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THE MAXIMUM SPECTRAL RADIUS OF GRAPHS WITH A LARGE CORE∗

XIAOCONG HE† , LIHUA FENG† , AND DRAGAN STEVANOVIĆ‡

Abstract. The (k+1)-core of a graph G, denoted by Ck+1(G), is the subgraph obtained by repeatedly removing any vertex

of degree less than or equal to k. Ck+1(G) is the unique induced subgraph of minimum degree larger than k with a maximum

number of vertices. For 1 ≤ k ≤ m ≤ n, we denote Rn,k,m = Kk ∨ (Km−k ∪ In−m). In this paper, we prove that Rn,k,m

obtains the maximum spectral radius and signless Laplacian spectral radius among all n-vertex graphs whose (k + 1)-core has

at most m vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250–257, 2014].

Moreover, we also present the bipartite version of our result.
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1. Introduction. All graphs considered in this paper are simple and undirected. LetG = (V (G), E(G))

be a graph with the vertex set V (G) and the edge set E(G). Let |V (G)| be the order of G and |E(G)| be

the size of G. Two vertices of a graph G are said to be independent if they are not adjacent. A subset I of

V (G) is called an independent set if any two vertices of I are independent in G. Let Ir be an independent

set of size r. The neighborhood of a vertex v, written by NG(v), is the set of vertices adjacent to v in G.

The degree of v is defined as the number dG(v) = |NG(v)|. The minimum degree of G is denoted by δ(G).

If v ∈ V (G), then G − v denotes the graph obtained from G by deleting the vertex v and all its incident

edges. If uv ∈ E(G), then G − uv is a graph obtained from G by removing the edge uv. The null graph is

the graph whose vertex set and edge set are empty. We adopt the notation and terminologies in [3] except

as stated otherwise.

The adjacency matrix A(G) of G is an n×n matrix with the (i, j)-entry equals to 1 if vertices vi and vj
are adjacent and 0 otherwise. The largest eigenvalue of A(G) is called the spectral radius of G and denoted

by ρ(G). Let D(G) = diag
(
d(v1), d(v2), . . . , d(vn)

)
be the diagonal matrix of vertex degrees. The signless

Laplacian matrix is Q(G) = D(G)+A(G), and we call its largest eigenvalue, denoted by q(G), the Q-index of

G. It is well known that A(G) (Q(G)) is irreducible if G is connected. From the Perron–Frobenius Theorem,

if G is connected, then there is a unique positive eigenvector corresponding to ρ(G) (q(G)) whose entries

sum to 1. We call this eigenvector principle eigenvector. Spectral graph theory is an important branch of

algebraic graph theory. In particular, eigenvalues of graphs are important structural invariants which have

numerous applications in quantum chemistry and theoretical chemistry. Many upper bounds on ρ(G) and

q(G) have been obtained (see [4, 5, 6, 7, 8, 15, 16, 17, 18, 19] for example).

The (k+1)-core of a graph G, denoted by Ck+1(G), is the subgraph obtained by repeatedly removing

any vertex of degree less than or equal to k. It is easy to see that Ck+1(G) is the unique induced subgraph of

minimum degree larger than k with a maximum number of vertices. Cores were introduced by S.B. Seidman
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[13] and have been studied extensively in [2]. Note that we allow Ck+1(G) to be a null graph; in this case,

the graph has no subgraph of minimum degree larger than k. Graphs whose (k + 1)-core is a null graph

are referred to as k-degenerate; see [1] and [10] for recent breakthrough in extremal graph theory. For two

vertex-disjoint graphs G and H, G ∪ H denotes the disjoint union of G and H; G ∨ H denotes the join

of G and H, which is obtained from G ∪ H by adding all possible edges between G and H. For instance,

Kr,s = Ir ∨ Is. We can observe that Kk ∨ In−k is a k-degenerate graph on n vertices.

In 2014, Nikiforov [12] proved the following results for k-degenerate graphs.

Theorem 1 (Nikiforov [12]). If G is a k-degenerate graph of order n ≥ k, then

ρ(G) ≤ ρ(Kk ∨ In−k),

equality holds if and only if G = Kk ∨ In−k.

Theorem 2 (Nikiforov [12]). If G is a k-degenerate graph of order n ≥ k, then

q(G) ≤ q(Kk ∨ In−k),

equality holds if and only if G = Kk ∨ In−k.

Let 1 ≤ k ≤ m ≤ n be positive integers. We denote (see Fig. 1)

Rn,k,m := Kk ∨ (Km−k ∪ In−m).

Clearly, the (k+ 1)-core of Rn,k,m has at most m vertices. In particular, when m = k or k+ 1, Ck+1(Rn,k,m)

is a null graph; when m ≥ k + 2, we can see that Ck+1(Rn,k,m) is the complete graph Km.
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Rn,k,m Br,s
n,m,k

Fig. 1. Graphs Rn,k,m and Br,s
n,m,k.

In what follows, we generalize Nikiforov’s results on both Theorems 1 and 2.

Theorem 3. Let G be an n-vertex graph with |Ck+1(G)| ≤ m. Then,

ρ(G) ≤ ρ(Rn,k,m),

equality holds if and only if G = Rn,k,m.

