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ON EIGENVALUES OF REAL SYMMETRIC INTERVAL MATRICES: SHARP BOUNDS

AND DISJOINTNESS∗

GABOR ZOLTAN FARAGO† AND ROBERT VAJDA†

Abstract. In this paper, the eigenvalue problem of real symmetric interval matrices is studied. First, in the case of 2× 2

real symmetric interval matrices, all the four endpoints of the two eigenvalue intervals are determined. These are not necessarily

eigenvalues of vertex matrices, but it is shown that such a real symmetric interval matrix can be constructed from the original

one. Then, necessary and sufficient conditions are provided for the disjointness of eigenvalue intervals. In the general n × n

case, due to Hertz, a set of special vertex matrices determines the maximal eigenvalue and a similar statement holds for the

minimal one. In a special case, namely if the right endpoints of the off-diagonal intervals are not smaller than the absolute

value of the left ones, he concluded the vertex matrix of the right endpoints provides the maximal eigenvalue. Generalizing it,

it is shown that in the case of real symmetric interval matrices with special sign pattern, a single vertex matrix determines one

of the extremal bounds.

Key words. Real symmetric interval matrix, Interval eigenvalue problem, Eigenvalue bounds, Vertex matrix of an interval

matrix, Disjointness of eigenvalue intervals.
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1. Introduction. In many real-life problems, we encounter some kind of uncertainty which can be

measurement error, manufacturing mistake or one originating from machine representation of numbers.

Applying intervals can be one of the ways to handle these problems. Interval analysis ([9]) was proposed

in the 1960s, and it has developed dynamically since then. One of its branches, the problem of computing

the eigenvalue bounds of interval matrices, originating from the eigenvalue problem of perturbated matrices

([11]), has been studied since the 1990s. Deif ([1]) has first introduced the interval eigenvalue problem.

Then, Rohn ([10]) gave bounds for the real and imaginary parts of complex eigenvalues. Hertz ([2, 3])

proposed a formula to determine the extremal eigenvalues of symmetric interval matrices, and Jian ([8]), in

the tridiagonal case, also gave the other two exact bounds of the extremal eigenvalue intervals. Furthermore,

Hladik et al. ([5, 6, 7]) and Su et al. ([12]) introduced several algorithms to approximate the eigenvalue set.

In this paper, we give the exact eigenvalue bounds of 2×2 real symmetric interval matrices and study the

disjointness of eigenvalue intervals. Then in the general n×n case, we show that, concerning real symmetric

interval matrices with special sign pattern, a single vertex matrix provides one of the extremal bounds.

2. Basic notations and lemmas. First, some notations and lemmas are introduced concerning real

symmetric interval matrices and basic linear algebra.

Let A,B ∈ Rn×m. Then, A ≤ B if aij ≤ bij , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Define the real square interval

matrix A and the real symmetric interval matrix AS as
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A :=
[
A,A

]
=
{
A ∈ Rn×n : A,A ∈ Rn×n, A ≤ A ≤ A

}
and

AS :=
{
A ∈ A : A = AT

}
.

Let S
[
A,A

]
be an alternative notation for AS . By

Ac :=
1

2

(
A+A

)
,

the midpoint matrix of A is denoted. Next, we recall some lemmas regarding basic linear algebra.

Lemma 2.1. A symmetric matrix A ∈ Rn×n has n real eigenvalues.

The eigenvalues of a symmetric matrix A ∈ Rn×n are ordered in a nonincreasing manner:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). Henceforth, the first and the last of these, namely λ1(A) and λn(A),

are called extremal eigenvalues for which the following holds.

Lemma 2.2. max
∥x∥2=1

xTAx = λ1(A) and min
∥x∥2=1

xTAx = λn(A) where the matrix A is symmetric and the

vectors, for which the extrema are attained, are the corresponding eigenvectors.

Extending the notation of eigenvalues, the j-th eigenvalue set of the symmetric interval matrix AS is defined

as λj(A
S) :=

{
λj(A) : A ∈ AS

}
. It is a compact interval which is stated in the following lemma.

Lemma 2.3. λj(A
S) = [λj(A

S),λj(A
S)] (j = 1, . . . , n).

Proof. The roots of the characteristic polynomial vary continuously with their coefficients, and AS is

compact. Thus, the eigenvalue set is the union of n compact intervals.

3. Hertz’s theorem. In this section, Hertz’s theorem, concerning the bounds λ1

(
AS
)
and λn

(
AS
)
,

is introduced. It says the maximal and minimal eigenvalue of a real symmetric interval matrix coincide with

the maximal and minimal eigenvalue of special sets of 2n−1 symmetric vertex matrices, respectively. To

make this precise, the following notations are introduced.

Let V [P,Q] be the set of symmetric vertex matrices determined by the symmetric matrices P and Q,

with notation,

V [P,Q] := {A ∈ S[P,Q] : akl ∈ {pkl, qkl}} .

