incremental SVD for blocks of data matrices

and then combine the results to form the SVD of the entire matrix. Zhou et al. [44] provided an improved

incremental algorithm to approximate SVD. Cheng et al. [13] introduced algorithms for incremental SVD to

detect change points in dynamic networks. Meyer [26] discussed how rank is affected by rank-one updates

of SVD.

The model proposed by Bunch and Nielsen [9] and extended by Brand [6, 7, 8] is arguably one of most

widely adapted models for online SVD model updating [31]. It has various applications, such as online robust

PCA [31], online subspace tracking [2, 24], recommending systems [7], and multivariate time series similarity

measurement [41]. Although this model is intuitive and easy to implement, some research has shown that it

is not accurate in some cases [1, 11, 43]. Moreover, as this paper will show, the efficiency of the method can

be improved. In our paper, we propose an improved incremental SVD algorithm that aims to overcome the

drawbacks of the basic incremental SVD method. As shown in the next sections, the proposed algorithm

is more efficient than the basic algorithm, with no additional loss of accuracy. We also show that if higher

rank is used in the process, accuracy can even be improved.

The paper is organized as follows. Section 2 provides some preliminary research. Section 3 introduces

the proposed incremental SVD algorithm. Section 4 explains the connection between rank and accuracy. In

Section 5, the proposed algorithm is applied to some data sets and compared with other algorithms. Finally,

in Section 6, we give our conclusions.

In this paper, traditional linear algebra notation is used. Bold lowercase letters represent vectors, and

bold capital letters represent matrices.

2. Preliminary research. In this section, we introduce some preliminary work that will serve as

components of the proposed algorithm.

2.1. Arrowhead matrices and DPR1 matrices. In this paper, the proposed algorithm will utilize

the special structures of arrowhead matrices and diagonal-plus-rank-one (DPR1) matrices. A symmetric

arrowhead matrix discussed in this paper has nonzero entries only on its diagonal and last row and last

column [27]. A triangular arrowhead matrix has nonzero entries only on its diagonal and last row or last

column (but not both) [37]. A DPR1 matrix [18] has the form

(2.1) D + αuv>,

where D is a diagonal matrix, α ∈ R, and u and v are vectors.

2.2. The basic incremental SVD algorithm. The incremental SVD model developed by Bunch and

Nielsen [9] and extended by Brand [6, 7, 8] is sometimes referred to as the basic incremental SVD algorithm.

It states that if the thin SVD of a data matrix A ∈ Rm×n,

(2.2) A = UΣV>,

is known, where U ∈ Rm×r, V ∈ Rn×r, and Σ ∈ Rr×r, then updating operations, including appending a

row to A and removing a row from A, can be written as rank-one updates of the current SVD model. For
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example, when appending a row vector d to A, we have

A′ =

[
A

0

]
+ em+1d

>

=

[
U

0

]
ΣV> + em+1d

>

=

[
U 0

0 1

] [
Σ 0

0 1

] [
V>

d>

]
,

(2.3)

where em+1 is a unit vector with one as its m+ 1 entry. Applying the Gram–Schmidt algorithm to d w.r.t.

V gives

x = V>d,

p = d−VV>d,

ρ = ‖p‖2,
r = p/ρ,

(2.4)

and then A′ can be written as

(2.5) A′ =

[
U 0

0 1

] [
Σ 0

x> ρ

] [
V>

r>

]
.

When removing the first row of A, suppose d> is the row vector. Then we have[
0

A′

]
= A− e1d

>

= UΣV> − e1d
>

=
[
U e1

] [Σ 0

0 1

] [
V>

−d>

]
.

(2.6)

Applying the Gram–Schmidt algorithm to e1 w.r.t. U gives

y = U>e1 = U(1, :)>,

p = e1 −UU>e1,

ρ = ‖p‖2,
r = p/ρ,

(2.7)

and then A′ can be written as

(2.8) A′ =
[
U r

] [Σ− yy>Σ 0

−ρy>Σ 0

] [
V>

0

]
.

Let

(2.9) K =

[
Σ 0

x> ρ

]
,
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for the appending case, or let

(2.10) K =

[
Σ− yy>Σ 0

−ρy>Σ 0

]
,

for the removing case. Suppose the SVD of K is

(2.11) K = U′Σ′V′
>
.

Thus

(2.12) A′ =

([
U 0

0 1

]
U′
)

Σ′
(

V′>
[
V>

r>

])
,

is the SVD of A′ for the appending case, and

(2.13) A′ =
([

U r
]
U′
)
Σ′
(

V′>
[
V>

0

])
,

is the SVD of A′ for the removing case. It should be noted that while Eq. (2.1) uses the thin SVD of matrix

A as the initialization of incremental SVD, in practice, it is also valid to use a low rank approximation of A

to start the process, especially when the rank of A is much larger than the desired rank.

2.3. Rank-one modifications of SVD. Stange [34] introduced a method of updating the SVD model

of a matrix subject to a rank-one modification. Suppose the SVD of A is A = UΣV> and its rank-one

modification is

(2.14) A′ = A + ab> = U′Σ′V′
>
,

where a and b are vectors. By letting b̃ = UΣV>b and β = b>b, we have

(2.15) A′A′
>

= UΣΣ>U> + b̃a> + ab̃> + βaa>.

Combining the last three terms in Eq. (2.15) gives

(2.16) U′Σ′Σ′
>

U′
>

= UΣΣ>U> +
[
a b̃

] [β 1

1 0

] [
a>

b̃>

]
.