Theorem 4. Let G be an n-vertex graph with |Ck+1(G)| ≤ m. Then,

q(G) ≤ q(Rn,k,m),

equality holds if and only if G = Rn,k,m.
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Recall that a graph is k-degenerate if and only if its (k+1)-core is a null graph. Hence, G is k-degenerate

if and only if |Ck+1(G)| ≤ k. Our results extend Theorems 1 and 2. Indeed, setting m = k in Theorem 3,

we get Theorem 1. Similarly, Theorem 4 can imply Theorem 2.

We continue our investigation on bipartite graphs. Let k ≤ s ≤ r be integers with r+ s = m. We define

Br,s
n,m,k as the bipartite graph obtained from a bipartite graph Kr,s and an independent set In−m by joining

n−m vertices of In−m to the same k vertices of Kr,s in the color class of size s (see Fig. 1).

In particular, if s = k, then Br,s
n,m,k = Kk,n−k. Let B = {Br,s

n,m,k | r + s = m}.

Now, we present another main result, which is a bipartite version of Theorem 3.

Theorem 5. Let G be a connected bipartite graph whose spectral radius ρ(G) is maximum among all

n-vertex connected bipartite graphs whose (k + 1)-core has at most m vertices.

(1) If m ≤ 2k + 1, then ρ(G) ≤ ρ(Kk,n−k) with equality if and only if G = Kk,n−k.
(2) If m ≥ 2k + 2, then G ∈ B.

Corollary 1. If G is a k-degenerate connected bipartite graph of order n ≥ k, then,

ρ(G) ≤ ρ(Kk,n−k),

equality holds if and only if G = Kk,n−k.

2. Technical lemmas. In this section, we introduce four specific graph operations, and our technique

is to employ these specific operations to make the transformed graph with larger spectral radius.

Lemma 6 ([11]). Let M and N be two nonnegative irreducible matrices with same order. If (N)ij ≤
(M)ij for each i, j, then µ(N) ≤ µ(M) with equality if and only if N = M , where µ(N) and µ(M) denote

the spectral radius of N and M .

Lemma 7 ([14]). Let u and v be two vertices of a connected graph G. Suppose v1, v2, . . . , vs ∈
N(v)\N(u) (1 ≤ s ≤ d(v)), v1, v2, . . . , vs are different from u and x is the Perron vector. Let G∗ be

the graph obtained from G by deleting the edges vvi and adding the edges uvi (1 ≤ i ≤ s). If xu ≥ xv, then

ρ(G) < ρ(G∗).

Lemma 8 ([9]). Let G be a connected graph and q(G) be the spectral radius of Q(G). Let u and v be

two vertices of G. Suppose v1, v2, . . . , vs ∈ N(v)\N(u) (1 ≤ s ≤ d(v)), v1, v2, . . . , vs are different from u and

x is the Perron vector of Q(G). Let G∗ be the graph obtained from G by deleting the edges vvi and adding

the edges uvi (1 ≤ i ≤ s). If xu ≥ xv, then q(G) < q(G∗).

Lemma 9. Let G be a connected graph. Let v be a vertex of G and U,W be two vertex-disjoint sets

of V (G). Suppose v /∈ W , NG(v) ∩ U = U,NG(v) ∩W = ∅ and x is the Perron vector of A(G). Let G∗

be the graph obtained from G by deleting the edge set ∪u∈U{uv} and adding the edge set ∪w∈W {wv}. If∑
u∈U xu ≤

∑
w∈W xw, then ρ(G) < ρ(G∗).

Proof.

ρ(G∗)− ρ(G) ≥ x>A(G∗)x
x>x

− x>A(G)x

x>x

=
2xv(

∑
w∈W xw −

∑
u∈U xu)

x>x
≥ 0.
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If ρ(G∗) = ρ(G), then x is a Perron vector of A(G∗). Hence, we have

0 = ρ(G∗)
∑
w∈W

xw − ρ(G)
∑
w∈W

xw

= |W |xv

> 0,

a contradiction. Hence, ρ(G) < ρ(G∗).

3. Proof of Theorems 3 and 4. Let Gkn,m be the class of all n-vertex graphs whose (k + 1)-core has

at most m vertices.

Choose G ∈ Gkn,m such that ρ(G) is as large as possible. Order the vertices of G as follows: choose

a vertex v ∈ V (G) with dG(v) = δ(G) and set v1 = v; further, having chosen v1, v2, . . . , vj , letting H be

the graph induced by V (G)\{v1, v2, . . . , vj}, choose v ∈ V (H) with dH(v) = δ(H) ≤ k and set vj+1 = v.

Continuing the process until we obtain Ck+1(G). Since |Ck+1(G)| ≤ m, in the ordering v1, v2, . . . , vn−m,

every vertex has at most k neighbors in the remaining vertices of V (G). Let G0 = G − {v1, v2, . . . , vn−m}.
In what follows, we shall first show that G0 is a complete graph on m vertices, and then we shall apply a

series of claims to prove that v1, . . . , vn−m−1, vn−m form an independent set of G and each of these vertices

has the same neighborhood in G0.