Let {Oi}2
n−1

i=1 denote the set of orthant pairs where orthants are paired with their opposites and are or-

dered in reverse binary order, that is, the first pair is (+,+, . . . ,+) − (−,−, . . . ,−) and the last one is

(+,−, . . . ,−)− (−,+, . . . ,+). Bn stands for the n-dimensional unit sphere in Euclidean norm and let

Bi := Bn ∩Oi, 1 ≤ i ≤ 2n−1.

Obviously,

Bn =

2n−1⋃
i=1

Bi.

The matrices A
i
are defined as follows:

(1) aikl :=


qkk if l = k

qkl if xkxl ≥ 0, l ̸= k and x ∈ Bi

pkl if xkxl < 0, l ̸= k and x ∈ Bi

1 ≤ i ≤ 2n−1,
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thus,

A
i ∈ V [P,Q].

Since for a symmetric matrix A

xTAx =

n∑
k=1

akkx
2
k + 2

∑
1≤k<l≤n

aklxkxl,(2)

it can be noticed that

A
i ∈ argmax

A∈AS

xTAx ∀x ∈ Bi, 1 ≤ i ≤ 2n−1.(3)

Namely, A
i
is a symmetric vertex matrix maximizing the quadratic form in (2) for each x ∈ Bi.

Similarly, let

(4) aikl =


pkk if l = k

pkl if xkxl ≥ 0, l ̸= k and x ∈ Bi

qkl if xkxl < 0, l ̸= k and x ∈ Bi

1 ≤ i ≤ 2n−1,

thus,

Ai ∈ V [P,Q]

and

Ai ∈ argmin
A∈AS

xTAx ∀x ∈ Bi, 1 ≤ i ≤ 2n−1.(5)

To become familiar with these notations, see Examples 5.5, 5.6 and 5.7. Next, the theorem is announced.

Theorem 3.1 (Hertz’s theorem [2, 4]).

λ1

(
AS
)
= max

1≤i≤2n−1
λ1

(
A

i
)

(6)

λn

(
AS
)
= min

1≤i≤2n−1
λn

(
Ai
)

(7)

4. Sharp bounds and disjointness of eigenvalue intervals of 2×2 real symmetric interval

matrices. By Hertz’s theorem, special sets of vertex matrices determine the sharp bounds λn

(
AS
)
and

λ1

(
AS
)
.

In this section, regarding 2 × 2 real symmetric interval matrices, it is proposed that for each of the

four endpoints of eigenvalue intervals, a single matrix can be chosen whose maximal or minimal eigenvalue

coincides with that. In a certain case, these are vertex matrices. Otherwise, a real symmetric interval matrix

can be constructed to do so.

In the remaining part of the section, the mutual position of eigenvalue intervals is studied. Depending

on the relative positions of the diagonal intervals and the sign of the off-diagonal intervals, necessary and

sufficient conditions are given for the disjointness of eigenvalue intervals.
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4.1. Middle bounds. In this subsection, results, regarding the endpoints λ2

(
AS
)
and λ1

(
AS
)
, are

proposed. Moreover, in the remaining part of the section, the following notation is used:

AS =

(
[a1, a2] [b1, b2]

[b1, b2] [c1, c2]

)
.

Theorem 4.1.

λ2

(
AS
)
=



min{a2, c2} if b1 ≤ 0 ≤ b2

λ2(A) if 0 < b1 ≤ b2 where A =

(
a2 b1

b1 c2

)

λ2(A) if b1 ≤ b2 < 0 where A =

(
a2 b2

b2 c2

)(8)

and

λ1

(
AS
)
=



max{a1, c1} if b1 ≤ 0 ≤ b2

λ1(A) if 0 < b1 ≤ b2 where A =

(
a1 b1

b1 c1

)

λ1(A) if b1 ≤ b2 < 0 where A =

(
a1 b2

b2 c1

) .(9)

Proof.

(1) b1 ≤ 0 ≤ b2
By determining the roots of the characteristic polynomial, which are

λ1,2(A) =
a+ c±

√
4b2 + (a− c)2

2
(10)

where A =
(
a b
b c

)
∈ AS , the maximum of λ2(A) is attained at b = 0. Furthermore,

λ2

(
AS
)
= max

A∈AS
λ2(A) = max

a+ c−
√
4b2 + (a− c)2

2
=

= max
a+ c− |a− c|

2
=

{
a2 if a2 ≤ c2

c2 if a2 > c2
= min{a2, c2}.

Similarly,

λ1

(
AS
)
= max{a1, c1}.

(2) 0 < b1 ≤ b2

Since ∂λ2

∂a = 1
2

(
1− a−c√

4b2+(a−c)2

)
> 0 and ∂λ2

∂c = 1
2

(
1 + a−c√

4b2+(a−c)2

)
> 0 hold for the partial deriva-

tives, the section functions of λ2(A), with respect to a and c, are monotone increasing. Therefore,

the maximum is obtained at a = a2 and c = c2. Consequently, it is enough to optimize for b and b1
maximizes. Hence,

λ2

(
AS
)
= λ2(A) where A =

(
a2 b1
b1 c2

)
.
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Analogically,

λ1

(
AS
)
= λ1(A) where A =

(
a1 b1
b1 c1

)
.