Diagonalizing the matrix in the middle gives

U′Σ′Σ′
>

U′
>

= UΣΣ>U> +
[
a b̃

]
Q

[
ρ1 0

0 ρ2

]
Q>

[
a>

b̃>

]
= UΣΣ>U> + ρ1āā> + ρ2b̄b̄>,

(2.17)

where
[
ā b̄

]
=
[
a b̃

]
Q. Next, write the first two terms in Eq. (2.17) as

(2.18) UΣΣ>U> + ρ1āā> = U(ΣΣ> + ρ1ââ>)U>,

and the middle part is a symmetric DPR1 matrix. Suppose the spectral decomposition of ΣΣ> + ρ1ââ> is

PDP>. Then the right-hand side of Eq. (2.17) can be written as

(2.19) UPDP>U> + ρ2b̄b̄>,

which is also a symmetric DPR1 problem. Therefore, the original problem of computing the SVD of A′ in

Eq. (2.14) can be transformed to solving two symmetric DPR1 matrices, and thus U′ and Σ′ can be solved.

Similarly, by solving A′
>

A′, the singular vectors in V′ can also be solved.
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2.4. Spectral decomposition of arrowhead and DPR1 matrices. Stor et al. published two papers

[36, 37] about accurate spectral decomposition of arrowhead matrices and DPR1 matrices. The two cases

are similar because both involve solving roots of secular equations [39]. In this section, the method of solving

spectral decomposition of arrowhead matrices [37] is presented. Suppose the eigenvalue problem is

(2.20) A =

[
D v

v> ρ

]
,

where

(2.21) D = diag(d1, d2, . . . , dn),

is a diagonal matrix with d1 > d2 > · · · > dn and

(2.22) v =
[
v1 v2 · · · vn

]>
, vi 6= 0.

For the special case where vi = 0 for some i, it is straightforward to see that di is an eigenvalue of A and unit

vector ei is its corresponding eigenvector. In Eq. (2.22), the eigenvalues λi of A are the zeros of a secular

equation [17], and they follow Cauchy’s interlacing property [39]:

(2.23) λ1 > d1 > λ2 > d2 > · · · > λn > dn.

Suppose λ is an eigenvalue of A and di is a diagonal entry in D closest to λ. By Eq. (2.23), λ is either λi
or λi+1. Let

(2.24) Ai = A− diI =


D1 0 0 v1

0 0 0 vi
0 0 D2 v2

v>1 vi v>2 a

 ,
be the shifted matrix, where

D1 = diag(d1 − di, d2 − di, . . . , di−1 − di),
D2 = diag(di+1 − di, di+2 − di, . . . , dn − di),

v1 =
[
v1 v2 · · · vi−1

]>
,

v2 =
[
vi+1 vi+2 · · · vn

]>
,

a = ρ− di.

(2.25)

It is clear that (λ,v) is an eigenpair of A if and only if (λ− di,v) is an eigenpair of Ai. The inverse of Ai

can be written as

(2.26) A−1i =


D−11 w1 0 0

w>1 β w>2 1/vi
0 w2 D−12 0

0 1/vi 0 0

 ,
where

w1 = −D−11 v1
1

vi
,

w2 = −D−12 v2
1

vi
,

β =
1

v2i

(1

ρ
+ v>1 D−11 v1 + v>2 D−12 v2

)
.

(2.27)
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Once A−1i is formed, its leftmost or rightmost eigenvalue ν can be solved by bisection. Hence, the desired

eigenvalue of A is di+ 1/ν, and the corresponding eigenvector can also be solved. More details can be found

in Stor et al. [36] and [37].

One advantage of the algorithms developed by Stor et al. is that the calculations of each eigenpair are

independent of others. This advantage provides the possibility of using parallelization to solve the spectral

decomposition problem of arrowhead and DPR1 matrices.

3. The proposed incremental SVD method. In this section, our proposed algorithm for computing

incremental SVD is introduced. As will be shown later, the algorithm fully utilizes the special structures of

the matrices involved in the updating process. It is worth noting that the proposed algorithm provides the

same results as the basic incremental SVD algorithm, if the same rank is used.

3.1. Adding a row to a matrix. Since reordering rows of a matrix changes only the order of the rows

in U, without loss of generality we can consider adding a row to a matrix and updating its SVD model to

be the same as appending a row to the end of the matrix, with a permutation matrix applied to rearrange

the rows.

The first steps of the proposed algorithm are the same as in the basic incremental SVD algorithm. The

algorithm starts from Eq. (2.3) and follows the steps until Eq. (2.5). Instead of calculating the full SVD of

the middle matrix K, we observe that K has the form of a triangular arrowhead matrix, and thus

(3.1) KK> =

[
Σ2 Σx

x>Σ> ρ2 + x>x

]
,

is a symmetric arrowhead matrix. Then the algorithm to calculate the spectral decomposition of arrowhead

matrices developed by Stor et al. [37] can be applied to KK>. The algorithm that inserts a row into an SVD

model and updates the model is shown in Algorithm 1. The algorithm svd-tri-ah within Algorithm 1 that

is used to calculate the SVD of a triangular arrowhead matrix, developed by Stor et al. [37], is shown in the

appendices. It can be seen that in this case, the basic incremental SVD algorithm in Section 2.2 is combined

with the algorithm that calculates the spectral decomposition of arrowhead matrices in Section 2.4.

Algorithm 1 Incremental SVD: Adding a Row

Input: U0,Σ0,V0,d, r

% Updating an existing SVD model, with a new row d

% added at the end of the original matrix

x← V>0 d

z← d−V0x

ρ← ‖z‖2
p← z/ρ

[G,Σ,H]← svd-tri-ah(Σ0,x, ρ, r)

U← [U0 ·H(1 : r, 1 : r); H(r + 1, 1 : r)]

V← [V0 ·G(1 : r, 1 : r) + p ·G(r + 1, 1 : r)]

return U,Σ,V

3.2. Removing a row from a matrix. As with adding a row to a matrix, without loss of generality

we can consider removing the first row from the matrix, with a permutation matrix applied.
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The first steps of the proposed algorithm for removing the first row from the matrix are the same as

in the basic incremental SVD algorithm. The algorithm starts from Eq. (2.6) and follows the steps until

Eq. (2.8). The middle matrix K is

(3.2) K =

[
Σ− yy>Σ 0

−ρy>Σ 0

]
.

