
ELA

EXTREMAL ALGEBRAIC CONNECTIVITIES OF CERTAIN

CATERPILLAR CLASSES AND SYMMETRIC CATERPILLARS∗

OSCAR ROJO† , LUIS MEDINA† , NAIR M. M. DE ABREU‡ , AND CLAUDIA JUSTEL§

Abstract. A caterpillar is a tree in which the removal of all pendant vertices makes it a path.

Let d ≥ 3 and n ≥ 6 be given. Let Pd−1 be the path of d − 1 vertices and Sp be the star of p + 1

vertices. Let p = [p1, p2, ..., pd−1] such that p1 ≥ 1, p2 ≥ 1, ..., pd−1 ≥ 1. Let C (p) be the caterpillar

obtained from the stars Sp1 , Sp2 , ..., Spd−1
and the path Pd−1 by identifying the root of Spi with

the i−vertex of Pd−1. Let n > 2 (d− 1) be given. Let

C = {C (p) : p1 + p2 + ...+ pd−1 = n− d+ 1}

and

S = {C(p) ∈ C : pj = pd−j , j = 1, 2, · · · , ⌊
d− 1

2
⌋}.

In this paper, the caterpillars in C and in S having the maximum and the minimum algebraic

connectivity are found. Moreover, the algebraic connectivity of a caterpillar in S as the smallest

eigenvalue of a 2 × 2 - block tridiagonal matrix of order 2s × 2s if d = 2s + 1 or d = 2s + 2 is

characterized.

Key words. Laplacian matrix, Algebraic connectivity, Caterpillar, Bottleneck matrices, Perron

branches, Characteristic vertices.

AMS subject classifications. 05C50, 15A48, 05C05.

1. Introduction. Let G = (V,E) be a simple undirected graph on n vertices.

The Laplacian matrix of G is the n× n matrix L (G) = D (G) − A (G) where A (G)

is the adjacency matrix and D (G) is the diagonal matrix of vertex degrees. It is

known that L (G) is a positive semidefinite matrix and (0, e) is an eigenpair of L (G)

where e is the all ones vector. In [12], some of the many results known for Laplacian

matrices are given. Fiedler [5] proves that G is a connected graph if and only if the

second smallest Laplacian eigenvalue is positive. This eigenvalue is called the algebraic

connectivity of G, it is denoted by a (G) and any of its corresponding eigenvectors
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is called a Fiedler vector. In [3], a survey of old and new results on the algebraic

connectivity of graphs is given.

We recall that a tree is a connected acyclic graph. Let us denote by Pn a path of

n vertices and by Sp a star of p+ 1 vertices. Let n and d be fixed. Let T (a, b, d) be

the tree with n vertices and diameter d obtained from the path Pd−1 and the stars Sa

and Sb by identifying the pendant vertices in Pd−1 with the centers of the stars. We

may consider a ≤ b. Observe that b = n− a− (d− 1). Then 1 ≤ a ≤ 1

2
(n− d+ 1).

The problem of ordering trees by algebraic connectivity is an active area of re-

search. The next theorem due to Grone and Merris solves the problem for trees of

order n and diameter d = 3.

Theorem 1.1. [7] The algebraic connectivity of T (a, b, 3) , b = n− a− 2, is the

unique Laplacian eigenvalue less than 1 and it is a strictly decreasing function for

1 ≤ a ≤ 1

2
(n− 2) .

Important contributions to the problem for trees of order n and diameter d = 4

are due to X-D Zhang [19, 2007]. Shao et al. [15, 2008] determine the first four

trees of order n ≥ 9 with the smallest algebraic connectivity. Yuan et al. [17, 2007]

introduce six classes of trees with n vertices and determine the ordering of those trees

by this spectral invariant. Zhang and Liu [18, 2008] find the largest twelve values of

algebraic connectivity of trees in a set of trees on 2k + 1 vertices with nearly perfect

matching. In [4], Fallat and Kirkland find the tree that minimizes and the tree that

maximizes the algebraic connectivity among the trees on n vertices and diameter d :

Theorem 1.2. [4, Theorem 3.2] Among all trees on n vertices with fixed diameter

d, the minimum algebraic connectivity is attained by the tree

T

(⌊
n− d+ 1

2

⌋
,

⌈
n− d+ 1

2

⌉
, d

)
.

Theorem 1.3. [4, Theorem 3.8] Among all trees on n vertices with fixed diameter

d, the maximum algebraic connectivity is attained by the tree Pd,n−d obtained from

the path Pd on vertices 1, 2, ..., d and the star Sn−d identifying the root of Sn−d with

the vertex
⌈
d+1

2

⌉
of the path Pd.

A caterpillar is a tree in which the removal of all pendant vertices makes it

a path. Let n > 2 (d− 1) be given with d ≥ 3. Let p = [p1, p2, ..., pd−1] . with

p1 ≥ 1, p2 ≥ 1, ..., pd−1 ≥ 1. Let C (p) be the caterpillar obtained from the stars

Sp1
, Sp2

, ..., Spd−1
and the path Pd−1 by identifying the root of Spi

with the i−vertex

of Pd−1.
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Let

C = {C (p) : p1 + p2 + ...+ pd−1 = n− d+ 1}

and

S =

{
C (p) ∈ C : pj = pd−j, j = 1, 2, ...,

⌊
d− 1

2

⌋}
.

