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RANGES OF SYLVESTER MAPS AND A MINIMAL

RANK PROBLEM∗

ANDRE C.M. RAN† AND LEIBA RODMAN‡

Abstract. It is proved that the range of a Sylvester map defined by two matrices of sizes p× p

and q × q, respectively, plus matrices whose ranks are bounded above, cover all p× q matrices. The

best possible upper bound on the ranks is found in many cases. An application is made to a minimal

rank problem that is motivated by the theory of minimal factorizations of rational matrix functions.
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1. Introduction. Let F be a (commutative) field. We let Fp×q stand for the

set of p× q matrices with entries in F; Fp×1 will be abbreviated to F
p. The following

minimal rank problem was stated in [8, Section 6] for the case when F is the complex

field C:

Problem 1.1. Given A ∈ Fn×n, and given an A-invariant subspace M ⊆ Fn,

find the smallest possible rank, call it µ(A,M), for the difference A − Z, where Z

runs over the set of all n × n matrices with entries in F for which there is a Z-

invariant subspace N ⊆ Fn complementary to M. Also, find structural properties, or

description, of such matrices Z.

The problem (for F = C) is intimately connected with minimal factorizations of

rational matrix functions, in particular, if certain additional symmetry properties of

A, M, and Z are assumed; see [8] for more details. Pairs of matrices (A,Z) that

have a pair of complementary subspaces M, N , of which the first is A-invariant and

the second is Z-invariant, but without explicit rank conditions on A−Z, are studied

in [1, 2], for example, in connection with complete minimal factorization of rational

matrix functions.
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In the general formulation, Problem 1.1 appears to be difficult, even intractable,

especially the part concerning properties or description of all matrices Z. To illustrate,

assume F is algebraically closed, and let

A =

(

0 1

0 0

)

, M = Span

(

1

0

)

.

Then µ(A,M) = 1, and a matrix Z =

(

x w

y z

)

, x, y, z, w ∈ F, has the properties

that rank (A − Z) = 1 and Z has an invariant subspace complemented to M if and

only if Z is not a nonzero scalar multiple of A and the equality xz + y(1 − w) = 0

holds.

If A and M are as in Problem 1.1, by applying a similarity transformation we

can assume without loss of generality that M is spanned by first p unit coordinate

vectors in Fn; thus A has the block form

A =

(

A1 A12

0 A2

)

,

where A1 ∈ Fp×p, A2 ∈ F(n−p)×(n−p). If the minimal polynomials of A1 and A2 are

coprime, then it is easy to see that µ(A,M) = 0, i.e., A has an invariant subspace N

complementary to M. Indeed, such N is spanned by the columns of

(

Q

I

)

, where

the matrix Q satisfies the equation

(

A1 A12

0 A2

) (

Q

I

)

=

(

Q

I

)

A2,

or

QA2 −A1Q = A12. (1.1)

It is well known that the Sylvester map Q 7→ QA2 − A1Q is invertible if and only

if the minimal polynomials of A1 and A2 are coprime. See, e.g., [5, 7] for this fact;

although this was established in [5, 7] only for the complex field, the extension to any

algebraically closed field is immediate, and to prove this fact for the general field F one

considers the algebraic closure of F. Hence (1.1) can be solved for Q for any given A12,

and µ(A,M) = 0 is established. This example shows close connections of Problem

1.1 with properties of Sylvester maps. There is a large literature (in mathematical

and engineering journals) on numerical analysis involving Sylvester maps; see, e.g.,

[3, 4] and the references cited there.

Connected to the Sylvester map the following problem appears in the theory of

control for coordination (see [6]). Given is a linear system ẋ(t) = Ax(t), where the
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matrix A has the form

A =





A11 0 A1c

0 A22 A2c

0 0 Acc





with respect to a fixed decomposition X = X1+̇X2+̇Xc of the state space. One allows

transformations A 7→ S−1AS, where S is of the form

S =





I 0 S1

0 I S2

0 0 I



 .

Then

S−1AS =





A11 0 A11S1 − S1Acc +A1c

0 A22 A22S2 − S2Acc +A2c

0 0 Acc



 .

¿From the point of view of communicating as little as possible between the coordinator

acting in Xc and the subsystems acting in X1 and X2, it is of interest to study when

the ranks of AiiSi − SiAcc + Aic are as small as possible for i = 1, 2. It is precisely

this problem we shall discuss in the next section.

2. Ranges of Sylvester maps. We recall the definition of invariant polynomi-

als. For A ∈ Fp×p, we let

λI −A = E(λ)diag (φA,1(λ), . . . , φA,p(λ))F (λ),

where E(λ), F (λ) are everywhere invertible matrix polynomials, and φA,j are scalar

monic polynomials such that φA,j is divisible by φA,j+1, for j = 1, . . . , p − 1. The

polynomials φA,j are called the invariant polynomials of A; φA,1 is in fact the minimal

polynomial of A.