Since K can be written as

(3.3) K =

[
Σ 0

0 0

]
+

[
y

ρ

] [
−y>Σ 0

]
,

it is an asymmetric DPR1 matrix. Hence we can apply Stange’s method, introduced in Section 2.3, to

transform the asymmetric DPR1 matrix problem into two symmetric DPR1 matrix problems. Then the

algorithm to compute the spectral decomposition of symmetric DPR1 matrix developed by Stor et al. [36]

can be applied twice to solve the singular values and left singular vectors of K. After that, since

(3.4) K = U′Σ′V′>,

the matrix V′ that contains the right singular vectors of K can be derived directly by

(3.5) V′ = K>U′./Σ′.

where the operation ./ denotes elementwise division. The details of the algorithm are shown in Algorithms

2 and 3. The procedure dpr1-eig in Algorithm 3 can be found in the appendices. It improves a little on

the version of Stor et al.’s original method by eliminating some inconvenience in implementation.

It can be seen that in the case of removing the first row from the matrix, the basic incremental SVD

algorithm is combined with the algorithm that calculates the spectral decomposition of DPR1 matrices.

Algorithm 2 Incremental SVD: Removing a Row

Input: U0,Σ0,V0

% Remove the first row of U0 and update the SVD model

y← U0(1, :)>, z← e−U0y, r ← size(Σ0, 1)

ρ← ‖z‖2, q← z/ρ

a← [−Σ0. ∗ y; 0]

b← [y; ρ]

[G,Σ]← dpr1-one-side-svd([Σ0; 0],a,b, r)

H← K>G./Σ

U← U0(2 :, :) ·H(1 : r, 1 : r) + q(2 :, :) ·H(r + 1, 1 : r)

V← V0 ·G(1 : r, 1 : r)

return U,Σ,V

3.3. Complexity. The preceding discussion shows that the main difference between the proposed

method and the basic incremental algorithm is whether to update the arrowhead or DPR1 matrices, or

to run a regular SVD on the matrix and then truncate the resulting matrices. Since the proposed algorithm

fully utilizes the special structures of arrowhead matrices and DPR1 matrices, calculating the SVD of these

matrices is faster than with traditional methods. When our algorithm is applied to the middle matrix K,
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Algorithm 3 One-Side Low-Rank SVD for DPR1 Matrices

Input: D,a,b, r

% Computes the singular value decomposition of a

% diagonal-plus-rank-one matrix, D + ρ · ab>

n← length(a), b̃← D · b
β ← b>b, H← [β, 1; 1, 0]

[Q,T] = schur(H)

[ρ1, ρ2]← [T(1, 1),T(2, 2)]

[ā, b̄]← [a, b̃] ·Q
[S1,U1]← dpr1-eig(D2, ā, ρ1, n)

b̂← U>1 b̄

[S2,U2]← dpr1-eig(S1, b̂, ρ2, r)

U← U1 ·U2

S← S
1/2
2

return U,S

the time complexity of calculating the SVD of a triangular arrowhead matrix or a DPR1 matrix is O(r2)

because the size of K is (r+1)× (r+ 1) in the appending case or r× r in the removing case. Moreover, since

each singular value is calculated independently, the proposed algorithm can benefit from parallelization. As

will be shown later in the numerical experiments, the algorithm is indeed more efficient with multithreading

when the desired rank is high.

In our implementation, the space complexity of calculating the SVD of a triangular arrowhead matrix

and a DPR1 matrix is O(r2+(5+2t)r) and O(2r2+(5+2t)r), respectively, where t is the number of threads.

4. Rank and accuracy. In this section, the relationship between accuracy of incremental SVD and

rank is discussed. The discussion is motivated by a simple question. Suppose that when running incremental

SVD we are interested in the first r∗ singular values, but instead of running with rank r∗, we run with a

rank that is higher than r∗. Are we able to get more accurate results for the first r∗ singular values? We

already know that if we use full rank, the singular values are accurate. Is there a trend in which the higher

the rank we use, the more accurate the singular value we can derive?

We conduct some simple experiments to test our conjecture. We run incremental SVD on a 2000× 500

matrix, and we let r∗ take three different values—20, 50, and 100—and let rank r vary from r∗ to 500. As

the initialization, a full SVD is performed with the first 1000 rows, then truncated to have rank r. For each

value of rank, we run incremental SVD, appending rows to gradually increase the size of the matrix until it

has 2000 rows. At the end of the process, the absolute error of σr∗ is computed and plotted. The plot is

shown in Figure 1. Similar experiments are performed for removing observations from an SVD model, and

the results are shown in Figure 2.

Interesting patterns can be seen in both Figures 1 and 2. For example, in the appending case, if r∗ = 20,

the error of σ20 is around 80 if the rank is 20, but only 15 if the rank is 75. Similarly, in the removing case,

if r∗ = 50, the error of σ50 is around 140 if the rank is 50, but only 40 if the rank is 100. So in this case,

rank indeed has a relationship to accuracy. But is this always the case? The special structures of arrowhead

and DPR1 matrices can help analyze this. In this section, we use perturbation analysis to show that during

the incremental SVD process, with the higher rank used, the error of σr∗ has a smaller bound, so it is more

likely that the singular values will have greater accuracy.
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Figure 1: The plot of absolute error of σr∗ , r∗ = 20, 50, 100, for adding rows to a matrix. X-axis is the rank

used in incremental SVD, and y-axis is the absolute error.