Clearly any caterpillar in C is a caterpillar on n vertices with diameter d.

In [2], the authors prove that the caterpillars are the trees having minimum

algebraic connectivity among all trees with a given degree sequence.

In this paper, we find the caterpillars in C and in S having the maximum and the

minimum algebraic connectivity. Moreover, we characterize the algebraic connectivity

of a caterpillar in S as the smallest eigenvalue of a 2× 2 - block tridiagonal matrix of

order 2s× 2s if d = 2s+ 1 or d = 2s+ 2.

2. Basic tools. In this Section, we present some results on the algebraic con-

nectivity of trees which are the basic tools of this paper.

Lemma 2.1. [8, Corollary 4.2] Let v be a pendant vertex of the graph G̃. Let G

be the graph obtained from G̃ by removing v and its edge. Then the eigenvalues of

L (G) interlace the eigenvalues of L
(
G̃
)
.

From Lemma 2.1, it follows

Corollary 2.2. Let T be a subtree of the tree T̃ . Then

a
(
T̃
)
≤ a (T ) .

For the rest of this Section, T is a tree on vertices 1, 2, ..., n and

f =
[
f1 f2 · · · · · · fn−1 fn

]T
.

Theorem 2.3. [6] If f is a Fiedler vector then exactly one of the following two

cases occurs:

(A) No entry of f is 0. In this case, there is a unique pair of vertices i and j such

that i and j are adjacent with fi > 0 and fj < 0.

(B) Some entry of f is 0. In this case, the subgraph induced by the vertices cor-

responding to zeros in f is a connected subgraph. Moreover, there is a unique vertex

k such that fk = 0 and k is adjacent to a vertex i with fi 6= 0.
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In [11], Merris proves that the occurrence of (A) or (B) does not depend on the

Fiedler vector.

Definition 2.4. 1. T is said Type II if (A) holds and the vertices i and j

are called the characteristic vertices of T. The edge defined by i and j is called the

characteristic edge of T.

2. The tree T is said Type I if (B) holds and the vertex k is called the characteristic

vertex of T.

3. Let m be a vertex of the tree T. A branch of T at m is any of the connected

component of T −m obtained from T removing the vertex m and the edges incident

with m.

Lemma 2.5. [10] Let Lk be the principal submatrix of the Laplacian matrix L (T )

obtained by deleting the k−row and k−column from L (T ). Then the (i, j)−entry of

L−1

k is equal to the number of edges of T which are on both the path from vertex i to

vertex k and the path from vertex j to vertex k.

Example 2.6. Let T be the caterpillar below

1 2 4 6 7 8

953

Then

L−1
5 =




2 1 1 0 0 0 0 0

1 2 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 1 1 1

0 0 0 0 1 2 1 1

0 0 0 0 1 1 2 1

0 0 0 0 1 1 1 1




.

Clearly the (i, j) entry of L−1

k is positive if and only if the vertices i and j are in

the same branch of T at the vertex k. Then there is a labeling of the vertices of T

such that L−1

k is similar to a block diagonal matrix in which the number of diagonal

blocks is the degree of the vertex k. Moreover, each diagonal block is a positive matrix

corresponding to a unique branch at k. This matrix is called the bottleneck matrix

for that branch at k. In Example 2.6, the bottleneck matrices for the branches at the
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vertex 5 are the matrices




2 1 1

1 2 1

1 1 1


 , [1] ,




2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 1


 .

From the Perron-Frobenius Theory for nonnegative matrices, it follows that each

bottleneck matrix has a simple eigenvalue equal to its spectral radius, its Perron root.

Definition 2.7. The Perron root of the bottleneck matrix of a branch is called

the Perron root of the branch. A branch is called a Perron branch if its Perron root

is equal to the spectral radius of L−1

k .

The notion of Perron branches was first introduced by Kirkland, Neumann and

Shader [10].

Let ρ (A) be the spectral radius of a matrix A and let e be the all ones vector of

the appropriate order.

Theorem 2.8. [10] Let i and j be adjacent vertices of T. Then T is Type II tree

with characteristic vertices i and j if and only if there exists 0 < γ < 1 such that

ρ
(
M − γeeT

)
= ρ

(
M̂ − (1− γ) eeT

)

where M is the bottleneck matrix of the branch at j containing i and M̂ is the bottle-

neck matrix of the branch at i containing j. Moreover, if this condition holds then

1

a (T )
= ρ

(
M − γeeT

)
= ρ

(
M̂ − (1− γ)eeT

)

and any eigenvector of L (T ) corresponding to a (T ) can be permuted such that it has

the form

[
−f1

f2

]
where f1 is a Perron vector for M −γeeT and f2 is a Perron vector

for M̂ − (1− γ) eeT and eT f1 = eT f2.

Corollary 2.9. T is a Type II tree with characteristic vertices i and j if and

only if (1) the vertices i and j are adjacent, (2) the branch at i containing the vertex

j is the unique Perron branch at i, and (3) the branch at j containing the vertex i is

the unique Perron branch at j.