First of all, we have

|E(G)| ≤ k(n−m) + |E(G0)| ≤ k(n−m) +
(
m
2

)
.

By the maximality of ρ(G), in the ordering v1, v2, . . . , vn−m, every vertex has exactly k neighbors in the

remaining vertices of V (G) and G0 = Km. Thus, we have |E(G)| = k(n −m) +
(
m
2

)
and G is a connected

graph. Let V (G0) = {u1, u2, . . . , um}. Without loss of generality, let NG0
(vn−m) = {u1, u2, . . . , uk} and x

be the Perron vector of A(G).

Claim 1. vn−m−1vn−m /∈ E(G).

Proof. Suppose to the contrary that vn−m−1vn−m ∈ E(G). Since vn−m−1 has exactly k neighbors in

{vn−m} ∪ V (G0), there is at least one vertex in {u1, u2, . . . , uk} nonadjacent to vn−m−1. Without loss of

generality, we may assume that vn−m−1u1 /∈ E(G).

If xu1
≥ xvn−m

, then let G1 = G − vn−m−1vn−m + vn−m−1u1. It is easy to see that G1 ∈ Gkn,m. By

Lemma 7, we obtain ρ(G1) > ρ(G), a contradiction. If xu1
< xvn−m

, we complete the proof according to the

following two possible cases.

Case 1. m = k.

Swap the labels of two vertices u1 and vn−m, that is, letting u1 = vn−m and vn−m = u1. Thus,

vn−m−1vn−m
/∈ E(G). In the new vertex sequence v1, v2, . . . , vn−m, every vertex still has exactly k neighbors in the

remaining vertices of V (G).

Case 2. m > k.

Let G2 = G − ∪mi=k+1{u1ui} + ∪mi=k+1{vn−mui}. Remove the vertices v1, v2, . . . , vn−m−1, u1 in turn,

and it is easy to see that any vertex in this sequence has at most k neighbors in the remaining vertices of

G2. Then, we have G2 ∈ Gkn,m. By Lemma 7, we obtain ρ(G2) > ρ(G), a contradiction.
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Recall that NG0(vn−m) = {u1, u2, . . . , uk}. We have the following claim.

Claim 2. NG0
(vn−m−1) = {u1, u2, . . . , uk}.

Proof. Suppose to the contrary that NG0
(vn−m−1) 6= {u1, u2, . . . , uk}. Since vn−m−1 has exactly k

neighbors in {vn−m}∪V (G0), by Claim 1, there is at least one ui (i > k) adjacent to vn−m−1. Without loss

of generality, assume that vn−m−1u1 /∈ E(G) and vn−m−1uk+1 ∈ E(G).

If xu1
≥ xuk+1

, then let G3 = G − vn−m−1uk+1 + vn−m−1u1. It is easy to see that G3 ∈ Gkn,m. By

Lemma 7, we obtain ρ(G3) > ρ(G), a contradiction.

If xu1
< xuk+1

, then let G4 = G− vn−mu1 + vn−muk+1. It is easy to see that G4 ∈ Gkn,m. By Lemma 7,

we obtain ρ(G4) > ρ(G), a contradiction.

Claim 3. {vn−m, vn−m−1, vn−m−2} is an independent set.

Proof. Suppose vn−m−2vn−m ∈ E(G). Since vn−m−2 has exactly k neighbors in {vn−m−1, vn−m} ∪
V (G0), without loss of generality, we may assume that vn−m−2u1 /∈ E(G).

If xu1
≥ xvn−m

, then let G5 = G − vn−m−2vn−m + vn−m−2u1. It is easy to see that G5 ∈ Gkn,m. By

Lemma 7, we obtain ρ(G5) > ρ(G), a contradiction.

If xu1
< xvn−m

, let G6 = G− u1vn−m−1 + vn−mvn−m−1. We have G6 ∈ Gkn,m. By Lemma 7, we obtain

ρ(G6) > ρ(G), a contradiction. Similarly, we have vn−m−2vn−m−1 /∈ E(G).

Claim 4. NG0
(vn−m−2) = {u1, u2, . . . , uk}.

Proof. Suppose to the contrary that NG0
(vn−m−2) 6= {u1, u2, . . . , uk}. Since vn−m−2 has exactly k

neighbors in {vn−m−1, vn−m} ∪ V (G0), by Claim 3, there is at least one ui (i > k) adjacent to vn−m−2.

Without loss of generality, assume that vn−m−2u1 /∈ E(G) and vn−m−2uk+1 ∈ E(G).

If xu1 ≥ xuk+1
, then let G7 = G − vn−m−2uk+1 + vn−m−2u1. We have G7 ∈ Gkn,m. By Lemma 7, we

obtain ρ(G7) > ρ(G), a contradiction.

If xu1 < xuk+1
, then let G8 = G− vn−mu1 + vn−muk+1. We have G8 ∈ Gkn,m. By Lemma 7, we obtain

ρ(G8) > ρ(G), a contradiction.

By Claims 1–4, we have {vn−m, vn−m−1, vn−m−2} is an independent set and

NG0
(vn−m) = NG0

(vn−m−1) = NG0
(vn−m−2) = {u1, u2, . . . , uk}.

