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EIGENVALUES OF SUMS OF PSEUDO-HERMITIAN MATRICES∗

PHILIP FOTH†

Abstract. We study analogues of classical inequalities for the eigenvalues of sums of Hermitian

matrices for the cone of admissible elements in the pseudo-Hermitian case. In particular, we obtain

analogues of the Lidskii-Wielandt inequalities.
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1. Introduction. The classical triangle inequality says that for a triangle with

side lengths a, b and c, one has |a − b| ≤ c ≤ |a + b|. If one considers the space R3

with the Minkowski norm |(x, y, z)|2 = z2 − x2 − y2, then in the future timelike cone,

defined by z2 − x2 − y2 > 0, z > 0, the triangle inequality gets reversed, and the

sides of a triangle −→a +
−→
b = −→c satisfy |−→c | ≥ |−→a |+ |−→b |. This can be interpreted in

terms of 2 × 2 traceless pseudo-Hermitian matrices, if one puts into correspondence

to a vector with coordinates (x, y, z) the matrix

(
z x+

√
−1 · y

−x+
√
−1 · y −z

)

.

The eigenvalues of this matrix are±
√

z2 − x2 − y2 and therefore the Minkowski trian-

gle inequality answers the following question: given two traceless pseudo-Hermitian

matrices with real spectra (a,−a) and (b,−b) and non-negative upper-left entries,

what are the possible eigenvalues of their sum? Explorations of this and related

questions for Hermitian symmetric matrices (and more generally for triangles in dual

vector spaces of compact Lie algebras) led to many exciting developments bridg-

ing across algebra, Lie theory, representation theory, symplectic geometry, geometric

invariant theory, vector bundles, and combinatorics, see for example, [5], [8] and refer-

ences therein. A brief answer to this question can be formulated as follows: given two

Hermitian symmetric matrices A and B, the set of eigenvalues for their sum A + B

necessarily belongs to a convex polytope defined by certain linear inequalities on the

sets of eigenvalues of A and B.
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In the present paper, we begin answering a similar question in the non-compact

setting. Let p and q be non-negative integers, n = p+ q, and let G = U(p, q) be the

pseudounitary group of n × n matrices M , satisfying MJpqM
∗ = Jpq, where Jpq is

the diagonal matrix

Jpq =

(
1p 0

0 −1q

)

.

Here 1p and 1q are the identity p× p and q × q matrices respectively. Let g = u(p, q)

be its Lie algebra of matrices B, satisfying BJpq + JpqB
∗ = 0 and let g∗ be its dual

vector space, which is identified with the space
√
−1 · g of pseudo-Hermitian matrices

A, satisfying AJpq = JpqA
∗. In the block form,

A =





Hp B

−B̄T Hq



 ,

where Hp and Hq are p× p and q× q Hermitian symmetric matrices respectively and

B is a complex p×q matrix. In general, eigenvalues of pseudo-Hermitian matrices are

not necessarily real, unless A is elliptic. And moreover, as computations with 4 × 4

matrices can already show, the eigenvalues of the sum of even two elliptic elements

can be pretty much arbitrary complex numbers. However, if one restricts to the

convex cone of admissible elements [10], then the question about possible eigenvalues

of the sum becomes more meaningful, because the sum of two admissible elements

is again admissible. In our situation, the convex cone of admissible elements g∗adm
will consist of matrices, which are G-conjugate to diagonal (and thus real) matrices

diag(λ1, ..., λp, µ1, ..., µq) such that λi > µj for all pairs i, j. We can certainly assume

that λ’s are arranged in the non-increasing order λ1 ≤ λ2 ≤ · · · ≤ λp and µ’s are in

the non-decreasing order µ1 ≥ µ2 ≥ · · · ≥ µq (this is done for convenience), and thus

the condition of admissibility becomes rather simple: λ1 > µ1.

For two admissible matrices A,B ∈ g∗
adm

with given spectra, the question of

finding possible eigenvalues of their sum can be formulated in terms of the non-

abelian convexity theorem in symplectic geometry. The coadjoint orbits OA and OB

of A and B carry natural invariant symplectic structures and so does their product

OA × OB. A generalization due to Weinstein [12] of the original Kirwan’s theorem

to the case of non-compact semisimple groups implies that the possible spectrum of

A + B forms a convex polyhedral set in the positive Weyl chamber t∗+ of the dual

space to the diagonal torus.