Theorem 2.10. [10] T is a Type I tree with characteristic vertex k if and only

if there are two or more Perron branches of T at k. In this case,

a (T ) =
1

ρ
(
L−1
k

)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 136-157, February 2010



ELA

Extremal Algebraic Connectivities of Caterpillar Classes 141

and if f is an eigenvector corresponding to a (T ) then f can be permuted such that

each of the resulting nonzero subvectors is a Perron vector for the bottleneck matrix

of a Perron branch at k.

Corollary 2.11. T is a Type I tree if and only if there is exactly one vertex at

which there are two or more Perron branches. T is a Type II tree if and only if at

each vertex there is unique Perron branch.

3. Extremal algebraic connectivities.

3.1. Characteristic vertices of caterpillars and their Perron branches.

Let v1, v2, ..., vd−1 be the vertices of the path Pd−1. We observe that for any tree, no

pendant vertex is a characteristic vertex. From this fact and Theorem 2.8, it follows

Lemma 3.1. If Ct ∈ C is a Type II tree and vi and vi+1 are its characteristic

vertices then

(3.1)
1

a (Ct)
= ρ

(
Mt − γtee

T
)
= ρ

(
M̂t − (1− γt) ee

T
)

where Mt is the bottleneck matrix of the Perron branch Bt at vi+1 containing the

vertex vi and M̂t is the bottleneck matrix of the Perron branch B̂t at vi containing

the vertex vi+1. From Theorem 2.10, it follows

Lemma 3.2. If Ct ∈ C is a Type I tree and vi is its characteristic vertex then

(3.2)
1

a (Ct)
= ρ (Mt) = ρ

(
M̂t

)

where Mt and M̂t are the bottleneck matrices of Bt and B̂t, respectively, in which

Bt is the branch containing the vertex v1 and B̂t is the branch containing the vertex

vd−1.

3.2. Maximum algebraic connectivity. We first consider the case of d even.

This case is already studied in [1, Theorem 9]. Here, we give a different proof.

Theorem 3.3. If d = 2s + 2 then among all trees in C the maximum algebraic

connectivity is attained by the caterpillar C (q) where qi = 1 for all i 6= s + 1 and

qs+1 = n− 2d+ 3.

Proof. Observe that C (q) ∈ C. Let e be the all ones vector of order d − 1. Let

C1 = C (p) ∈ C, C2 = C (e) and C3 = C (q) . Clearly C2 is a subtree of C1. Applying

Corollary 2.2, a (C1) ≤ a (C2) . Moreover, it is clear that C2 and C3 are both trees

of Type I at the same characteristic vertex vs having isomorphic Perron branches.

Hence, applying Theorem 2.10, a (C2) = a (C3) . Therefore a (C1) ≤ a (C3) .
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For the case of odd d, to get the caterpillar in C with the maximum algebraic

connectivity is not easy as in Theorem 3.3.

At this point, it is convenient to recall that if A is an irreducible nonnegative (in

particular, positive) matrix then ρ (A) strictly increases when any entry of A strictly

increases [16, Theorem 2.1.].

Lemma 3.4. Let d = 2s+ 1. Let

C = C (p1, ..., ps, ps+1, ..., p2s) ∈ C

p̃s =
s∑

l=1

pl − s+ 1

p̃s+1 =
2s∑

l=s+1

pl − s+ 1.

Then

(3.3) a (C) ≤ a
(
C̃
)

where

C̃ = C (1, ..., 1, p̃s, p̃s+1, 1, ..., 1) .

The equality holds if and only if C = C̃.

Proof. Let C1 = C, C3 = C̃ and

C2 = C (1, ..., 1, p̃s, ps+1, ..., p2s) .

Clearly C2, C3 ∈ C and s = 1

2
(d − 1). Let v1, ..., vs, vs+1, ..., v2s be the vertices of the

path P2s. We first prove that

(3.4) a (C1) ≤ a (C2)

with equality if and only if C1 = C2.

If C1 = C2 then a (C1) = a (C2) . Suppose C1 6= C2. Then pt > 1 for some

1 ≤ t ≤ s − 1. Four cases can occur. In each case, the vertices of C1 and C2 are

labeled appropriately to compare the entries of the corresponding bottleneck matrices

in (3.1) or (3.2).

Case C1 and C2 are both of Type I tree. Let w1 and w2 be the characteristic

vertices of C1 and C2, respectively. Then

1

a (C1)
= ρ (M1) = ρ

(
M̂1

)
and

1

a (C2)
= ρ (M2) = ρ

(
M̂2

)
.
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We have w1 = vl for some l and w2 = vk for some k ≥ s+1. If l < k, B̂2 is isomorphic

to a proper subtree of B̂1 and then M̂1 (p, q)− M̂2 (p, q) > 1 for each (p, q) . Hence

1

a (C1)
= ρ

(
M̂1

)
> ρ

(
M̂2

)
=

1

a (C2)
.

If l ≥ k, since pt > 1 for some 1 ≤ t ≤ s − 1, we have M1 (p, q) − M2 (p, q) ≥ 0 for

each (p, q) with strict inequality in at least one entry. Hence

1

a (C1)
= ρ (M1) > ρ (M2) =

1

a (C2)
.

Case C1 is a Type I tree and C2 is a Type II tree. Let vl be the characteristic

vertex of C1. Let vi and vi+1 be the characteristic vertices of C2. There is 0 < γ2 < 1

such that

1

a (C2)
= ρ

(
M2 − γ2ee

T
)
= ρ

(
M̂2 − (1− γ2) ee

T
)
.