Next, assume that Ni = {vn−m, vn−m−1, · · · , vn−m−(i−1)} is an independent set for some 3 ≤ i < n −m,

and NG0(vn−m−j) = {u1, u2, · · · , uk} for 0 ≤ j ≤ i− 1. In the following, we prove Ni+1 = Ni ∪ {vn−m−i} is

an independent set and NG0
(vn−m−i) = {u1, u2, · · · , uk}.

Assume Ni+1 = Ni ∪ {vn−m−i} is not an independent set. Without loss of generality, we may assume

vn−m−ivn−m ∈ E(G). Since vn−m−i has exactly k neighbors in {vn−m−(i−1), · · · , vn−m−1, vn−m} ∪ V (G0),

vn−m−i is not adjacent to all vertices of {u1, u2, . . . , uk}. Without loss of generality, assume vn−m−iu1 /∈
E(G).

If xu1
≥ xvn−m

, then let G9 = G − vn−m−ivn−m + vn−m−iu1. We have G9 ∈ Gkn,m. By Lemma 7, we

obtain ρ(G9) > ρ(G), a contradiction.
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If xu1 < xvn−m , let G10 = G − u1vn−m−1 + vn−mvn−m−1. We have G10 ∈ Gkn,m. By Lemma 7, we

obtain ρ(G10) > ρ(G), a contradiction. Similarly, we have vn−m−ivn−m−j /∈ E(G), for 1 ≤ j ≤ i− 1. Thus,

Ni+1 = Ni ∪ {vn−m−i} is an independent set in G.

Assume NG0
(vn−m−i) 6= {u1, u2, · · · , uk}. Without loss of generality, assume vn−m−iu1 /∈ E(G) and

vn−m−iuk+1 ∈ E(G). If xu1
≥ xuk+1

, then let G11 = G−vn−m−iuk+1 +vn−m−iu1. We have G11 ∈ Gkn,m. By

Lemma 7, we obtain ρ(G11) > ρ(G), a contradiction. If xu1 < xuk+1
, then let G12 = G−vn−mu1+vn−muk+1.

We have G12 ∈ Gkn,m. By Lemma 7, we obtain ρ(G12) > ρ(G), a contradiction.

Performing the above process, since V (G) is a finite set, we will obtain that {vn−m, vn−m−1, · · · , v1} is

an independent set and

NG0(vn−m) = NG0(vn−m−1) = · · · = NG0(v1) = {u1, u2, . . . , uk}.
Thus, G = Rn,k,m. Therefore, our result holds. �

Proof of Theorem 1 Suppose G is a graph with maximum spectral radius among the set of k-

degenerate graphs of order n ≥ k. Note that G is k-degenerate if and only if |Ck+1(G)| ≤ k. Letting m = k,

by Theorem 3, we obtain G = Rn,k,k. �

By Lemmas 6 and 8, and performing the same graph transformations as in the proof of Theorem 3, we

may obtain Theorems 4 and 2.

4. Proof of Theorem 5. Let Bkn,m be the class of all n-vertex connected bipartite graphs whose

(k + 1)-core has at most m vertices.

Choose G ∈ Bkn,m such that ρ(G) is as large as possible. Similarly, as in the proof of Theorem 3, we

have a vertex sequence v1, v2, . . . , vn−m such that, in the ordering, every vertex has at most k neighbors in

the remaining vertices of V (G). Let G0 = G−{v1, v2, . . . , vn−m}. Then, by the maximality of ρ(G), G0 is a

complete bipartite graph. Assume G = (X,Y ) and G0 = (X0, Y0) with X0 ⊆ X and Y0 ⊆ Y . Let x be the

Perron vector of A(G).

Remark 1. If m ≤ 2k+ 1, then G is k-degenerate. Hence, V (Ck+1(G)) = ∅ and we have Bkn,0 = Bkn,1 =

Bkn,2 = · · · = Bkn,2k+1.

By Remark 1, in the following, assume m ≥ 2k + 1.

Claim 5. |X0|, |Y0| > 0.

Proof. If |X0| = 0, then |Y0| = m ≥ 2k + 1 and G0 = Y0 is an independent set. We claim that for any

1 ≤ i 6= j ≤ n − m, either NY0
(vi) ⊆ NY0

(vj) or NY0
(vj) ⊆ NY0

(vi). Otherwise, there exist u ∈ NY0
(vi)

and w ∈ NY0(vj) such that uvj /∈ E(G) and wvi /∈ E(G). Without loss of generality, let xu ≥ xw. Clearly,

G− wvj + uvj ∈ Bkn,m. By Lemma 7, ρ(G− wvj + uvj) > ρ(G), a contradiction.

Since |NY0
(vi)| ≤ k (1 ≤ i ≤ n −m), we can conclude that

∣∣∣⋃1≤i≤n−mNY0
(vi)

∣∣∣ ≤ k. Since |Y0| = m ≥
2k + 1, there are at least k + 1 isolated vertices of G in Y0. Hence, G is disconnected, a contradiction.

Similarly, by the symmetry of X0 and Y0, we also have |Y0| > 0.