4.1. Appending rows to a matrix. In this section, the relationship between rank and accuracy for

appending rows to a matrix is provided.

Theorem 4.1. Suppose r is the rank used in an incremental SVD process, 1 ≤ r∗ ≤ r, and k is the

index of the current row. The triangular arrowhead matrix Kr,k is defined as

(4.1) Kr,k =

[
Σr,k 0

x>r,k ρr,k

]
,

where Σr,k, xr,k, and ρr,k follow their definitions in Section 2.2. The distance between the r∗th singular

value of Kr,k, σ̃r∗ , and its true value, σr∗,k, is bounded by

(4.2) |σr∗,k − σ̃r∗,k| ≤
k−1∑
i=1

σr+1,i + 2

k−1∑
i=1

ρ2r,i.

Proof. We first state Weyl’s theorem [35], because it provides bounds of the distance between singular

values of an unperturbed matrix and those of a perturbed matrix:

Lemma 4.2 (Weyl). Suppose σ1 ≥ σ2 ≥ · · · ≥ σn are singular values of A and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n are

singular values of A + E. Then for 1 ≤ i ≤ n we have
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Figure 2: The plot of absolute error of σr∗ , r∗ = 20, 50, 100, for removing rows from a matrix. X-axis is the

rank used in incremental SVD, and y-axis is absolute error.

(4.3) |σ̃i − σi| ≤ ‖E‖2,

where ‖ · ‖2 is the spectrum norm.

Suppose we start the incremental SVD process by truncating a full SVD of the original matrix with rank

r (i.e., A ≈ UrΣrVr), Σr ∈ Rr×r, and the approximation becomes equality when r = n. Note that after

truncation, although the product is an approximation of A, the singular values in Σr are accurate. The

middle matrix Kr has the form

(4.4) Kr =

[
Σr 0

x>r ρr

]
.

When r = n, we have

(4.5) Kn =

Σr 0 0

0 Σn−r 0

x>r x>n−r ρn

 ,
where

(4.6)
[
x>r x>n−r

]
= d>

[
Vr Vn−r

]
= d>V,
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and

(4.7)

[
Σr

Σn−r

]
= Σ.

We can pad Kr with zeros to form K′r so that K′r has the same size as Kn:

(4.8) K′r =

Σr 0 0

0 0 0

x>r 0 ρr

 .
It is clear that K′r and Kr have the same nonzero eigenvalues. We know that if Kn is used to calculate the

singular values, the results are accurate. If r < n, there is error in the singular values that are calculated

with Kr, because not all the information is used. By Weyl’s theorem, this error is bounded by the largest

singular value of the residual term:

Kn −K′r =

0 0 0

0 Σn−r 0

0 x>n−r ρn − ρr


=

0 0 0

0 Σn−r 0

0 0 0

+

0

0

1

 [0 x>n−r ρn − ρr
]
.

(4.9)

By applying Weyl’s theorem again to Kn −K′r, we have

(4.10) σ1(Kn −K′r) ≤ σr+1 + x>n−rxn−r + (ρn − ρr)2.

Next, we prove a relation between ρn, ρr, and xn−r.

Lemma 4.3. ρn, ρr, and xn−r satisfy

(4.11) ρ2n − ρ2r + x>n−rxn−r = 0.

Proof. It can be easily verified that

(4.12) x>n−rxn−r = x>nxn − x>r xr.

Then we have

(4.13) ρ2n − ρ2r + x>n−rxn−r = ρ2n − ρ2r + x>nxn − x>r xr.

Since xr = V>r d and ρr = ‖d−Vrxr‖2, we have

ρ2r + x>r xr = (d−VrV
>
r d)>(d−VrV

>
r d) + d>VrV

>
r d

= d>d.
(4.14)

Here we use the fact that V>r Vr is an identity matrix. When r = n, we have ρ2n + x>nxn = d>d as well.

Therefore, we have ρ2n − ρ2r + x>n−rxn−r = 0.
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Using Lemma 4.3 and Eq. (4.10), we derive the following:

σ1(Kn −K′r) ≤ σr+1 + x>n−rxn−r + ρ2n + ρ2r − 2ρrρn

= σr+1 + 2ρr(ρr − ρn)

≤ σr+1 + 2ρ2r.

(4.15)

Hence by Weyl’s theorem, if σr∗ is the r∗th singular value of Kn, r∗ ≤ r, and σ̃r∗ is the r∗th singular value

of Kr, then

(4.16) |σr∗ − σ̃r∗ | ≤ σr+1 + 2ρ2r.

Since ρr = ‖d −Vrxr‖2, both σr+1 and ρr are larger when r is smaller. Equation (4.16) tells us that the

error of σ̃r∗ is controlled by σr+1 and the “residual” of d after we apply the Gram–Schmidt algorithm to it.

It is straightforward to see that when the rank is higher, the residual is smaller. So both terms are directly

controlled by rank. Therefore, higher rank leads to smaller bound of error for the singular values when we

start the incremental SVD process from an accurate initialization. Then during the process, at t = k, the

matrix Kr,k can be written as

(4.17) Kr,k =

[
Σr,k + ∆k 0

x>r,k ρr,k

]
.