(3) b1 ≤ b2 < 0

It is similar to the previous case.

Remark 4.2. If 0 /∈ (b1, b2), then the middle bounds are attained by vertex matrices, given in Theo-

rem 4.1. Moreover, based on (2) and (10), also the bounds in Hertz’s theorem are determined by single

well-chosen vertex matrices, one by one. These bounds are λ2

(
AS
)
= λ2(A) and λ1

(
AS
)
= λ1(B) where

A =



(
a1 b2

b2 c1

)
if |b1| ≤ |b2|(

a1 b1

b1 c1

)
if |b1| > |b2|

and B =



(
a2 b2

b2 c2

)
if |b1| ≤ |b2|(

a2 b1

b1 c2

)
if |b1| > |b2|

.

If 0 ∈ (b1, b2), then an interval matrix can be constructed whose vertex matrices determine its eigenvalue

bounds which are the same as the original one’s.

Theorem 4.3. Let 0 ∈ (b1, b2) and

ÃS =

(
[a1, a2] [0,max{|b1|, b2}]

[0,max{|b1|, b2}] [c1, c2]

)
.

Then, the eigenvalue bounds of AS and ÃS are identical.

Proof. Based on Remark 4.2, noticing that while alternating the sign of the off-diagonal elements of a

2× 2 matrix, the eigenvalues remain the same; we get

λ1

(
ÃS
)
= λ1(A1) = λ1

(
AS
)
, λ2

(
ÃS
)
= λ2(A2) = λ2

(
AS
)

where

A1 =

(
a2 max{|b1|, b2}

max{|b1|, b2} c2

)
, A2 =

(
a1 max{|b1|, b2}

max{|b1|, b2} c1

)
.

By Theorem 4.1, the middle eigenvalue bounds of ÃS are

λ1

(
ÃS
)
= λ1

(
AS
)
= λ1(A3), λ2

(
ÃS
)
= λ2

(
AS
)
= λ2(A4)

where

A3 =

(
a1 0

0 c1

)
, A4 =

(
a2 0

0 c2

)
.

Overall, some special vertex matrices of ÃS determine the eigenvalue bounds of AS .

4.2. Disjointness of the eigenvalue intervals. In the following part, the disjointness of eigenvalue

intervals of 2×2 real symmetric interval matrices is studied. In this aspect, necessary and sufficient conditions

are proposed.

Theorem 4.4. If 0 ∈ [b1, b2], then the disjointness of the intervals [a1, a2] and [c1, c2] is necessary and

sufficient condition for the eigenvalue intervals not to overlap each other. If 0 /∈ [b1, b2], then the previous

condition is sufficient but not necessary.
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Proof.

(1) b1 ≤ 0 ≤ b2
Necessity:

min{a2, c2} = λ2

(
AS
)
< λ1

(
AS
)
= max{a1, c1}

⇓

a2 < c1 or c2 < a1

⇓

[a1, a2] and [c1, c2] are disjoint.

Sufficiency:

(I) a2 < c1

a2 < c1 =⇒ λ2

(
AS
)
= a2, λ1(A

S) = c1

(II) c2 < a1

c2 < a1 =⇒ λ2

(
AS
)
= c2, λ1

(
AS
)
= a1

Thus, the eigenvalue intervals are disjoint.

(2) 0 < b1 ≤ b2
Sufficiency:

(I) a1 ≤ a2 < c1 ≤ c2

c2 − c1 <
√
4b21 + (a2 − c2)2

a2 − a1 <
√

4b21 + (a1 − c1)2

c2 − c1 + a2 − a1 <
√
4b21 + (a2 − c2)2 +

√
4b21 + (a1 − c1)2

1

2

(
a2 + c2 −

√
4b21 + (a2 − c2)2

)
<
1

2

(
a1 + c1 +

√
4b21 + (a1 − c1)2

)
λ2

(
AS
)
<λ1

(
AS
)

(II) c1 ≤ c2 < a1 ≤ a2
It is similar to the previous case.

(3) b1 ≤ b2 < 0

It is similar to the previous case.

If 0 /∈ [b1, b2], then the disjointness of the diagonal intervals is not a necessary condition for the disjointness

of the eigenvalue intervals as the following example shows. Let

AS =

([
1
2 , 2
]

[2, 3]

[2, 3] [1, 4]

)
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 803-819, December 2022.

809 On eigenvalues of real symmetric interval matrices

Then,

A1 =

(
1
2 2

2 1

)
λ2

(
A1
)
=
1

4

(
3−

√
65
)

A2 =

(
1
2 3

3 1

)
λ2

(
A2
)
=
1

4

(
3−

√
145
)

A
1
=

(
2 3

3 4

)
λ1

(
A

1
)
=3 +

√
10

A
2
=

(
2 2

2 4

)
λ1

(
A

2
)
=3 +

√
5.

Therefore, due to Hertz’s theorem,

λ2

(
AS
)
= min

{
1

4

(
3−

√
65
)
,
1

4

(
3−

√
145
)}

=
1

4

(
3−

√
145
)

and

λ1

(
AS
)
= max

{
3 +

√
10, 3 +

√
5
}
= 3 +

√
10.