Claim 6. If m ≥ 2k + 1 and at least one of X0 and Y0 is less than or equal to k, then G = Kk,n−k.

Proof. Note that Kk,n−k ∈ Bkn,m and if we delete n − m vertices of Kk,n−k with degree k, then the

remaining subgraph is Kk,m−k with one color class of size k. By the maximality of ρ(G), we have ρ(G) ≥
ρ(Kk,n−k). Without loss of generality, assume |X0| ≤ k.
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Case 1. If |X0| < k and vn−m ∈ X, by the maximality of ρ(G), then |NY0(vn−m)| = k. Since |Y0| ≥ k+2,

there is a vertex u ∈ Y0 nonadjacent to vn−m. Let G∗ = G + uvn−m. Since any vertex in the sequence

v1, v2, . . . , vn−m−1, u has at most k neighbors in the remaining vertices of G∗, we have G∗ ∈ Bk
n,m and

X0 ∪ {vn−m} is a color class of G∗ − {v1, v2, . . . , vn−m−1, u} with size at most k. By Lemma 6, we have

ρ(G∗) > ρ(G), a contradiction.

Case 2. If |X0| < k and vn−m ∈ Y , by the maximality of ρ(G), then NX0(vn−m) = X0. We will

prove vj ∈ Y for any 1 ≤ j ≤ n − m. Suppose to the contrary that there is a vertex vn−m−i ∈ X.

We choose vn−m−i ∈ X such that {vn−m, vn−m−1, . . . , vn−m−(i−1)} ⊆ Y . Since |Y0| ≥ k + 2, there is

a vertex u ∈ Y0 nonadjacent to vn−m−i. Let G∗ = G + uvn−m−i. Since any vertex in the sequence

v1, v2, . . . , vn−m−(i+1), vn−m−(i−1), . . . , vn−m, u has at most k neighbors in the remaining vertices of G∗, we

have G∗ ∈ Bkn,m and X0 ∪ {vn−m−i} is a color class of G∗ − {v1, . . . , vn−m−(i+1), vn−m−(i−1), . . . , vn−m, u}
with size at most k. By Lemma 6, we have ρ(G∗) > ρ(G), a contradiction. Thus, G = K|X0|,n−|X0| and

ρ(G) < ρ(Kk,n−k), a contradiction.

Case 3. If |X0| = k and vn−m ∈ X, we claim that vj ∈ X for any 1 ≤ j ≤ n−m. Suppose to the contrary

that there is a vn−m−i ∈ Y . We choose vn−m−i ∈ X such that {vn−m, vn−m−1, . . . , vn−m−(i−1)} ⊆ X. By the

maximality of ρ(G), we have |NY0(vn−m)| = k, NY0(vn−m) = NY0(vn−m−1) = · · · = NY0(vn−m−(i−1)) and

vn−m−i has exactly k neighbors in X0∪{vn−m, vn−m−1, . . . , vn−m−(i−1)}. We claim that vn−m−i is adjacent

to all k vertices of X0. Otherwise, there is a vertex vn−m−i′ adjacent to vn−m−i, where 0 ≤ i′ ≤ i− 1. Let

z be a vertex of X0 nonadjacent to vn−m−i.

• If xz ≤ xvn−m−i′ , let

G∗ = G−
⋃

y∈Y0,yvn−m−i′ /∈E(G)

{zy}+
⋃

y∈Y0,yvn−m−i′ /∈E(G)

{yvn−m−i′}.

Since any vertex in the sequence v1, . . . , vn−m−(i′+1), vn−m−(i′−1), . . . , vn−m, z has at most k neigh-

bors in the remaining vertices of G∗, we have G∗ ∈ Bkn,m. By Lemma 7, we have ρ(G∗) > ρ(G), a

contradiction.

• If xz > xvn−m−i′ , let G∗ = G − vn−m−i′vn−m−i + zvn−m−i. Since any vertex in the sequence

v1, v2, . . . , vn−m has at most k neighbors in the remaining vertices of G∗, we have G∗ ∈ Bkn,m. By

Lemma 7, ρ(G∗) > ρ(G), a contradiction.

Hence, vn−m−i is adjacent to all k vertices of X0. Similarly, if vn−m−(i+1) ∈ Y , we also have vn−m−(i+1)

is adjacent to all k vertices of X0. If vn−m−(i+1) ∈ X, we claim that vn−m−(i+1)vn−m−i /∈ E(G). Otherwise,

there is a vertex w ∈ NY0(vn−m) nonadjacent to vn−m−(i+1). If xw ≤ xvn−m−i , let G∗ = G − wvn−m +

vn−mvn−m−i. Since any vertex in the sequence v1, . . . , vn−m−(i+1), vn−m−(i−1), . . . , vn−m, vn−m−i has at

most k neighbors in the remaining vertices of G∗, we have G∗ ∈ Bkn,m. By Lemma 7, we have ρ(G∗) > ρ(G),

a contradiction. If xw > xvn−m−i
, let G∗ = G − vn−m−(i+1)vn−m−i + wvn−m−(i+1). Clearly, G∗ ∈ Bkn,m.