Clearly, i ≥ s. If i = l then

1

a (C1)
= ρ

(
M̂1

)
= ρ

(
M̂2

)
> ρ

(
M̂2 − (1− γ2) ee

T
)
=

1

a (C2)
.

If i > l then B̂2 is isomorphic to a proper subtree of B̂1, thus M̂1 (p, q)−M̂2 (p, q) > 1

for each (p, q) and hence

1

a (C1)
= ρ

(
M̂1

)
> ρ

(
M̂2

)
> ρ

(
M̂2 − (1− γ2) ee

T
)
=

1

a (C2)
.

If i < l, since pt > 1 for some 1 ≤ t ≤ s− 1, we have M1 (p, q)−M2 (p, q) ≥ 0 for each

(p, q) with strict inequality in at least one entry. Hence

1

a (C1)
= ρ (M1) > ρ (M2) > ρ

(
M2 − γ2ee

T
)
=

1

a (C2)
.

Case C1 is a Type II tree and C2 is a Type I tree. Let vk be the characteristic

vertex of C2. Then k ≥ s + 1. Let vi and vi+1 be the characteristic vertices of C1.

There is 0 < γ1 < 1 such that

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
= ρ

(
M̂1 − (1− γ1) ee

T
)
.

If i < k then the branch B̂1 contains the vertex vk and an isomorphic copy of B̂2,

thus M̂1 (p, q)− M̂2 (p, q) ≥ 1 for each (p, q) . Hence

1

a (C1)
= ρ

(
M̂1 − (1− γ1) ee

T
)
> ρ

(
M̂2

)
=

1

a (C2)
.
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If i ≥ k then M1 (p, q)−M2 (p, q) ≥ 1 for each (p, q) . Hence

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
> ρ (M2) =

1

a (C2)
.

Case C1 and C2 are both of Type II. Let vj and vj+1 the characteristic vertices

of C1. Let vi and vi+1 be the characteristic vertices of C2. There are 0 < γ1 < 1 and

0 < γ2 < 1 such that

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
= ρ

(
M̂1 − (1− γ1) ee

T
)

1

a (C2)
= ρ

(
M2 − γ2ee

T
)
= ρ

(
M̂2 − (1− γ2) ee

T
)
.

As before, i ≥ s. If j < i, M̂1 (p, q)− M̂2 (p, p) ≥ 1 for each (p, q) . Then

1

a (C1)
= ρ

(
M̂1 − (1− γ1) ee

T
)
> ρ

(
M̂2

)

> ρ
(
M̂2 − (1− γ2) ee

T
)
=

1

a (C2)
.

If j > i, M1 (p, q)−M2 (p, p) ≥ 1 for each (p, q) . Then

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
> ρ (M2) > ρ

(
M2 − γ2ee

T
)
=

1

a (C2)
.

If j = i, then M̂1 = M̂2 and M1 ≥ M2. Moreover, since pt > 1 for some 1 ≤ t ≤ s−1,

we have M1 (p, q) > M2 (p, q) for some (p, q) . If γ1 = γ2 then

(3.5)
1

a (C1)
= ρ

(
M̂1 − (1− γ1) ee

T
)
= ρ

(
M̂2 − (1− γ2) ee

T
)
=

1

a (C2)
.

Moreover

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
> ρ

(
M2 − γ2ee

T
)
=

1

a (C2)

which contradicts (3.5) . Therefore γ1 6= γ2. If γ1 < γ2 then

(3.6)
1

a (C1)
= ρ

(
M̂1 − (1− γ1) ee

T
)
< ρ

(
M̂2 − (1− γ2) ee

T
)
=

1

a (C2)
.

Moreover

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
> ρ

(
M2 − γ2ee

T
)
=

1

a (C2)

which contradicts (3.6) . Consequently, γ1 > γ2 and hence

1

a (C1)
= ρ

(
M̂1 − (1− γ1) ee

T
)
> ρ

(
M̂2 − (1− γ2) ee

T
)
=

1

a (C2)
.
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We have proved that a (C1) ≤ a (C2) with equality if and only if C1 = C2.

Observe that C2 is isomorphic to

C̃1 = C (p2s, ..., ps+1, p̃s, 1, ..., 1)

and that C3 is isomorphic to

C̃2 = C (1, ..., 1, p̃s+1, p̃s, 1, ..., 1) .

We apply (3.4) to conclude a
(
C̃1

)
≤ a

(
C̃2

)
with equality if and only if C̃1 = C̃2.

Therefore a(C2) ≤ a(C3) with equality if and only if C2 = C3. By transitivity, a (C) =

a (C1) ≤ a (C3) = a
(
C̃
)
with equality if and only if C = C̃.

For d = 2s+ 1, let

M = {C (1, ..., 1, ps, ps+1, 1, ..., 1) ∈ C : ps ≤ ps+1}

Let ps = a and ps+1 = b. Thus a caterpillar in M is of the form C (1, ..., 1, a, b, 1, ..., 1)

in which a + b = n − 2d + 4 and a ≤ b. For brevity, we write C (a, b) instead of

C (1, ..., 1, a, b, 1, ..., 1) .

In order to obtain the caterpillar having the maximum algebraic connectivity in

C = {C (p1, ..., ps, ps+1, ..., p2s) : pi ≥ 1 for all i} ,

we recall the following theorem.