Furthermore, according to Theorem 4.1,

λ2

(
AS
)
= λ2

((
2 2

2 4

))
= 3−

√
5

and

λ1

(
AS
)
= λ1

((
1
2 2

2 1

))
=

1

4

(
3 +

√
65
)
.

Thereby, the eigenvalue intervals are

λ2

(
AS
)
=

[
1

4

(
3−

√
145
)
, 3−

√
5

]
≈ [− 2.2604, 0.7639]

and

λ1

(
AS
)
=

[
1

4

(
3 +

√
65
)
, 3 +

√
10

]
≈ [2.7656, 6.1623].

It has been shown before, in general, the disjointness of the diagonal intervals is not necessary. Next,

necessary and sufficient condition, regarding the endpoints of the off-diagonal intervals, is provided for the

disjointness of eigenvalue intervals, given the diagonal intervals [a1, a2] and [c1, c2] overlap each other.

Theorem 4.5. If the nondegenerate intervals [a1, a2] and [c1, c2] overlap each other, then

λ2

(
AS
)
< λ1

(
AS
)

⇐⇒ max(b1,−b2) >

√
(a2 − a1)(a2 − c1)(c2 − a1)(c2 − c1)

a2 − a1 + c2 − c1
.

If 0 /∈ [b1, b2] and at least one of the diagonal intervals is degenerate, then the eigenvalue intervals are

disjoint.

Remark 4.6. The expression

√
(a2−a1)(a2−c1)(c2−a1)(c2−c1)

a2−a1+c2−c1
is well-defined because the product

(a2 − a1)(a2 − c1)(c2 − a1)(c2 − c1) is nonnegative, and the denominator is positive due to the overlap-

ping and nondegenerate diagonal intervals.
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Proof.

(1) At least one of the diagonal intervals is degenerate.

(I) 0 < b1 ≤ b2
By Theorem 4.1,

λ2

(
AS
)
= λ2

((
a2 b1
b1 c2

))
, and λ1

(
AS
)
= λ1

((
a1 b1
b1 c1

))
.

(i) a := a1 = a2

c2 − c1 ≤ |a− c2|+ |a− c1| =
√
(a− c2)2 +

√
(a− c1)2

c2 − c1 <
√
4b21 + (a− c2)2 +

√
4b21 + (a− c1)2

λ2

(
AS
)
=

a+ c2 −
√
4b21 + (a− c2)2

2
<

a+ c1 +
√
4b21 + (a− c1)2

2
= λ1

(
AS
)

(ii) c := c1 = c2

a2 − a1 <
√

4b21 + (a2 − c)2 +
√
4b21 + (a1 − c)2

λ2

(
AS
)
=

a2 + c−
√
4b21 + (a2 − c)2

2
<

a1 + c+
√
4b21 + (a1 − c)2

2
= λ1

(
AS
)

(II) b1 ≤ b2 < 0

It is similar to the previous case.

(2) The diagonal intervals are nondegenerate.

(I) 0 < b1 ≤ b2
(i) The diagonal intervals touch each other.

(a) a1 < a2 = c1 < c2

λ2

(
AS
)
<λ1

(
AS
)

a2 + c2 −
√
4b21 + (a2 − c2)2

2
<
a1 + c1 +

√
4b21 + (a1 − c1)2

2

a2 − a1 + c2 − c1 <
√
4b21 + (a1 − c1)2 +

√
4b21 + (a2 − c2)2 =

=
√
4b21 + (a1 − a2)2 +

√
4b21 + (c1 − c2)2

which holds for every b1 > 0.

(b) c1 < c2 = a1 < a2
It is similar to the previous case.

(ii) There are more than one point of intersection.

Starting from the disjointness of eigenvalue intervals, we would like to cancel the terms (a1 − c1)
2 and

(a2 − c2)
2.
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λ2

(
AS
)
<λ1

(
AS
)

a2 + c2 −
√
4b21 + (a2 − c2)2

2
<
a1 + c1 +

√
4b21 + (a1 − c1)2

2

a2 − a1 + c2 − c1 <
√
4b21 + (a1 − c1)2 +

√
4b21 + (a2 − c2)2 /()2

(a2 − a1 + c2 − c1)
2 <8b21 + (a1 − c1)

2 + (a2 − c2)
2+

+ 2
√
(4b21 + (a1 − c1)2) (4b21 + (a2 − c2)2).

By

(a2 − a1 + c2 − c1)
2 = ((a2 − c2) + c2 − a1 + c2 + (a1 − c1)− a1)

2
=

= (((a2 − c2) + (a1 − c1)) + 2(c2 − a1))
2
= (a1 − c1)

2 + (a2 − c2)
2+

+ 2(a1 − c1)(a2 − c2) + 4(c2 − a1)(a1 − c1 + a2 − c2) + 4(c2 − a1)
2 =

= (a1 − c1)
2 + (a2 − c2)

2 + 2(a1 − c1)(a2 − c2) + 4(c2 − a1)(a2 − c1),

we get

(a1 − c1)(a2 − c2) + 2(c2 − a1)(a2 − c1)− 4b21 <

<
√
(4b21 + (a1 − c1)2) (4b21 + (a2 − c2)2).