In Eq. (4.17), Kr,k is the Kr matrix for the kth row. Σr,k is the diagonal matrix containing the accurate

singular values at the beginning of the updating process for the kth row, and ∆k contains the error of σ̃i,k−1
on its diagonal entries. xr,k and ρr,k are xr and ρr for the kth row, respectively. For simplicity, we focus on

the error in the singular values and ignore the error in xr,k and ρr,k. As in the preceding analysis, we can

define Kn,k and K′r,k to be

(4.18) Kn,k =

Σr,k 0 0

0 Σn−r,k 0

x>r,k x>n−r,k ρn,k

 ,
and

(4.19) K′r,k =

Σr,k + ∆k 0 0

0 0 0

x>r,k 0 ρr,k

 .
And the residual matrix is

Kn,k −K′r,k =

−∆k 0 0

0 Σn−r,k 0

0 x>n−r,k ρn,k − ρr,k

 =

−∆k 0 0

0 Σn−r,k 0

0 0 0

+

0

0

1

[0 x>n−r,k ρn,k − ρr,k
]
.

(4.20)
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Let δk−1 be the bound of |σr∗,k−1 − σ̃r∗,k−1|. Then δk−1 ≥ max(|∆k(i, i)|), and we can derive

σ1(Kn,k −K′r,k) ≤ max(|∆k(i, i)|, σr+1,k) + 2ρ2r,k

≤ max(|∆k(i, i)|) + σr+1,k + 2ρ2r,k

≤ δk−1 + σr+1,k + 2ρ2r,k.

(4.21)

The expressions of the bounds of |σr∗,k − σ̃r∗,k| for k = 2, 3, 4, . . . are

|σr∗,2 − σ̃r∗,2| ≤ (σr+1,1 + σr+1,2) + 2(ρ2r,1 + ρ2r,2)

|σr∗,3 − σ̃r∗,3| ≤ (σr+1,1 + σr+1,2 + σr+1,3) + 2(ρ2r,1 + ρ2r,2 + ρ2r,3)

...

(4.22)

Thus,

(4.23) |σr∗,k − σ̃r∗,k| ≤
k−1∑
i=1

σr+1,i + 2

k−1∑
i=1

ρ2r,i.

It is easy to see that both terms in Eq. (4.23) are larger with smaller r. Therefore, the error of σ̃r∗ is smaller

with larger rank.

Equation (4.2) can be understood in such a way that the bound of error is controlled by the (r + 1)th

singular values and the “residuals” of the appended rows after applying the Gram–Schmidt algorithm.

Therefore, both terms are directly controlled by the rank used in the process. Since both terms in Eq. (4.2)

are larger with lower r, the error of σ̃r∗ has a smaller upper bound with higher rank. This result is consistent

with our observations in Figure 1.

4.2. The case of removing rows. In this section, the bound of error for removing rows from a matrix

is provided.

Theorem 4.4. Suppose r is the rank used in an incremental SVD process, 1 ≤ r∗ ≤ r, and k is the

index of the current row. The triangular arrowhead matrix Kr,k is defined as

(4.24) Kr,k =

[
Σr,k 0

0 0

]
+

[
yr,k
ρr,k

] [
−y>r,kΣr,k 0

]
,

where Σr,k, yr,k, and ρr,k follow their definitions in Section 3.2. Suppose the r∗th singular value of Kr,k is

σ̃r∗,k and its true value is σr∗,k. Then when k = 1, the bound of error of the r∗th singular value of Kr,1 is

(4.25) |σr∗,1 − σ̃r∗,1| ≤ σr+1,1 + (y>n,1Σ
2
n,1yn,1)

1
2 .

When k > 1, suppose δk−1 is the bound of |σr∗,k−1 − σ̃r∗,k−1|. The bound of error is given by

(4.26) |σr∗,k − σ̃r∗,k| ≤ 2δk−1 + σr+1,k + (y>n,kΣ
2
n,kyn,k)

1
2 .

Proof. The analysis for removing a row from a matrix is a little different from the analysis for appending

a row to a matrix, because for removing a row, Kr is an asymmetric DPR1 matrix rather than an arrowhead

matrix:
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Kr =

[
Σr 0

0 0

]
+

[
yr
ρr

] [
−y>r Σr 0

]
=

[
Σr 0

0 0

]
+

[
−yry

>
r Σr 0

−ρry>r Σr 0

]
,

(4.27)

where yr = U(1, 1 : r)> and ρr = ‖e−Uryr‖2. When r = n, Kn can be written as

Kn =

[
Σn 0

0 0

]
+

[
yn
ρn

] [
−y>nΣn 0

]
=

Σr 0 0

0 Σn−r 0

0 0 0

+

 yr
yn−r
ρn

 [−y>r Σr −y>n−rΣn−r 0
]
,(4.28)

where Σn−r = diag(σr+1, σr+2, . . . , σn) and yn−r = U(1, r + 1 : n)>. The updated singular values are

accurate if Kn is used. We can pad Kr with zeros to form matrix K′r so that K′r has the same size as Kn:

(4.29) K′r =

Σr 0 0

0 0 0

0 0 0

+

−yry
>
r Σr 0 0

0 0 0

−ρry>r Σr 0 0

 .
It is easy to see that Kr and K′r have the same nonzero singular values. Also note that

ρ2r = (e−Uryr)
>(e−Uryr)

= 1− e>Uryr − y>r U>r e + y>r U>r Uryr

= 1− y>r yr.

(4.30)

The residual matrix Kn−r can be defined as Kn−r = Kn −K′n−r. Let

(4.31) E =

 0 −yry
>
n−rΣn−r 0

−yn−ry
>
r Σr −yn−ry

>
n−rΣn−r 0

(ρr − ρn)y>r Σr −ρny>n−rΣn−r 0

 .
Then

(4.32) Kn−r = Kn −K′n−r =

0 0 0

0 Σn−r 0

0 0 0

+ E.

It follows from Weyl’s theorem that if σr∗ is the r∗th singular value of Kn, r∗ ≤ r, and σ̃r∗ is the r∗th

singular value of Kr, then

(4.33) |σr∗ − σ̃r∗ | ≤ ‖Kn−r‖2 = σ1(Kn−r).