Theorem 3.5. [14, Theorem 5] Let d = 2s + 1. The algebraic connectivity of

C (a, b) = C (1, ..., 1, a, b, 1, ..., 1) ∈ M is a strictly decreasing function for 1 ≤ a ≤
1

2
(n− 2d+ 4) .

We are ready to give the caterpillar with the maximum algebraic connectivity

among the caterpillars in C whenever d is odd.

Theorem 3.6. If d = 2s + 1 then among all trees in C the maximum algebraic

connectivity is attained by the caterpillar C (1, ..., 1, 1, ps+1, 1, ..., 1) where ps+1 = n−
2d+ 3.

Proof. Let

C1 = C (p1, ..., ps, ps+1, ..., p2s) ∈ C.

We define

C3 = C (1, ..., 1, p̃s, p̃s+1, 1, ..., 1)
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where p̃s =
∑s

l=1
pl − s+ 1, p̃s+1 =

∑2s

l=s+1
pl − s+ 1, and

C4 = C (1, 1, ..., 1, n− 2d+ 3, 1, ..., 1) .

Clearly, C3 ∈ M and C4 ∈ M. From (3.3) , a (C1) ≤ a (C3) . If p̃s = 1 then p̃s+1 =

n − 2d + 3 and thus a (C1) ≤ a (C3) = a (C4) . If p̃s > 1, from Theorem 3.5, we get

a (C3) < a (C4) and thus a (C1) < a (C4) .

3.3. Minimum algebraic connectivity. Let

E = {C (a, 1, ..., 1, b) ∈ C : a ≤ b, a+ b = n− 2d+ 4} .

We recall the following theorem.

Theorem 3.7. [14, Theorem 4] The algebraic connectivity of C (a, 1, ..., 1, b) ∈ E
is a strictly decreasing function for 1 ≤ a ≤ 1

2
(n− 2d+ 4) .

Theorem 3.8. Among all trees in C the minimum algebraic connectivity is at-

tained by the caterpillar C (x, 1, 1, . . . , 1, 1, y) where x =
⌊
n−2d+4

2

⌋
and y =

⌈
n−2d+4

2

⌉
.

Proof. Let C1 = C (p) ∈ C. As in the proof of Lemma 3.4, four cases occur and,

in each case, the vertices of the caterpillars are labeled appropriately to compare the

entries of the corresponding bottleneck matrices in (3.1) or (3.2).

Case C1 is a Type I tree. Let vl be the characteristic vertex of C1. We have

1

a (C1)
= ρ (M1) = ρ

(
M̂1

)
.

We define C0 = C (p̃1, 1, 1, . . . , 1, 1, p̃d−1) ∈ C where

p̃1 =

l∑

j=1

pj − (l− 1) and p̃d−1 =

d−1∑

j=l+1

pj − (d− l− 2).

We want to prove that a (C0) ≤ a (C1) . We may assume that C0 6= C1. Then pt > 1

for some 2 ≤ t ≤ d − 2. Suppose that C0 is a Type I tree with characteristic vertex

vk. We have

1

a (C0)
= ρ (M0) = ρ

(
M̂0

)
.

If k = l then M0 (p, q)−M1 (p, q) ≥ 0 for each (p, q) with strict inequality in at least

one entry whenever 2 ≤ t ≤ l or M̂0 (p, q) − M̂1 (p, q) ≥ 0 for each (p, q) with strict

inequality in at least one entry whenever l + 1 ≤ t ≤ d− 2. Hence

1

a (C0)
= ρ (M0) > ρ (M1) =

1

a (C1)
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or

1

a (C0)
= ρ

(
M̂0

)
> ρ

(
M̂1

)
=

1

a (C1)
.

If k > l then M0 (p, q)−M1 (p, q) > 0 for each (p, q) . Hence

1

a (C0)
= ρ (M0) > ρ (M1) =

1

a (C1)
.

If k < l then M̂0 (p, q)− M̂1 (p, q) > 0 for each (p, q). Hence

1

a (C0)
= ρ

(
M̂0

)
> ρ

(
M̂1

)
=

1

a (C1)
.

Suppose now that C0 is a Type II tree with characteristic vertices vr and vr+1.

There is 0 < γ0 < 1 such that

1

a (C0)
= ρ

(
M0 − γ0ee

T
)
= ρ

(
M̂0 − (1− γ0) ee

T
)
.

If r ≥ l then M0 (p, q)−M1 (p, q) ≥ 1 for each (p, q) and thus

1

a (C0)
= ρ

(
M0 − γ0ee

T
)
> ρ (M1) =

1

a (C1)
.

If r < l then M̂0 (p, q)− M̂1 (p, q) ≥ 1 for each (p, q) and thus

1

a (C0)
= ρ

(
M̂0 − (1− γ0) ee

T
)
> ρ

(
M̂1

)
=

1

a (C1)
.

We have proved that if C1 is a Type I tree and C1 6= C0 then a (C0) < a (C1) .

Case C1 is a Type II tree. Let vi and vi+1 be the characteristic vertices of C1.

There is 0 < γ1 < 1 such that

1

a (C1)
= ρ

(
M1 − γ1ee

T
)
= ρ

(
M̂1 − (1− γ1) ee

T
)
.