(11)

If we know which side of (11) has greater absolute value, we can decide the sign of the difference of

their squares. Next, it is proven that the absolute value of the right-hand side of (11) is greater than

the left-hand side’s. If the left-hand side is nonnegative, then it holds trivially. If it is negative, then,

because (c2 − a1)(a2 − c1) > 0, the inequality

(a1 − c1)(a2 − c2) + 2(c2 − a1)(a2 − c1)− 4b21 > (a1 − c1)(a2 − c2)− 4b21

holds. By (
4b21 + (a1 − c1)

2
) (

4b21 + (a2 − c2)
2
)
−
(
(a1 − c1)(a2 − c2)− 4b21

)2
=

= 16b41 + (a1 − c1)
2(a2 − c2)

2 + 4b21
(
(a1 − c1)

2 + (a2 − c2)
2
)
−

−
(
16b41 + (a1 − c1)

2(a2 − c2)
2 − 8b21(a1 − c1)(a2 − c2)

)
=

= 4b21
(
(a1 − c1)

2 + (a2 − c2)
2 + 2(a1 − c1)(a2 − c2)

)
=

= 4b21 ((a1 − c1) + (a2 − c2))
2 ≥ 0,

(12)

the right-hand side of (11) is greater than the absolute value of the left-hand side. Based on (11) and

(12),

0 <
(
4b21 + (a1 − c1)

2
) (

4b21 + (a2 − c2)
2
)
−

−
(
(a1 − c1)(a2 − c2) + 2(a2 − c1)(c2 − a1)− 4b21

)2
= 16b41+

+ 4b21
(
(a1 − c1)

2 + (a2 − c2)
2
)
+ (a1 − c1)

2(a2 − c2)
2−

−
(
(a1 − c1)

2(a2 − c2)
2 + 4(a2 − c1)

2(c2 − a1)
2 + 16b41+

+ 4(a1 − c1)(a2 − c2)(a2 − c1)(c2 − a1)−
− 8b21(a1 − c1)(a2 − c2)− 16b21(a2 − c1)(c2 − a1)

)
/ : 4
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0 <b21
(
(a1 − c1)

2 + (a2 − c2)
2
)
− (a2 − c1)

2(c2 − a1)
2−

− (a1 − c1)(a2 − c2)(a2 − c1)(c2 − a1)+

+ 2b21(a1 − c1)(a2 − c2) + 4b21(a2 − c1)(c2 − a1) =

= b21
(
(a1 − c1)

2 + (a2 − c2)
2+

+ 2(a1 − c1)(a2 − c2) + 4(a2 − c1)(c2 − a1)
)
−

− (a2 − c1)
2(c2 − a1)

2 − (a1 − c1)(a2 − c2)(a2 − c1)(c2 − a1) =

= b21
(
(a1 − c1 + a2 − c2)

2 + 4(a2 − c1)(c2 − a1)
)
−

− (a2 − c1)(c2 − a1)
(
(a2 − c1)(c2 − a1) + (a1 − c1)(a2 − c2)

)
=

= b21
(
(a2 − c1) + (c2 − a1)

)2−
− (a2 − c1)(c2 − a1)(a2c2 + a1c1 − a1c2 − a2c1) =

= b21
(
(a2 − c1) + (c2 − a1)

)2 − (a2 − c1)(c2 − a1)(a2 − a1)(c2 − c1).

(13)

By rearranging (13) and taking square root,

b1 >

√
(a2 − a1)(a2 − c1)(c2 − a1)(c2 − c1)

a2 − a1 + c2 − c1
.

The other direction of the equivalence can be proved using the previous steps.

(II) b1 ≤ b2 < 0

It is similar to the previous case.

Example 4.7. Illustrating the results of Theorem 4.5, let

AS =

(
[− 1, 1]

[
b1,

8
5

][
b1,

8
5

] [
0, 1 +

√
5
]) .

Then,

√
(a2 − a1)(a2 − c1)(c2 − a1)(c2 − c1)

a2 − a1 + c2 − c1
=

√
2 · 1 · (2 +

√
5)(1 +

√
5)

3 +
√
5

=

√
2(7 + 3

√
5)

3 +
√
5

=

√
14 + 6

√
5

3 +
√
5

= 1,

Fig. 1: Eigenvalue intervals of AS for different values of b1.
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thus, if b1 > 1, then the eigenvalue intervals are disjoint, otherwise they overlap each other. It can be seen

in Fig. 1.

5. Extremal eigenvalue bounds of n×n real symmetric interval matrices. In this section, the

extremal eigenvalue bounds are studied in the general n× n case. One of Hertz’s works ([3]) motivated the

achieved results. It says that in the case of a special sign pattern of an interval matrix, the vertex matrix,

whose maximal eigenvalue coincides with λ1

(
AS
)
, can be given. This can be generalized and extended to

the bound λn

(
AS
)
, too.