Applying Weyl’s theorem again to Kn−r in Eq. (4.32) gives

(4.34) |σ1(Kn−r)− σr+1| ≤ ‖E‖2.

Combining Eqs. (4.33) and (4.34) gives

(4.35) |σr∗ − σ̃r∗ | ≤ σr+1 + σ1(E).
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We can further derive

σ2
1(E) ≤ ‖E‖2F

= Tr(E>E)

= (y>n−rΣ
2
n−ryn−r)(y

>
r yr + y>n−ryn−r + ρ2n)

+ (y>r Σ2
ryr)(y

>
r yr + (ρr − ρn)2).

(4.36)

From Eq. (4.30), we can derive

(4.37)

ρ2r = 1− y>r yr,

ρ2n = 1− y>n yn,

ρ2r − ρ2n = y>n−ryn−r,

ρr ≥ ρn.

Thus, Eq. (4.36) can be further written as

σ2
1(E) ≤ (y>n−rΣ

2
n−ryn−r) + (y>r Σ2

ryr)(1− 2ρrρn + ρ2n)

≤ (y>n−rΣ
2
n−ryn−r) + (y>r Σ2

ryr)(1− ρ2n)

≤ y>n−rΣ
2
n−ryn−r + y>r Σ2

ryr

= y>nΣ2
nyn.

(4.38)

Combining Eq. (4.38) with Eq. (4.35) gives

(4.39) |σr∗ − σ̃r∗ | ≤ σr+1 + (y>nΣ2
nyn)

1
2 .

Since (y>nΣ2
nyn)

1
2 is constant, the right-hand side of Eq. (4.39) is controlled by σr+1. Therefore, the bound

of error of σ̃r∗ is smaller with higher rank when we start the incremental SVD process from an accurate

initialization.

During the updating process, at t = k, the matrix Kr,k can be written as

(4.40) Kr,k =

[
Σr,k + ∆k 0

0 0

]
+

[
−yr,ky

>
r,k(Σr,k + ∆k) 0

−ρr,ky>r,k(Σr,k + ∆k) 0

]
.

In Eq. (4.40), Kr,k is matrix Kr for the kth row. Σr,k is a diagonal matrix containing the accurate singular

values at the beginning of the updating process for the kth row, and ∆k contains the error of σ̃i,k−1. yr,k
and ρr,k are yr and ρr for the kth row, respectively. For simplicity, we focus on the error in the singular

values and ignore the error in yr,k and ρr,k. As in the preceding analysis, we can define Kn,k and K′r,k to be

(4.41) Kn,k =

Σr,k 0 0

0 Σn−r,k 0

0 0 0

+

 yr,k
yn−r,k
ρn,k

[−y>r,kΣr,k −y>n−r,kΣn−r,k 0
]
,

and

(4.42) K′r,k =

Σr,k + ∆k 0 0

0 0 0

0 0 0

+

−yr,ky
>
r,k(Σr,k + ∆k) 0 0

0 0 0

−ρr,ky>r,k(Σr,k + ∆k) 0 0

 .
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And the residual matrix is

(4.43) Kn,k −K′r,k =

−∆k 0 0

0 Σn−r,k 0

0 0 0

+

yr,k
0

ρr,k

[y>r,k∆k 0 0
]

+ Ek,

where Ek has the form in Eq. (4.31). Let δk−1 be the bound of |σr∗,k−1 − σ̃r∗,k−1|. Then δk−1 ≥
max(|∆k(i, i)|), and we can derive that when k > 1,

σ1(Kn,k −K′r,k) ≤ max(|∆k(i, i)|, σr+1,k)

+ ((y>r,k∆2
kyr,k)(y>r,kyr,k + ρ2r,k))1/2

+ (y>n,kΣ
2
n,kyn,k)1/2

≤ max(|∆k(i, i)|)

+ σr+1,k + (y>r,k∆2
kyr,k)1/2

+ (y>n,kΣ
2
n,kyn,k)1/2

≤ 2 max(|∆k(i, i)|) + σr+1,k

+ (y>n,kΣ
2
n,kyn,k)1/2

≤ 2δk−1 + σr+1,k

+ (y>n,kΣ
2
n,kyn,k)1/2.

(4.44)

So for k > 1,

(4.45) |σr∗,k − σ̃r∗,k| ≤ 2δk−1 + σr+1,k + (y>n,kΣ
2
n,kyn,k)1/2.

We have proven that when k = 1, δ1 and σr+1,k are both smaller with larger rank, and (y>n,kΣ
2
n,kyn,k)1/2 is

constant for each k. Hence by induction, the bound of error is smaller with larger rank.

In Eqs. (4.25) and (4.26), (y>n,kΣ
2
n,kyn,k)1/2 is a constant for each row, and σr+1,k is larger if r is smaller.

Therefore, the bound of error is smaller with higher rank. This result matches our observation in Figure 2.

4.3. Summary. In the preceding discussions, we used the special structures of arrowhead and DPR1

matrices to find the relationship between rank and accuracy of singular values, concluding that rank influences

the bound of error of the singular values. Without using the structures, these relationships are more difficult

to reveal. We find that with higher rank, the bound of error is smaller, meaning that the computed singular

values are more likely to be more accurate. As will be shown later, the experimental results support the

theoretical points.

5. Numerical experiments. We examine the performance of our proposed method, fast incremental

SVD (FISVD), with both synthetic and real data sets. First, we run FISVD, the basic incremental SVD

method (BSVD) [42], and a power-method-based algorithm (PSVD) [25] on both synthetic and real data

sets to compare their efficiency. Then we apply FISVD to some synthetic data sets to show that increasing

the rank leads to greater accuracy of incremental SVD. All algorithms are implemented in the C language.