In this case, we define C0 = C (p̃1, 1, 1, . . . , 1, 1, p̃d−1) where

p̃1 =

i∑

j=1

pj − (i− 1) and p̃d−1 =

d−1∑

j=i+1

pj − (d− i− 2).

We want to prove a (C0) ≤ a (C1) . Suppose C0 6= C1. Then pt > 1 for some 2 ≤ t ≤
d− 2. Suppose that C0 is a Type I tree with characteristic vertex vk. We have

1

a (C0)
= ρ (M0) = ρ

(
M̂0

)
.
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If k ≤ i then M̂0 (p, q)− M̂1 (p, q) ≥ 0 for each (p, q) . Hence

1

a (C0)
= ρ

(
M̂0

)
≥ ρ

(
M̂1

)
> ρ

(
M̂1 − (1− γ1) ee

T
)
=

1

a (C1)
.

If k > i then M0 (p, q)−M1 (p, q) ≥ 0 for each (p, q). Hence

1

a (C0)
= ρ (M0) ≥ ρ (M1) > ρ

(
M1 − γ1ee

T
)
=

1

a (C1)
.

Suppose now that C0 is a Type II tree with characteristic vertices vr and vr+1.

There is 0 < γ0 < 1 such that

1

a (C0)
= ρ

(
M0 − γ0ee

T
)
= ρ

(
M̂0 − (1− γ0) ee

T
)
.

If r < i then M̂0 (p, q)− M̂1 (p, q) ≥ 1 for each (p, q) and thus

1

a (C0)
= ρ

(
M̂0 − (1− γ0) ee

T
)
> ρ

(
M̂1

)

> ρ
(
M̂1 − (1− γ1) ee

T
)
=

1

a (C1)
.

If r > i then M0 (p, q)−M1 (p, q) ≥ 1 for each (p, q) and thus

1

a (C0)
= ρ

(
M0 − γ0ee

T
)
> ρ (M1)

> ρ
(
M1 − γ1ee

T
)
=

1

a (C1)
.

If r = i and γ0 = γ1 then M0 (p, q)−M1 (p, q) ≥ 0 for each (p, q) with strict inequality

in at least one entry whenever 2 ≤ t ≤ i or M̂0 (p, q) − M̂1 (p, q) ≥ 0 for each (p, q)

with strict inequality in at least one entry whenever i+ 1 ≤ t ≤ d− 2. Hence

1

a (C0)
= ρ

(
M0 − γ0ee

T
)
= ρ

(
M0 − γ1ee

T
)

> ρ
(
M1 − γ1ee

T
)
=

1

a (C1)
.

or

1

a (C0)
= ρ

(
M̂0 − (1− γ0) ee

T
)
= ρ

(
M̂0 − (1− γ1) ee

T
)

> ρ
(
M̂1 − (1− γ1) ee

T
)
=

1

a (C1)
.

If r = i and γ0 < γ1 then M0 (p, q)−M1 (p, q) ≥ 0 for each (p, q) and thus

1

a (C0)
= ρ

(
M0 − γ0ee

T
)
> ρ

(
M0 − γ1ee

T
)

≥ ρ
(
M1 − γ1ee

T
)
=

1

a (C1)
.
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If r = i and γ0 > γ1 then M̂0 (p, q)− M̂1 (p, q) ≥ 0 for each (p, q) and thus

1

a (C0)
= ρ

(
M̂0 − (1− γ0) ee

T
)
> ρ

(
M̂0 − (1− γ1) ee

T
)

≥ ρ
(
M̂1 − (1− γ1) ee

T
)
=

1

a (C1)
.

We have proved that if C1 is a Type II tree and C1 6= C0 then a (C0) < a (C1) .

Finally, let µ be the algebraic connectivity of the caterpillar C (x, 1, . . . , 1, y) in

which x =
⌊
n−2d+4

2

⌋
and y =

⌈
n−2d+4

2

⌉
. Observe that this caterpillar lies in C. We

apply Theorem 3.7, to obtain µ ≤ a (C0) . This completes the proof.

3.4. Extremal algebraic connectivities of symmetric caterpillars. We

have

S =

{
C (p) ∈ C : pj = pd−j , j = 1, 2, ...,

⌊
d− 1

2

⌋}
.

To find the caterpillars in S having the maximum and the minimum algebraic con-

nectivity is immediate. In fact, if d = 2s+ 2 then, from Theorem 3.3,

max {a (C) : C ∈ S} = a (C0) = max {a (C) : C ∈ C}
C0 = C (1, ..., 1, ps+1, 1, ..., 1)

ps+1 = n− 2d+ 3

and if d = 2s+ 1 then, from Lemma 3.4,

max {a (C) : C ∈ S} = a (C0)

C0 = C (1, ..., 1, ps, ps+1, 1, ..., 1)

ps = ps+1 =
1

2
(n− 2d+ 4) .

If d = 2s+ 2, from Theorem 3.8, for even n,

min {a (C) : C ∈ S} = a (C0)

C0 = C (x, 1, ..., 1, 1, 1, ..., 1, x)

x =
1

2
(n− 2d+ 4) .

and, for odd n,

min {a (C) : C ∈ S} = a (C0)

C0 = C (x, 1, ..., 1, 2, 1, ..., 1, x)

x =
1

2
(n− 2d+ 3) .
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If d = 2s+ 1, from Theorem 3.8,

min {a (C) : C ∈ S} = a (C0)

C0 = C (x, 1, ..., 1, 1, ..., 1, x)

x =
1

2
(n− 2d+ 3) .