Based on Hertz’s theorem, by calculating the extremal eigenvalues of some vertex matrices, the sharp

bounds λn

(
AS
)
and λ1

(
AS
)
can be given. Motivated by Xin’s works ([13]), in a special case, Hertz

concluded that if the right endpoints of the off-diagonal intervals are not smaller than the absolute values of

the left ones, then the bound λ1

(
AS
)
is the maximal eigenvalue of the matrix of the right endpoints, namely

A
1
([3]). This result can be generalized by utilizing the sign pattern of the midpoint matrix. It is noticed

that the orthant pairs Oi (i = 1, . . . , 2n−1) reserve the sign of the outer product xxT (x ∈ Bn). That is, if

we have two vectors from the same orthant pair, then the signs of their outer products with themselves are

identical, while if they belong to different orthant pairs, then the corresponding signs differ. It is observed

that if the sign of the midpoint matrix is similar to one of the sign patterns reserved by the orthant pairs,

then the matrix (or possibly matrices) A
j0 ∈

{
A

i
}
i=1,...,2n−1

can be given for which λ1

(
AS
)
= λ1

(
A

j0
)

holds. (A
j0

maximizes in such orthant, with positive first coordinate, which has the same sign as the first

row (or column) of that certain sign pattern.) As it is shown, a similar statement holds for the bound

λn

(
AS
)
. Below, in Fig. 2, all the 3× 3 special sign patterns are illustrated and ordered in accordance with

the orthant pairs (1-black, -1-white).

Fig. 2: All the special sign patterns reserved by the orthant pairs in R3×3.

Theorem 5.1. Let

S±
kl :=

{
sign((Ac)kl) if k ̸= l

1 if k = l
.

If the midpoint matrix Ac of the real symmetric interval matrix AS = S[P,Q] has a special sign pattern,

except the diagonal intervals at most, that is, if S± ∈
{
xxT : x ∈ H :=

{(
{1} × {±1}n−1

)T}}
, then con-

cerning the index i ∈
{
1, 2, . . . , 2n−1

}
for which S±

∗1 ∈ H ∩Oi, where S±
∗1 is the first column of S±, it holds

that

λ1

(
AS
)
= λ1

(
A

i
)
.(14)

Remark 5.2. In Theorem 5.1, the main emphasis is on the signs of the off-diagonal elements of the

midpoint matrix Ac which can be seen in the proof.
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Remark 5.3. Theorem 5.1 says that, in the case of special sign patterns, the single A
i
matrix can be

chosen which determines λ1

(
AS
)
.

Proof. The proof will be carried out by contradiction. Since the quadratic form xTAx is continuous on

the compact set AS×Bn; thus, it attains its maximum λ1

(
AS
)
for some x(0) ∈ Bn and A(0) ∈ AS . Assume

that (14) is incorrect, that is

xTA
i
x < x(0)TA(0)x(0),

where S±
∗1 ∈ H ∩ Oi and x is the eigenvector corresponding to λ1

(
A

i
)
. Let S± = (skl) and y(0) =(

s11

∣∣∣x(0)
1

∣∣∣ , s21 ∣∣∣x(0)
2

∣∣∣ , . . . , sn1 ∣∣∣x(0)
n

∣∣∣)T , then
y(0)TA

i
y(0) ≤ xTA

i
x < x(0)TA(0)x(0) ≤ y(0)TA

i
y(0).

Only the last inequality has to be proved. It is carried out by overestimating each of the addends of the

quadratic form

x(0)TA(0)x(0) =

n∑
k=1

a
(0)
kk x

(0)2
k + 2

∑
1≤k<l≤n

a
(0)
kl x

(0)
k x

(0)
l .

(1) k = l

a
(0)
kk x

(0)2
k ≤ qkkyk

(0)2(15)

(2) k < l

We utilize the fact that S± has a special sign pattern, that is, skl = sk1sl1.

(I) skl = 1

Then,

yk
(0)yl

(0) = sk1

∣∣∣x(0)
k

∣∣∣ sl1 ∣∣∣x(0)
l

∣∣∣ = skl

∣∣∣x(0)
k

∣∣∣ ∣∣∣x(0)
l

∣∣∣ ≥ 0

and ∣∣∣a(0)kl

∣∣∣ ∈ [pkl, qkl].

Thus,

a
(0)
kl xk

(0)xl
(0) ≤

∣∣∣a(0)kl

∣∣∣ y(0)k y
(0)
l ≤ qkly

(0)
k y

(0)
l .(16)

(II) skl = −1

Then

yk
(0)yl

(0) = sk1

∣∣∣x(0)
k

∣∣∣ sl1 ∣∣∣x(0)
l

∣∣∣ = skl

∣∣∣x(0)
k

∣∣∣ ∣∣∣x(0)
l

∣∣∣ ≤ 0

and

−
∣∣∣a(0)kl

∣∣∣ ∈ [pkl, qkl].