By Lemma 7, we have ρ(G∗) > ρ(G), a contradiction. Hence, vn−m−(i+1)vn−m−i /∈ E(G) and vn−m−(i+1)

is adjacent to exactly k vertices of Y0. By the maximality of ρ(G), we have NY0(vn−m−(i+1)) = NY0(vn−m).

Recursively, we obtain G is isomorphic to G′ (see Fig. 2).

If xx ≤ xy for any x ∈ X0 and y ∈ NY0(vn−m), let

G∗ = G−
⋃

x∈X0

{xvn−m−i}+
⋃

y∈NY0
(vn−m)

{yvn−m−i}.
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Clearly, G∗ ∈ Bkn,m. By Lemma 9, we have ρ(G∗) > ρ(G), a contradiction. Hence, xx > xy for any x ∈ X0

and y ∈ NY0
(vn−m). Let

G∗ = G−
⋃

y∈NY0
(vn−m)

{yvn−m}+
⋃

x∈X0

{xvn−m}.

Clearly, G∗ ∈ Bkn,m. By Lemma 9, we have ρ(G∗) > ρ(G), a contradiction.

Hence, vj ∈ X for any 1 ≤ j ≤ n−m. By a direct calculation, we have

ρ(G) =

√
2

2

√
(kn− k2) +

√
(kn− k2)2 − 4k2(n−m)(m− 2k).

It is easy to see that ρ(G) <
√
k(n− k) = ρ(Kk,n−k), a contradiction.

Case 4. If |X0| = k and vn−m ∈ Y , by the maximality of ρ(G), vn−m is adjacent to all vertices of X0.

We claim that vj ∈ Y for any 1 ≤ j ≤ n −m. Suppose to the contrary that there is a vn−m−i ∈ X. We

choose vn−m−i ∈ X such that {vn−m, vn−m−1, . . . , vn−m−(i−1)} ⊆ Y . Then, vn−m, vn−m−1, . . . , vn−m−(i−1)
are adjacent to the k vertices of X0. Assume vn−m−i has exactly s neighbors in Y0, k − s neighbors

in {vn−m, vn−m−1, . . . , vn−m−(i−1)}, where 0 ≤ s ≤ k. Let u1, u2, . . . , ui−(k−s) be the i − k + s vertices

in {vn−m, vn−m−1, . . . , vn−m−(i−1)} nonadjacent to vn−m−i. Let y1, y2, . . . , yk−s be k − s vertices in Y0
nonadjacent to vn−m−i. Then, v1, . . . , vn−m−(i+1), u1, . . . , ui−(k−s), y1, . . . , yk−s, vn−m−i is a vertex sequence

in which any vertex has at most k neighbors in the remaining vertices of G. Note that vn−m−i is the finally

deleted vertex in the above vertex sequence. Since vn−m−i ∈ X, similarly as in Case 3, we can prove

ρ(G) < ρ(Kk,n−k). Hence, vj ∈ Y for any 1 ≤ j ≤ n−m. Thus, G = Kk,n−k.

...

...

... ...

...

X0

k

Y0

G

Fig. 2. Graph G′ in the proof of Claim 6.

Claim 7. If |X0|, |Y0| > k, then G = Br,s
n,m,k for some integers r, s with s > k.

Proof. Without loss of generality, assume vn−m ∈ X. We proceed with the following two cases.

Case 1. vn−m−1 ∈ Y .

• If vn−m−2 ∈ Y , we claim that vn−m−2 and vn−m−1 have exactly the same neighbors in {vn−m}∪X0.

Otherwise, since both vn−m−2 and vn−m−1 have exactly k neighbors in {vn−m} ∪ X0, there are

vertices z1, z2 ∈ {vn−m} ∪ X0 such that z1vn−m−1, z2vn−m−2 ∈ E(G) and z1vn−m−2, z2vn−m−1 /∈
E(G). If xz1 ≥ xz2 , let G∗ = G − z2vn−m−2 + z1vn−m−2. If xz1 < xz2 , let G∗ = G − z1vn−m−1 +

z2vn−m−1. Since any vertex in the sequence v1, v2, . . . , vn−m has at most k neighbors in the remaining

vertices of G∗, we have G∗ ∈ Bkn,m. By Lemma 7, we have ρ(G∗) > ρ(G), a contradiction.

• If vn−m−2 ∈ X, we claim that vn−m−2vn−m−1 /∈ E(G) and NY0(vn−m−2) = NY0(vn−m). We first

prove vn−m−2vn−m−1 /∈ E(G). Otherwise, vn−m−2 has exactly k − 1 neighbors in Y0. Recall that
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vn−m has exactly k neighbors in Y0. Then, there is a vertex w ∈ NY0(vn−m) satisfying wvn−m−2 /∈
E(G). If xw ≥ xvn−m−1

, let G∗ = G−vn−m−1vn−m−2 +wvn−m−2. Since any vertex in the sequence

v1, v2, . . . , vn−m has at most k neighbors in the remaining vertices of G∗, we have G∗ ∈ Bkn,m. By

Lemma 7, we have ρ(G∗) > ρ(G), a contradiction. If xw < xvn−m−1 , let

G∗ = G−
⋃

x∈X0,xvn−m−1 /∈E(G)

{xw}+
⋃

x∈X0,xvn−m−1 /∈E(G)

{xvn−m−1}.