3.5. A summary of the extremal algebraic connectivities. Table 1 sum-

marizes the results on the extremal algebraic connectivities on C and on S that we

have found in this paper. The table includes also the corresponding results for the

subclasses E and M. We observe that these results are immediate consequences of

Theorem 3.7 and Theorem 3.5. The columns 2 and 3 give the caterpillars that attain

the maximum and the minimum algebraic connectivity, respectively, in the class of

caterpillars indicated in column 1.

Class max a (C (p)) min a (C (p))

C
d = 2s+ 1 or d = 2s+ 2

C (1, ..., 1, ps+1, 1, ..., 1)

ps+1 = n− 2d+ 3

d = 2s+ 1 or d = 2s+ 2

C (x, 1, ..., 1, 1, ..., 1, y)

x =
⌊
n−2d+4

2

⌋
, y =

⌈
n−2d+4

2

⌉

E
d odd or d even

C (1, 1, ..., 1, ..., 1, y)

y = n− 2d+ 3

d odd or d even

C (x, 1, ..., 1, ..., 1, y)

x =
⌊
n−2d+4

2

⌋
, y =

⌈
n−2d+4

2

⌉

M
d = 2s+ 1

C (1, ..., 1, 1, ps+1, 1, ..., 1)

ps+1 = n− 2d+ 3

d = 2s+ 1

C (1, ..., 1, ps, ps+1, 1, ..., 1)

ps =
⌊
n−2d+4

2

⌋
, ps+1 =

⌈
n−2d+4

2

⌉

S
d = 2s+ 2

C (1, ..., 1, ps+1, 1, ..., 1)

ps+1 = n− 2d+ 3

d = 2s+ 2 and n even

C (x, 1, ..., 1, ..., 1, x)

x = 1

2
(n− 2d+ 4)

S
d = 2s+ 2 and n odd

C (x, 1, ..., 2, ..., 1, x)

x = 1

2
(n− 2d+ 3)

S
d = 2s+ 1

C (1, ..., 1, ps, ps+1, 1, ..., 1)

ps = ps+1 = 1

2
(n− 2d+ 4)

d = 2s+ 1

C (x, 1, ..., 1, ..., 1, x)

x = 1

2
(n− 2d+ 4)

Table 1: Extremal algebraic connectivities

4. Characterizing the algebraic connectivity of symmetric caterpillars.

A generalized Bethe tree is a rooted tree in which vertices at the same distance from

the root have the same degree. In [13], we characterize completely the Laplacian

eigenvalues of the tree Pm {Bi} obtained from the path Pm and m generalized Bethe
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trees B1, B2, ..., Bm by identifying the root vertex of Bi with the i-th vertex of Pm.

This is the case for the caterpillar C (p) in which the path is Pd−1 and the (d− 1)

generalized Bethe trees are the stars Spi
(1 ≤ i ≤ d− 1). Thus we may apply the

results in [13] to characterize the algebraic connectivity of C (p). Previously we

introduce some notation. Let

A (x) =

[
1

√
x√

x x+ 1

]

B (x) =

[
1

√
x√

x x+ 2

]

and

E =

[
0 0

0 1

]
.

Applying Theorem 4 of [13] to C (p), one can obtain

Theorem 4.1. The algebraic connectivity of C (p) is the smallest positive eigen-

value of the (2d− 2)× (2d− 2) positive semidefinite matrix

(4.1) M (p) =




A (p1) E

E B (p2) E

. . .
. . .

. . .

. . . B (pd−2) E

E A (pd−1)



.

Next we characterize the algebraic connectivity of a caterpillar in S as the smallest

eigenvalue of a 2×2 - block tridiagonal matrix of order 2s×2s if d = 2s+1 or d = 2s+2.

4.1. Case d = 2s+ 1. Let d = 2s+ 1. Let C (p) ∈ S. Then

p = [p1, ..., ps, ps, ..., p1],

and the matrix M (p) in (4.1) becomes

M (p) =




A (p1) E

E B (p2) E

. . .
. . .

. . .

. . . B (p2) E

E A (p1)



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of order 4s× 4s. Let J be the permutation matrix

(4.2) J =




I

I

I

I




of order 2s × 2s in which the 2 × 2 blocks in the secondary diagonal are the 2 × 2

identity matrix. We may write

(4.3) M (p) =

[
N (p1, ..., ps) F

F JN (p1, ..., ps)J

]

where

(4.4) N (p1, ..., ps) =




A (p1) E

E B (p2)
. . .

. . .
. . .

. . .

. . . E

E B (ps)




and

F =




0 0 0

0 0
. . .

...
...

. . .
. . .

. . .
...

0
. . . 0 0

E 0 · · · 0 0




.

We claim that M (p) in (4.3) is orthogonally similar to a block diagonal matrix. In

fact, let us consider the orthogonal matrix Q of order 4s× 4s,

Q =
1√
2

[
I J

I −J

]
.

A computation shows

QM (p)QT

=

[
R 0

0 S

]
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where

R =




A (p1) E

E B (p2)
. . .