Thus,

a
(0)
kl xk

(0)xl
(0) ≤ −

∣∣∣a(0)kl

∣∣∣ y(0)k y
(0)
l ≤ pkly

(0)
k y

(0)
l .(17)
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Therefore, if skl = 1, then the right endpoint is chosen, otherwise, the left endpoint. Hence, we get the

matrix A
i
. By (16) and (17), we get

x(0)TA(0)x(0) ≤ y(0)TA
i
y(0)

which leads to contradiction.

Remark 5.4. If the centers of some intervals are zeros, but there is a sign pattern (or possibly more)

which coincides with S± except the zeros, then, by choosing the endpoints corresponding to this sign pattern,

we get the matrix A
i
which maximizes since the inequalities (15), (16) and (17) still hold. (If there are more

appropriate sign patterns, then all the corresponding matrices A
i
maximize.)

Next, the results of Theorem 5.1 and Remark 5.4 are illustrated. For determining the sharp bounds

λ1

(
AS
)
, roots of third-order polynomials are calculated. Due to complicated expressions, these are given as

Root[p, k] objects, where p is a polynomial and k is the serial number of the root according to the increasing

order, regarding real roots.

Example 5.5. Let

AS =

[− 3,−1] [2, 3] [− 2, 1]

[2, 3] [2, 4] [− 2,−1]

[− 2, 1] [− 2,−1] [− 3, 4]

 .

Then,

S± =

 1 1 −1

1 1 −1

−1 −1 1

 ,

which coincides with the second pattern of Fig. 2; thus based on Theorem 5.1, the largest eigenvalue of the

matrix

A
2
=

−1 3 −2

3 4 −2

−2 −2 4


gives the sharp bound λ1

(
AS
)
. It is reinforced by the fact that

A
1
=

−1 3 1

3 4 −1

1 −1 4

 λ1

(
A

1
)
=Root[x3 − 7x2 − 3x+ 61, 3] ≈ 5.58

A
2
=

−1 3 −2

3 4 −2

−2 −2 4

 λ1

(
A

2
)
=Root[x3 − 7x2 − 9x+ 40, 3] ≈ 7.49

A
3
=

−1 2 1

2 4 −2

1 −2 4

 λ1

(
A

3
)
=Root[x3 − 7x2 − x+ 40, 3] ≈ 6.08

A
4
=

−1 2 −2

2 4 −1

−2 −1 4

 λ1

(
A

4
)
=2 +

√
17 ≈ 6.12,

thus according to Hertz’s theorem,

λ1

(
AS
)
= max

{
λ1

(
A

1
)
, λ1

(
A

2
)
, λ1

(
A

3
)
, λ1

(
A

4
)}

= λ1

(
A

2
)
.
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Example 5.6. Let

AS =

[− 3,−1] [− 3, 3] [− 2, 1]

[− 3, 3] [2, 4] [− 5, 5]

[− 2, 1] [− 5, 5] [− 3, 4]

 .

Then,

S± =

 1 0 −1

0 1 0

−1 0 1

 ,

thus, there are two special sign patterns that are the same as S± except the zeros. These are 1 1 −1

1 1 −1

−1 −1 1

 ,

 1 −1 −1

−1 1 1

−1 1 1

 .

Based on Remark 5.4, the largest eigenvalues of the matrices

A
2
=

−1 3 −2

3 4 −5

−2 −5 4

 and A
4
=

−1 −3 −2

−3 4 5

−2 5 4


coincide with the sharp bound λ1

(
AS
)
. It holds since

A
1
=

−1 3 1

3 4 5

1 5 4

 λ1

(
A

1
)
=Root[x3 − 7x2 − 27x+ 1, 3] ≈ 9.76

A
2
=

−1 3 −2

3 4 −5

−2 −5 4

 λ1

(
A

2
)
=Root[x3 − 7x2 − 30x− 17, 3] ≈ 10.13

A
3
=

−1 −3 1

−3 4 −5

1 −5 4

 λ1

(
A

3
)
=Root[x3 − 7x2 − 27x+ 1, 3] ≈ 9.76

A
4
=

−1 −3 −2

−3 4 5

−2 5 4

 λ1

(
A

4
)
=Root[x3 − 7x2 − 30x− 17, 3] ≈ 10.13,

and by Hertz’s theorem,

λ1

(
AS
)
= max

{
λ1

(
A

1
)
, λ1

(
A

2
)
, λ1

(
A

3
)
, λ1

(
A

4
)}

= λ1

(
A

2
)
= λ1

(
A

4
)
.

The following example shows that if the sign pattern of the interval matrix is general, then based merely

on it, we cannot state stronger than Hertz’s theorem.

Example 5.7. Let

AS =

[− 2, 1] [2, 4] [− 2, 1]

[2, 4] [− 1, 3] [− 2, 5]

[− 2, 1] [− 2, 5] [2, 4]

 and BS =

[− 2, 1] [2, 4] [− 8, 3]

[2, 4] [− 1, 3] [− 2, 5]

[− 8, 3] [− 2, 5] [2, 4]

 .
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Then, in both cases

S± =

 1 1 −1

1 1 1

−1 1 1

 .