Note that NG∗(w) ∩ X0 = NG(vn−m−1) ∩ X0. We have |NG∗(w) ∩ X0| = k − 1 if vn−m−1vn−m ∈
E(G), and |NG∗(w) ∩ X0| = k if vn−m−1vn−m /∈ E(G). For vn−m−1vn−m ∈ E(G), any vertex in

the sequence v1, v2, . . . , vn−m−2, w, vn−m has at most k neighbors in the remaining vertices of G∗.
For vn−m−1vn−m /∈ E(G), any vertex in the sequence v1, v2, . . . , vn−m−2, vn−m, w has at most k

neighbors in the remaining vertices of G∗. Hence, G∗ ∈ Bkn,m. By Lemma 7, we have ρ(G∗) > ρ(G),

a contradiction.

Now, we prove NY0(vn−m−2) = NY0(vn−m). Otherwise, there are vertices y1 ∈ NY0(vn−m) and

y2 ∈ NY0
(vn−m−2) such that y1vn−m−2, y2vn−m /∈ E(G). If xy1

≥ xy2
, let G∗ = G − y2vn−m−2 +

y1vn−m−2. Since any vertex in the sequence v1, v2, . . . , vn−m has at most k neighbors in the remaining

vertices of G∗, we have G∗ ∈ Bkn,m. By Lemma 7, we have ρ(G∗) > ρ(G), a contradiction. Similarly,

if xy1 < xy2 , we also have a contradiction.

Recursively, we have G is isomorphic to graphs G1 or G2 (see Fig. 3). In the following, we prove G is

not isomorphic to G1. Suppose to the contrary that G is isomorphic to G1.

For graph G1, since |X0| > k, there is a vertex x ∈ X0\NX0
(vn−m−1). If xx ≤ xvn−m

, let

G∗ = G1 −
⋃

y∈Y0\NY0
(vn−m)

{xy}+
⋃

y∈Y0\NY0
(vn−m)

{vn−my}.

Remove the vertices v1, v2, . . . , vn−m−2, vn−m−1, x in turn, and it is easy to see that any vertex in this

sequence has at most k neighbors in the remaining vertices of G∗. Then, we have G∗ ∈ Bkn,m. By Lemma 7,

we have ρ(G∗) > ρ(G1), a contradiction. If xx > xvn−m
. Let

G∗ = G1 − vn−mvn−m−1 + xvn−m−1.

Remove the vertices v1, v2, . . . , vn−m in turn, and it is easy to see that any vertex in this sequence has

at most k neighbors in the remaining vertices of G∗. Then, we have G∗ ∈ Bkn,m. By Lemma 7, we have

ρ(G∗) > ρ(G1), a contradiction. Hence, G is isomorphic to G2.

Case 2. vn−m−1 ∈ X.

• If vn−m−2 ∈ Y , we claim that vn−m−2 is neither adjacent to vn−m−1 nor adjacent to vn−m. Suppose

to the contrary that vn−m−2 is adjacent to u ∈ {vn−m−1, vn−m}. By Lemma 7, vn−m−1 and vn−m
have exactly the same neighbors in Y0. Since |X0| > k, there is a vertex x ∈ X0 nonadjacent

to vn−m−2. If xx ≥ xu, let G∗ = G − uvn−m−2 + xvn−m−2. Since any vertex in the sequence

v1, v2, . . . , vn−m has at most k neighbors in the remaining vertices of G∗. Then, we have G∗ ∈ Bkn,m.

By Lemma 7, we have ρ(G∗) > ρ(G), a contradiction. If xx < xu, let

G∗ = G−
⋃

y∈Y0\NY0
(u)

{xy}+
⋃

y∈Y0\NY0
(u)

{uy}.
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k

k

k

k

k

k

k

k − 1

vn−m−1

vn−m−1vn−m−1

vn−m

vn−mvn−m

· · ·· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

G1 satisfying vn−mvn−m−1 ∈ E(G1) G2 satisfying vn−mvn−m−1 /∈ E(G2)

G3 satisfying vn m 1 X G

X1 X2

Y1 Y2 S

T

Fig. 3. Graphs G1, G2, G3 and G
′′
.

Let w be the vertex different from u in {vn−m−1, vn−m}. Since any vertex in the sequence v1, v2, . . . ,

vn−m−2, w, x has at most k neighbors in the remaining vertices of G∗. Then, we have G∗ ∈ Bkn,m.

By Lemma 7, we have ρ(G∗) > ρ(G), a contradiction.

• If vn−m−2 ∈ X, by Lemma 7, vn−m−2, vn−m−1 and vn−m have exactly the same neighbors in Y0.

Recursively, we have G is isomorphic to graph G3 (see Fig. 3).

Note that both G2 and G3 have the form G
′′
, where X1 ∪X2 = X0, Y1 ∪ Y2 = Y0 and |S|+ |T | = n−m

(see Fig. 3).