. . .
. . .

. . .

. . . E

E B (ps) + E




and

S =




A (p1) E

E B (p2)
. . .

. . .
. . .

. . .

. . . E

E B (ps)− E




.

Therefore

(4.5) σ (M (p)) = σ (R) ∪ σ (S) .

Since detR = 2 and detS = 0, R is a positive definite matrix and S is positive

semidefinite matrix.

We recall the Monotonicity Theorem for eigenvalues of Hermitian matrices [9]:

Theorem 4.2. Let A,B ∈ Mn be Hermitian matrices. Let C = A+B. Let

α1 ≤ α2 ≤ ..... ≤ αn

β1 ≤ β2 ≤ ..... ≤ βn

γ1 ≤ γ2 ≤ ..... ≤ γn

be the eigenvalues of A,B and C respectively. Then

αj + βi−j+1 ≤ γi if i ≥ j

γi ≤ αj + βi−j+n if i ≤ j

αi + β1 ≤ γi ≤ αi + βn i = 1, 2, ..., n.

Theorem 4.3. If d = 2s + 1 and p = [p1, ..., ps, ps, ..., p1] then the algebraic

connectivity of the caterpillar C (p) is the smallest eigenvalue of

R =




A (p1) E

E B (p2)
. . .

. . .
. . . E

E B (ps) + E



.
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Proof. We have

R = S + T

where all the entries of T are zeros except for T (2s, 2s) = 2. Let

γ1 ≤ γ2 ≤ ... ≤ γ2s

0 = α1 ≤ α2 ≤ ... ≤ α2s

0 = β1 = ... = β2s−1 < β2 = 2

be the eigenvalues of R,S and T respectively. From (4.5)

σ (M (p)) = {γ1, γ2, ..., γ2s} ∪ {0, α2, ..., α2s} .

From Theorem 4.2

γi ≤ αj + βi−j+2s for i ≤ j.

In particular, for i = 1 and j = 2, we have γ1 ≤ a2 + β2s−1 = α2 + 0 = α2. This

shows that the smallest positive eigenvalue of R is the smallest positive eigenvalue of

M (p) . This fact and Theorem 4.1 complete the proof.

Example 4.4. Consider the symmetric caterpillar

We have p =
[
4 3 2 2 3 4

]
and its algebraic connectivity is the smallest

eigenvalue of

R =




1 2 0 0 0 0

2 5 0 1 0 0

0 0 1
√
3 0 0

0 1
√
3 5 0 1

0 0 0 0 1
√
2

0 0 0 1
√
2 5



.

4.2. Case d = 2s+ 2. Let d = 2s+ 2. Let C (p) ∈ S. Then

p = [p1, p2, ..., ps, ps+1, ps, ..., p2, p1] ,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 136-157, February 2010



ELA

Extremal Algebraic Connectivities of Caterpillar Classes 155

and the matrix M (p) in (4.1) becomes

M (p) =




N (p1, ..., ps)

[
0

E

]
0

[
0 E

] [
1

√
ps+1√

ps+1 ps+1 + 2

] [
E 0

]

0

[
E

0

]
JN (p1, ..., ps)J




where N (p1, ..., ps) and J are as in (4.4) and (4.2) respectively. Let us consider the

orthogonal matrix Q of order (4s+ 2)× (4s+ 2)

Q =
1√
2




I 0 J

0
√
2I 0

I 0 −J


 .

A computation shows

QM (p)QT

=




N (p1, ..., ps)

[
0√
2E

]
0

[
0

√
2E

] [
1

√
ps+1√

ps+1 ps+1 + 2

]
0

0 0 N (p1, ..., ps)



.

Hence

(4.6) σ (M (p)) = σ (U) ∪ σ (N)

where

U =




N (p1, ..., ps)

[
0√
2E

]

[
0

√
2E

] [
1

√
ps+1√

ps+1 ps+1 + 2

]


 .

Since detU = 0 and detN = 1, U is a positive semidefinite matrix and N is a positive

definite matrix.

The proof of the following theorem as well as the following example are given in

[1, Theorem 8 and Example 3]. However, for completeness, they are also given here.
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Theorem 4.5. If d = 2s+2 and p = [p1, ..., ps, ps+1, ps, ..., p1] then the algebraic

connectivity of C (p) is the smallest eigenvalue of

N =




A (p1) E

E B (p2)
. . .

. . .
. . . E

E B (ps)



.

Proof. We know that the smallest positive eigenvalue of M (p) is the algebraic

connectivity of C (p) . From (4.6) the eigenvalues of M (p) are the eigenvalues of U

and N. Let U1 the principal submatrix of U obtained by deleting its last row and its

last column. That is

U1 =

[
N 0

0 1

]
.

We have detN = 1. Then at least one eigenvalue of N is strictly less than 1. By the

eigenvalue interlacing property for Hermitian matrices, the eigenvalues of N and the

eigenvalue 1 interlace the eigenvalues of U. These facts all together imply that the

smallest eigenvalue of N is the smallest positive eigenvalue of M (p) . This completes

the proof.

Example 4.6. The algebraic connectivity of the caterpillar

is the smallest eigenvalue of

N =




1
√
4 0 0√

4 5 0 1

0 0 1
√
3

0 1
√
3 5


 .
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