Since

A
1
=

1 4 1

4 3 5

1 5 4

 λ1

(
A

1
)
=Root[x3 − 8x2 − 23x+ 40, 3] ≈ 9.91

A
2
=

 1 4 −2

4 3 −2

−2 −2 4

 λ1

(
A

2
)
=Root[x3 − 8x2 − 5x+ 36, 3] ≈ 8.07

A
3
=

1 2 1

2 3 −2

1 −2 4

 λ1

(
A

3
)
=
1

2

(
9 +

√
5
)
≈ 5.62

A
4
=

 1 2 −2

2 3 5

−2 5 4

 λ1

(
A

4
)
=Root[x3 − 8x2 − 14x+ 81, 3] ≈ 8.53

B
1
=

1 4 3

4 3 5

3 5 4

 λ1

(
B

1
)
=Root[x3 − 8x2 − 31x− 16, 3] ≈ 10.96

B
2
=

 1 4 −8

4 3 −2

−8 −2 4

 λ1

(
B

2
)
=Root[x3 − 8x2 − 65x+ 120, 3] ≈ 12.45

B
3
=

1 2 3

2 3 −2

3 −2 4

 λ1

(
B

3
)
=Root[x3 − 8x2 + 2x+ 59, 3] ≈ 6.07

B
4
=

 1 2 −8

2 3 5

−8 5 4

 λ1

(
B

4
)
=Root[x3 − 8x2 − 74x+ 381, 3] ≈ 11.55,

thus according to Hertz’s theorem,

λ1

(
AS
)
= max

{
λ1

(
A

1
)
, λ1

(
A

2
)
, λ1

(
A

3
)
, λ1

(
A

4
)}

= λ1

(
A

1
)

and

λ1

(
BS
)
= max

{
λ1

(
B

1
)
, λ1

(
B

2
)
, λ1

(
B

3
)
, λ1

(
B

4
)}

= λ1

(
B

2
)
.

Consequently, despite the fact that the modified sign patterns of the interval matrices are the same, the

maximizing matrices, at which the sharp bounds λ1 are attained, belong to different orthant pairs.

Next, we provide a theorem for the sharp bound λn

(
AS
)
similar to Theorem 5.1.

Theorem 5.8. Let

S∓
kl :=

{
sign((Ac)kl) if k ̸= l

−1 if k = l
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 803-819, December 2022.

Gabor Zoltan Farago and Robert Vajda 818

If the midpoint matrix Ac of the real symmetric interval matrix AS = S[P,Q] has a special sign pattern,

except the diagonal intervals at most, that is, if S∓ ∈
{
−xxT : x ∈ H :=

{(
{−1} × {±1}n−1

)T}}
, then

concerning the index i ∈
{
1, 2, . . . , 2n−1

}
for which S∓

∗1 ∈ H ∩Oi, it holds that

λn

(
AS
)
= λn

(
Ai
)
.(18)

Proof. The proof is similar to the one after Theorem 5.1.

Based on Theorems 5.1 and 5.8, the question arises as to what the proportion of the special sign patterns

is. In the following remark we give the answer.

Remark 5.9. Assume that the midpoints of the diagonal intervals are positive, then there are 2n−1

special sign patterns, and in total, we have 2
n(n−1)

2 , concerning the bound λ1

(
AS
)
. Thus, we get that the

proportion of special sign patterns is

2n−1

2
n(n−1)

2

=
1

2
(n−2)(n−1)

2

.

Similarly, it is also the proportion of special sign patterns relating to the bound λn

(
AS
)
. Thus, in the case

of 2 × 2 real symmetric interval matrices, all the patterns are special, consequently, for the sharp bounds

λn

(
AS
)
and λ1

(
AS
)
we can give the two vertex matrices whose corresponding extremal eigenvalues coincide

with them. This agrees with the relevant part of Remark 4.2, and the example from the proof of Theorem 4.4

also indicates this. Furthermore, if n = 3, then half of the 8 sign patterns are special, regarding the bound

λ1

(
AS
)
, which is shown in Fig. 2. The same proportion holds concerning the bound λn

(
AS
)
. However,

given a real symmetric interval matrix, both sign patterns S± and S∓ are special only in the 2× 2 case. In

the 3× 3 case, only one of them, in the n× n case, n > 3, at most one of them is special.

6. Conclusion. First, in the case of 2 × 2 real symmetric interval matrices, we determined all the

four endpoints of the eigenvalue intervals. Then, necessary and sufficient conditions were shown for the

disjointness of the eigenvalue intervals. Finally, in the general n × n case, we presented that if the interval

matrix follows a special sign pattern, then we can give the vertex matrix one of whose extremal eigenvalues

provides the sharp bound λn

(
AS
)
or λ1

(
AS
)
.

However, the study of real symmetric interval matrices still has open problems. A similar construction to

that in Theorem 4.3 and the further investigation of sign patterns and vertex matrices can lead to determine

the other two endpoints of the extremal eigenvalue intervals. Moreover, it may help characterize the other

eigenvalue intervals, and we can study their disjointness as well.
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