5.1. Efficiency comparison. We compare the efficiency of the algorithms by recording the amount

of time it takes to run them on synthetic and real data sets. The purpose of the experiments is to compare
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Table 1: Run-time recordings of BSVD, FISVD, and PSVD methods on matrices with different numbers

of columns and ranks, moving window case. The BSVD column shows the better recording of running the

BSVD method between using 1 and 4 threads, and the PSVD column shows the better recording of running

the PSVD method between using 1 and 4 threads.

#Column Rank BSVD PSVD FISVD1 FISVD4

10 10 0.11 0.46 0.09 0.21

20 20 0.22 2.98 0.17 0.26

50 10 0.12 2.13 0.10 0.23

50 50 0.78 46 0.65 0.56

100 10 0.14 2.96 0.12 0.24

100 100 2.82 498 2.22 1.45

500 10 0.67 5.03 0.19 0.34

500 500 81 N/A 56 35

Table 2: Natural data used in experiments.

Data #Rows #Columns Rank Used

http 567,479 3 3

smtp 95,156 3 3

speech 3686 400 10, 400

musk 3062 166 10, 166

shuttle 49,097 9 9

covertype 286,048 10 10

mammography 11,183 6 6

satellite 6435 36 10, 36

annthyroid 7200 6 6

the efficiency of the algorithms with different matrix sizes and ranks used in the process. Synthetic matrices

with different numbers of columns are created for this purpose. The chosen numbers of columns are 10,

20, 50, 100, and 500. For each size, 50 full-rank random matrices are created, and the average run time is

recorded.

Several natural data sets are also used to compare speed. They include the http and smtp subsets of the

KDD CUP 99 data set [20], speech [30], musk [12], shuttle [15], forest cover1 (CoverType) [5], mammography2

[19, 40], satellite [33], and annthyroid [30]. The numbers of rows and columns are listed in Table 2.

We run all algorithms with one and four threads. For synthetic and real matrices with large numbers

of columns, two ranks are used: 10 and full rank (number of columns). As initialization, the first 1000 rows

of each data set are used to run a batch SVD, and the SVD is truncated to have the required rank. The

matrices are then updated in the form of moving windows, which involves appending a row to the current

1Copyright College of Natural Resources, Colorado State University—Used with permission.
2Copyright University of South Florida—Used with permission.
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Table 3: Run-time recordings of BSVD, FISVD, and PSVD methods on matrices with different numbers

of columns and ranks, moving window case. The BSVD column shows the better recording of running the

BSVD method between using 1 and 4 threads, and the PSVD column shows the better recording of running

the PSVD method between using 1 and 4 threads.

Data Rank BSVD PSVD FISVD1 FISVD4

http 3 21.49 14.75 12.91 13.03

smtp 3 3.59 2.30 2.18 2.13

speech 10 1.09 5.05 0.33 0.70

400 122.8 N/A 93.27 58.99

musk 10 0.35 1.27 0.19 0.45

166 13.06 N/A 11.33 7.18

shuttle 9 3.12 10.05 2.44 9.94

covertype 10 19.45 45.22 15.61 53.73

mammography 6 0.50 1.73 0.41 1.85

satellite 10 0.46 2.52 0.36 1.08

36 2.32 153.7 1.94 1.92

annthyroid 6 0.33 0.43 0.25 1.11

window and then removing the first row of the window. The results for synthetic data sets are listed in

Table 1, and the results for real data sets are listed in Table 3.

From Tables 1 and 3, it can be seen that the proposed FISVD algorithm is faster than its competitors

in updating the matrices. When the rank is low, single-thread FISVD is preferred because it does not

have much overhead in creating and destroying threads. On the other hand, multithreaded FISVD is more

efficient in processing high-rank matrix updating. This is because computing each singular value and its

corresponding singular vectors is independent of computing others, and thus the computations can be easily

parallelized.

5.2. Accuracy and rank. We use synthetic data to corroborate the point we made in Section 4—

that increasing the rank in an incremental SVD process can improve the accuracy of singular values. We

run FISVD on the 2000 × 500 random matrices generated in Section 5.1, with ranks of 5, 10, 25, and 50.

The initialization and updating schemes are the same as the ones in Section 5.1. The target rank r∗ is

5, meaning that we want to examine the accuracy of the five largest singular values in the incremental

SVD process. We also check the reconstructing error of the corresponding singular vectors (also referred as

principal components). The results are plotted in Figure 3.

It can be seen from the plots that the target singular values indeed have greater accuracy with higher

rank in the updating process. Moreover, their corresponding singular vectors have less reconstruction error.

The multithreaded FISVD algorithm has the potential to take advantage of this observation because it is

more efficient in computing high-rank incremental SVD.

6. Concluding remarks. This paper introduces a fast algorithm to compute incremental SVD. The

main difference between our proposed algorithm and the existing algorithm is that our algorithm fully

explores the special structures of arrowhead and DPR1 matrices in the pivotal part of the updating process.
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(a) First Singular Value (b) Second Singular Value (c) Third Singular Value

(d) Fourth Singular Value (e) Fifth Singular Value (f) Reconstruction Error

Figure 3: Mean relative error of the first five singular values and reconstruction error of corresponding

singular vectors. X-axis is the number of observations processed.

By updating the matrices effectively, we improve the efficiency of the entire updating process. Moreover, since

the singular values are calculated independently of each other, the algorithm benefits from parallelization.