For two matrices A1 and A2 over the field F of sizes p× p and q× q, respectively,

define the nonnegative integer s(A1, A2) as

max {j | 1 ≤ j ≤ min{p, q}, φA1,j(λ) and φA2,j(λ) are not coprime}.

The maximum of the empty set in this formula is assumed to be zero. Clearly,

s(A1, A2) = 0 if and only if the minimal polynomials of A1 and A2 are coprime.

If all eigenvalues of A1 and A2 are in F (in particular if F is algebraically closed),

then

s(A1, A2) = max
λ∈F

min{dimKer (A1 − λI), dimKer (A2 − λI)}.
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Consider the linear Sylvester map (for fixed A1 and A2) T : Fp×q −→ Fp×q

defined by

T (S) = SA2 −A1S, S ∈ F
p×q,

Theorem 2.1.

(a) Every matrix X ∈ Fp×q can be written in the form

X = T (S) + Y,

for some S ∈ Fp×q and some Y ∈ Fp×q with rankY ≤ s(A1, A2).

(b) Assume that s(A1, A2) 6= 0, and that the greatest common divisor of the min-

imal polynomials of A1 and A2 have all their roots in F (in particular, this condition

is always satisfied if F is algebraically closed). Then for fixed A1 and A2, there is a

Zariski open nonempty set Ω of Fp×q such that for every X ∈ Ω, there is no repre-

sentation of X in the form

X = T (S) + Y,

where S, Y ∈ Fp×q are such that rankY < s(A1, A2).

Theorem 2.1 can be thought of as a generalization of the well known fact that

the Sylvester map is a bijection if and only if the minimal polynomials of A1 and A2

are coprime.

Consider the following example to illustrate Theorem 2.1. Let

A1 =





0 0 0

0 0 0

0 0 1



 and A2 =





0 0 0

0 1 0

0 0 1



 .

The invariant polynomials are

φA1,1(λ) = φA2,1(λ) = λ(λ − 1),

φA1,2(λ) = λ, φA1,2(λ) = λ− 1, φA1,3(λ) = φA2,3(λ) = 1.

We have s(A1, A2) = 1. The range of the Sylvester map is easy to find:

RangeT =











0 ∗ ∗

0 ∗ ∗

∗ 0 0











,
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where by ∗ we denote arbitrary entries which are independent free variables. For

every X = [xi,j ] ∈ F3×3, we have

X =





x1,1

x2,1

1





[

1 x3,2 x3,3

]

+





0 ∗ ∗

0 ∗ ∗

∗ 0 0



 .

3. Proof of Theorem 2.1. Part (a). We use the rational canonical forms for

A1 and A2 (see, e.g., [5]), together with the invariance of the statement of the theorem

and of its conclusions under similarity transformations

A1 −→ G−1
1 A1G1, A2 −→ G−1

2 A2G2, G1 and G2 invertible.

We may assume therefore without loss of generality that

A1 = diag (A
(1)
1 , . . . , A

(u)
1 ) and A2 = diag (A

(1)
2 , . . . , A

(v)
2 ), (3.1)

where

A
(j)
1 = diag (A

(j,1)
1 , . . . , A

(j,γ1,j)
1 ), j = 1, . . . , u,

and where the characteristic polynomials of A
(j,k)
1 , k = 1, . . . , γ1,j , are all powers of

the same monic irreducible polynomial f1,j . The matrices A
(j,k)
1 are nonderogatory,

i.e., the minimal and the characteristic polynomials of A
(j,k)
1 coincide. In addition,

we require that the irreducible polynomials f1,1, . . . , f1,u are all distinct.

Similarly,

A
(j)
2 = diag (A

(j,1)
2 , . . . , A

(j,γ2,j)
2 ), j = 1, . . . , v,

where the characteristic polynomials of A
(j,k)
2 , k = 1, . . . , γ2,j , are all powers of the

same monic irreducible polynomial f2,j, and the polynomials f2,1, . . . , f2,v are all

distinct. Again, the matrices A
(j,k)
2 are nonderogatory.