Let x be a principle eigenvector of G
′′

corresponding to ρ(G
′′
). By symmetry, we have xx1

= xx2
for

any x1, x2 ∈ X2 (resp. xy1
= xy2

for any y1, y2 ∈ Y2). Without loss of generality, assume xx ≤ xy for x ∈ X2

and y ∈ Y2. We claim |S| = 0. Otherwise, let u ∈ S and

G∗ = G
′′ −

⋃
x∈X2

{ux}+
⋃

y∈Y2

{uy}.

It is easy to see that G∗ ∈ Bkn,m. By Lemma 9, we have ρ(G∗) > ρ(G
′′
), a contradiction.

We can see that A(G) has the following equitable quotient matrix (with respect to V (G) = X1 ∪X2 ∪
Y1 ∪ Y2 ∪ T ):

B =


0 0 |Y1| k 0

0 0 |Y1| k 0

|X1| k 0 0 0

|X1| k 0 0 n−m
0 0 0 k 0

 .
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By a simple calculation, the characteristic polynomial of B is equal to

f|X1|,|Y1|(λ)= λ5 − (k2 − km+ kn+ k|X1|+ k|Y1|+ |X1||Y1|)λ3

−(k2m|Y1| − k2n|Y1|+ km|X1||Y1| − kn|X1||Y1|)λ.
Fact 1. |Y1| ≤ |X1|.
Proof. By a direct calculation, we have f|X1|+1,|Y1|−1(λ) = f|X1|,|Y1|(λ) + (|X1| − |Y1| + 1)λ3 + k(n −

m)(|Y1| − |X1| − k − 1)λ. If |Y1| = |X1| + 1, then f|X1|+1,|Y1|−1(λ) = f|X1|,|Y1|(λ) − k2(n − m)λ. Note

that −k2(n −m)λ < 0 in [ρ(G),∞). Hence, G is not the graph in Bkn,m with maximum spectral radius, a

contradiction. If |Y1| > |X1|+ 1, then f|X1|+1,|Y1|−1(λ)− f|X1|,|Y1|(λ) = (|X1| − |Y1|+ 1)λ3 + k(n−m)(|Y1| −
|X1|−k−1)λ is a decreasing function of λ in (0,∞). Since ρ(G) > ρ(Kk,n−m) =

√
k(n−m), when λ ≥ ρ(G),

we have

f|X1|+1,|Y1|−1(λ)− f|X1|,|Y1|(λ)

<f|X1|+1,|Y1|−1(
√
k(n−m))− f|X1|,|Y1|(

√
k(n−m))

=
√
k(n−m)

[
(|X1| − |Y1|+ 1)k(n−m) + k(n−m)(|Y1| − |X1| − k − 1)

]
=−

√
k(n−m) · k2(n−m)

<0.

Hence, G is not the graph in Bkn,m with maximum spectral radius, a contradiction.

Combining Cases 1 and 2, we obtain G = Br,s
n,m,k for some integers r, s with s ≥ k.

Proof of Theorem 5. If m ≤ 2k + 1, by Remark 1, Claims 5 and 6, we have ρ(G) ≤ ρ(Kk,n−k) with

equality if and only if G = Kk,n−k. Note that if s = k, then Br,s
n,m,k = Kk,n−k. If m ≥ 2k + 2, by Remark 1

and Claims 5–7, we have G = Br,s
n,m,k for some integers r, s with s ≥ k. �

Proof of Corollary 1. G is k-degenerate if and only if |Ck+1(G)| ≤ 2k + 1. Letting m = 2k + 1, by

Theorem 5, we have ρ(G) ≤ ρ(Kk,n−k) with equality if and only if G = Kk,n−k. �

Remark 2. In case (ii) of Theorem 5, the extremal graphs are not unique and determining them does

not seem easy. We take a few examples to illustrate.

Example 1. m = 2k + 2. In this case, if k = 2 and n = 7, then B3,3
7,6,2 is the unique graph having

the largest spectral radius among B27,6. If k = 2 and n = 8, then K2,6 and B3,3
8,6,2 are the only two graphs

having the largest spectral radius among B28,6. If k = 2 and n ≥ 9, then K2,n−2 is the unique graph having

the largest spectral radius among B2n,6. If k ≥ 3, then Kk,n−k is the unique graph having the largest spectral

radius among Bkn,2k+2.

Example 2. m = 2k + 3 and k ≥ 2. In this case, Bk+2,k+1
n,2k+3,k is the unique graph having the largest

spectral radius among Bkn,2k+3.

Example 3. m = 2k + 4 and k ≥ 2. In this case, if n ≤ b (k+2)(2k2+3k+3)
k(k+1) c, then ρ(G) ≤ ρ(Bk+2,k+2

n,2k+3,k)

with equality if and only if G = Bk+2,k+2
n,2k+3,k. Otherwise, ρ(G) ≤ ρ(Bk+3,k+1

n,2k+4,k) with equality if and only if

G = Bk+3,k+1
n,2k+3,k.

Example 4. n = 91,m = 41, and k = 10. By a direct calculation, Bk+19,k+2
n,4k+1,k = B29,12

91,41,10 is the unique

graph having the largest spectral radius among B1091,41.
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