The proposed method does not lose additional accuracy in the updating process. This paper also shows the

relationship between rank and accuracy of singular values. It shows that increasing rank leads to greater

accuracy by demonstrating that the error of singular values has a smaller bound with higher rank. Numerical

experiments are conducted to show gains in efficiency and accuracy. With high efficiency, potential benefit

from parallelization, and no additional loss of accuracy, the proposed algorithm is applicable to a wider range

of problems.

Future work of this research includes the following:

• exploring faster methods, such as inverse iteration, and leveraging the special structure of the ma-

trices involved

• Finding an optimal rank explicitly to increase accuracy, without adding too much computational

overhead

• Further optimizing the multithreading FISVD to increase its efficiency

• Exploring more internal relations between rank and accuracy. For example, it is interesting to

observe that larger singular values seem to have less relative error than smaller singular values

during the process shown in Figure 3.
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Appendices

A. Calculating singular value decomposition of triangular arrowhead matrices. Stor et al.

[37] developed a method to calculate the singular value decomposition (SVD) of triangular arrowhead ma-

trices. A triangular arrowhead matrix has the form

(A.1) T =

[
D v

0 α

]
,

where

(A.2) D = diag(d1, d2, . . . , dn),

is a diagonal matrix and

(A.3) v =
[
v1 v2 · · · vn

]>
,

is a vector. Further assume that vi 6= 0 and d1 > d2 > · · · > dn. The algorithm to calculate the SVD of T is

shown in Algorithm 4. Its core step to calculate eigenpairs of an arrowhead matrix is shown in Algorithm 5.

More details can be found in Stor et al. [37].

Algorithm 4 svd-tri-ah Procedure

Input: D,v, α, r

% Calculates the singular value decomposition with rank

% r of a triangular arrowhead matrix T = [D,v; 0, α]

for i = 1 to r do

[λi,vi]← ah-eig(D2,D · v, α+ v>v, i)

Σi ←
√
λi

V(:, i)← vi
U(1 : n− 1, i)←

√
λi · vi(1 : n− 1)./diag(D)

U(n, i)← α · vi(n)/
√
λi

U(:, i)← U(:, i)/‖U(:, i)‖2
end for

return U,Σ,V

B. Calculating spectral decomposition of symmetric DPR1 matrices. Stor et al. [36] developed

an algorithm to calculate the spectral decomposition of symmetric DPR1 matrices. A symmetric DPR1

matrix has the form

(B.1) A = D + ρvv>,

where

(B.2) D = diag(d1, d2, . . . , dn),

is a diagonal matrix and

(B.3) v =
[
v1 v2 · · · vn

]>
,
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Algorithm 5 ah-eig Procedure

Input: D,v, α, i

% Calculates the ith eigenpair of an irreducible arrowhead matrix A = [D,v; v>, α]

n← length(v) + 1

if i == 1 then

σ ← d1, k ← 1, side← ‘R’

else if i == n then

σ ← dn−1, k ← n− 1, side← ‘L’

else

d← diag(D)− di, a← α− di
mid← di−1/2

Fmid← a−mid−
∑

((v � v)./(d−mid))

if Fmid < 0 then

σ ← di, k ← i, side← ‘R’

else

σ ← di−1, k ← i− 1, side← ‘L’

end if

end if

[D1,D2,w1,w2,wξ, b]← invA(D,v, α, k)

ν ← bisect([D1; 0; D2], [w1,wξ,w2], b, side)

µ← 1/ν

u← vect(diag(D)− σ,v, µ)

λ← µ+ σ

return λ,u

is a vector. Further assume that ρ > 0, vi 6= 0, and d1 > d2 > · · · > dn. Here we provide a version of the

dpr1-eig procedure that improves a little on the original version. In the original version developed by Stor

et al., it is assumed that ρ > 0, and the authors state that if ρ < 0, we can simply consider A′ = −D−ρvv>.

But in fact, A′ violates the requirement that d1 > d2 > · · · > dn. If we want to try permuting di to have the

correct order, then the entries in v have to be permuted at the same time. These operations can introduce

some inconvenience in implementation, so we improved it so that both positive and negative ρ are supported.

The improved algorithm is provided in Algorithm 6. More details of the original algorithm can be found in

Stor et al. [36].

It is worth noting that while Stor et al. [36] and [37] performed their computations using standard

floating-point arithmetic with machine precision ε = 2−52 ≈ 2.220446e−16, they also discuss scenarios where

it becomes essential to double the working precision, enabling computations with numbers that possess

approximately 32 significant decimal digits. In this article, for the sake of simplicity and improved compre-

hension, we employ the algorithm without explicitly checking whether it is necessary to double the working

precision. Nevertheless, it is crucial to verify this condition when required to ensure the accuracy of the

results.
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Algorithm 6 dpr1-eig Procedure

Input: D,v, ρ, r

% Calculates the singular value decomposition with the rank r of a DPR1 matrix

n← length(v)

if ρ < 0 then

sign← −1

else

sign← 1

end if

for i = 1 to r do

if i == 1 and sign == 1 then

σ ← d1, k ← 1, side← ‘R’

else if i == n and sign == −1 then

σ ← dn, k ← n, side← ‘L’

else

d← diag(D)− di
mid← di−sign/2

Fmid← 1 + ρ
∑

((v � v)./(d−mid))

if Fmid > 0 then

σ ← di, k ← i

if ρ < 0 then

side← ‘L’

else

side← ‘R’

end if

else

σ ← di−sign, k ← i− sign
if ρ < 0 then

side← ‘R’

else

side← ‘L’

end if

end if

end if

[D1,D2,w1,w2, b]← invA(D,v, ρ, k)

ν ← bisect([D1; D2], [w1,w2], b, side)

µ← 1/ν

U(:, i)← vect(diag(D)− σ,v, µ)

Σ(i, i)← µ+ σ

end for

return U,Σ
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