Moreover, we arrange the blocks A
(1)
1 , . . . , A

(u)
1 and A

(1)
2 , . . . , A

(v)
2 so that

f1,1 = f2,1, . . . , f1,ℓ = f2,ℓ,

but the irreducible polynomials

f1,1, . . . , f1,u, f2,ℓ+1, . . . , f2,v

are all distinct. (The case when ℓ = 0, i.e., the polynomials f1,j and f2,j are all

distinct, is not excluded; in this case the subsequent arguments should be modified in
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obvious ways.) Note that since powers of distinct irreducible polynomials are coprime,

it follows that the characteristic polynomials of the matrices

A
(1)
1 , . . . , A

(u)
1 , A

(ℓ+1)
2 , . . . , A

(v)
2 (3.2)

are pairwise coprime.

We assume in addition that A
(j,k)
1 are companion matrices. To set up notation,

we let ej be a row with 1 in the jth position and zeros in all other positions (the

number of components in ej will be evident from context), and analogously let eTj
(the transpose of ej) be the column with 1 in the jth position and zeros in all other

positions. Let ξ1,j,k (resp., ξ2,j,k) be the size of the matrix A
(j,k)
1 (resp., A

(j,k)
2 ). Thus,

we let

A
(j,k)
1 =

















e2

e3
...

eξ1,j,k
α1,j,k

















(3.3)

or

A
(j,k)
1 =

[

eT2 eT3 . . . eTξ1,j,k αT
1,j,k

]

(3.4)

for some row α1,j,k (with entries in F), and analogously,

A
(j,k)
2 =

















e2

e3
...

eξ2,j,k
α2,j,k

















(3.5)

or

A
(j,k)
2 =

[

eT2 eT3 . . . eTξ2,j,k αT
2,j,k

]

(3.6)

for some row α2,j,k.

The forms (3.3) and (3.5) will be used if γ1,j ≤ γ2,j, and the forms (3.4) and (3.6)

will be used if γ1,j > γ2,j .

We return to the Sylvester map T . Conformably with (3.1), we partition

S = [Sj1,j2 ]j1=1,...,u;j2=1,...,v.
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Thus,

T (S) = SA2 −A1S = [Sj1,j2A
(j2)
2 −A

(j1)
1 Sj1,j2 ]j1=1,...,u;j2=1,...,v.

Also, if X ∈ Fp×q is an arbitrary matrix, then we partition again conformably with

(3.1):

X = [Xj1,j2 ]j1=1,...,u;j2=1,...,v.

We will show that for any given X ∈ Fp×q, there exist

Sj,j ∈ F
(ξ1,j,1+···+ξ1,j,γ1,j )×(ξ2,j,1+···+ξ2,j,γ2,j ), j = 1, . . . , ℓ,

with the property that

Xj,j = Yj,j +
(

Sj,jA
(j)
2 −A

(j)
1 Sj,j

)

, (3.7)

for some matrix Yj,j such that

rankYj,j ≤ min{γ1,j, γ2,j}, j = 1, . . . , ℓ. (3.8)

Assuming that we have already shown the existence of Sj,j satisfying (3.8) and (3.7),

we can easily complete the proof of Part (a).

Indeed, let

µ = max
j=1,...,ℓ

(min{γ1,j , γ2,j}) ,

and notice that µ = s(A1, A2). Now let

Yj,j = Wj,jZj,j, j = 1, . . . , ℓ

be a rank decomposition, where the matrix Wj,j (resp., Zj,j) has µ columns (resp.,

µ rows). We also put formally Wj,j = 0 for j = ℓ + 1, . . . , u, and and Zj,j = 0 for

j = ℓ + 1, . . . , v. Using the property that the characteristic polynomials of matrices

(3.2) are pairwise coprime, and that the Sylvester map S 7→ SB2 −B1S is onto if the

characteristic polynomials of B1 and B2 are coprime, we find

Sj1,j2 ∈ F
(ξ1,j1,1+···+ξ1,j1,γ1,j1

)×(ξ2,j2,1+···+ξ2,j2 ,γ2,j2
)

for

j1 = 1, . . . , u, j2 = 1, . . . , v, (j1, j2) 6∈ {(1, 1). . . . , (ℓ, ℓ)},

such that

Xj1,j2 = Wj1,j1Zj2,j2 +
(

Sj1,j2A
(j2)
2 −A

(j1)
1 Sj1,j2

)

.
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Now letting

Y =











W1,1

W2,2

...

Wu,u











[

Z1,1 Z2,2 · · · Zv,v

]

,

we have X = T (S) + Y , and obviously, rankY ≤ µ.

Thus, it remains to show the existence of Sj,j satisfying (3.7) and (3.8). We

fix j, j = 1, . . . , ℓ. We assume that γ1,j ≤ γ2,j , thus (3.3) and (3.5) will be used; if

γ1,j > γ2,j the proof is completely analogous using (3.4) and (3.6). Choose rows α′

1,j,k

(k = 1, . . . , γ1,j) so that the characteristic polynomials of the matrices

B
(j,k)
1 :=

















e2

e3
...

eξ1,j,k
α′

1,j,k

















, k = 1, . . . , γ1,j,

are coprime to f2,j = f1,j , and let

B
(j)
1 = diag

(

B
(j,1)
1 , . . . , B

(j,γ1,j)
1

)

.

Therefore, we can find Sj,j so that

Xj,j = Sj,jA
(j)
2 −B

(j)
1 Sj,j .

Now (3.7) holds with

Yj,j =
(

B
(j)
1 −A

(j)
1

)

Sj,j ,

and since the matrix Yj,j has at most γ1,j nonzero rows, we have rankYj,j ≤ γ1,j , as

required.

Part (b). We assume that A1 and A2 have the form (3.1), and use the notation

introduced in the proof of Part (a). We have ℓ ≥ 1. Let j0 be such that µ =

min{γ1,j0 , γ2,j0}. Without loss of generality we may assume j0 = 1. Let p1 × p1 and

q1 × q1, be the size of

A
(1)
1 = diag (A

(1,1)
1 , . . . , A

(1,γ1,1)
1 ) and A

(1)
2 = diag (A

(1,1)
2 , . . . , A

(1,γ2,1)
2 ),

respectively. It is easy to see that it suffices to find a Zariski open nonempty set Ω1 of

Fp1×q1 such that for every X1 ∈ Ω1, there is no representation of X1 in the form X1 =
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(SA
(1)
2 − A

(1)
1 S) + Y, where S, Y ∈ F p1×q1 and rankY < min{γ1,1, γ2,1}. Because of

the hypotheses of Part (b), we may assume that every matrix A
1,w
k , w = 1, 2, . . . , γk,1,

k = 1, 2, is an (upper triangular) Jordan block with the same eigenvalue λ; let the size

of this block be pk,w×pk,w. Consider a matrix of the form SA
(1)
2 −A

(1)
1 S, S ∈ Fp1×q1 ,

which is partitioned

SA
(1)
2 −A

(1)
1 S = [Qα,β]

γ1,1, γ2,1

α=1, β=1 , (3.9)

where the block Qα,β has the size

(

size of A1,α
1

)

×
(

size of A1,β
2

)

.

Since the A
1,w
k ’s are Jordan blocks, the bottom left corners of the blocks Qα,β are all

zeros. Now partition

X1 = [Xα,β]
γ1,1, γ2,1

α=1, β=1 ∈ F
p1×q1

comformably with the right hand side of (3.9). The Zariski open set Ω1 consists of

exactly those matriceds X1 for which the γ1,1×γ2,1 matrix formed by the bottom left

corners of the Xα,β ’s has the full rank, equal to min{γ1,1, γ2,1}.

4. A special case of the minimal rank problem. Given a subspace M ⊆ Fn

and a matrix Z ∈ Fn×n, we say that M is a complementary Z-invariant subspace if M

is Z-invariant and some direct complement to M in Fn is also Z-invariant. Denote by

CI(M) the set of all matrices Z for which M is a complementary invariant subspace.

The following problem is closely related to Problem 1.1.

Problem 4.1. Given a matrix A ∈ Fn×n and its invariant subspace M ⊆ Fn,

find the smallest possible rank of the differences A − Y , where Y is an arbitrary

matrix in CI(M), and find a matrix Z ∈ CI(M) such that the difference A− Z has

this smallest possible rank.

In fact, Problem 4.1 requires an extra condition for Z in comparison with Problem

1.1, namely, that M is an invariant subspace for Z.

Using similarity, we assume without loss of generality that

M =

{(

x

0

)

: x ∈ F p

}

, A =

(

A1 A12

0 A2

)

, A1 ∈ F
p×p, A2 ∈ F

q×q.

Theorem 2.1 sheds some light on Problem 4.1, as follows.

Theorem 4.2. Let κ := s(A1, A2). There exists a matrix Z ∈ CI(M) such that

rank (A− Z) ≤ κ. (4.1)
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Moreover, Z can be taken in the form

Z =

(

A1 W

0 A2

)

(4.2)

for some W .

Proof. We use Theorem 2.1. Indeed, if Z is in the form (4.2), then Z ∈ CI(M)

if and only if for some matrix Q ∈ Fp×q the subspace Span

(

Q

I

)

is Z-invariant,

i.e., the equation

(

A1 W

0 A2

) (

Q

I

)

=

(

Q

I

)

A2

holds, or equivalently,

QA2 −A1Q − (W −A12) = A12.

By Theorem 2.1, such Q exists for someW with the property that rank (A12−W ) ≤ κ.

Since obviously

rank (A− Z) = rank (A12 −W ),

the result follows.
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