The primary purpose of this note is to reveal some of the defining conditions on

this set, in particular obtaining an analogue of classical Lidskii-Wielandt inequalities

[13]. Let us formulate our result and explain its geometric meaning. For A,B ∈ g∗
adm

and C = A + B, let λi(A), µj(A), λi(B), µj(B), λi(C), µj(C) be their eigenvalues
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in the order as above. Then for each m integers 1 ≤ i1 < i2 < · · · < im ≤ p and ℓ

integers 1 ≤ j1 < j2 < · · · < jℓ ≤ q we have

m∑

k=1

λik(C) ≥
m∑

k=1

λik (A) +

m∑

k=1

λk(B)

and

ℓ∑

k=1

µjk(C) ≤
ℓ∑

k=1

µjk(A) +

ℓ∑

k=1

µk(B) .

Of course, in addition, we have the trace condition:

p
∑

i=1

λi(C) +

q
∑

j=1

µj(C) =

p
∑

i=1

λi(A) +

q
∑

j=1

µj(A) +

p
∑

i=1

λi(B) +

q
∑

j=1

µj(B) .

A particular case of these inequalities for consecutive sets of integers 1, 2, ...,m and

1, 2, ..., ℓ has appeared in Bebiano et al., [2]. We also state a more general analogue

of Thompson-Freede inequalities [11]. Recall from [10, Theorem VIII.1.19] that the

set of possible diagonal entries of an admissible matrix A with eigenvalues

(
−→
λ ,−→µ ) = (λ1, ..., λp, µ1, ..., µq)

as above, form a convex polyhedral set SA, which can be described as the sum Π+C of

a polytope Π and a cone C. The polytope Π is the convex hull of Sp×Sq.(
−→
λ ,−→µ ), where

Sp and Sq are the symmetric groups on p and q elements, - so its vertices are obtained

by the action of the Weyl group for the maximal compact subgroup (the product of

two symmetric groups in our case). The cone C is given by the non-compact roots,

which in our case means that it is the R+-span of the diagonal differences aii−ajj for

1 ≤ i ≤ p and p+1 ≤ j ≤ n. The above inequalities have then the following geometric

interpretation: possible eigenvalues of A+B belong to the convex polyhedral region

(
−→
λ (A),−→µ (A)) + SB (of course, due to symmetry, we can interchange A and B and

get another set of conditions).

In this note we only deal with analogues of classical eigenvalue inequalities, leaving

out natural questions of relationship with tensor products of representations of G and

combinatorics.

2. Courant-Fischer theorem for pseudo-Hermitian matrices. Let G =

U(p, q) be the pseudounitary Lie group, g its Lie algebra, and g∗ the dual vector space

identified with the space of pseudo-Hermitian matrices A, defined by the condition

A = JpqA
∗Jpq, where Jpq = diag(1, ..., 1

︸ ︷︷ ︸

p

,−1, ...,−1
︸ ︷︷ ︸

q

) and A∗ is the conjugate trans-

pose. Let g∗adm denote a convex component of the open cone of admissible elements,
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in the terminology of [10]. In general, an element A ∈ g∗ is said to be admissible

if the co-adjoint orbit OA is closed and its convex hull contains no lines. In the

pseudounitary case, this translates to the requirement that the coadjoint orbit of A

contains a diagonal matrix Λ = diag(λp, ..., λ1, µ1, .., µq), where λp ≥ λp−1 ≥ · · · ≥ λ1,

µ1 ≥ µ2 ≥ · · · ≥ µq, and either λ1 > µ1, or µq > λp. There are two open cone com-

ponents, and without loss of generality we choose g∗
adm

to be the component in which

λ1 > µ1.

Let us consider the complex vector space C
n with the pseudo-Hermitian scalar

product of signature (p, q):

〈z,w〉 =
p

∑

i=1

ziw̄i −
n∑

j=p+1

zjw̄j .

If we introduce the notation

x† = (Jpqx̄)
T ,

then we can rewrite the above pairing in terms of the usual product:

〈z,w〉 = w† · z .

Let us also denote by Cn
+ the open cone of positive vectors, satisfying 〈z, z〉 > 0, and

similarly by Cn
− the cone of negative vectors. Our condition that A is admissible is

equivalent to saying that it has real eigenvalues, and the p eigenvalues corresponding

to the eigenvectors in Cn
+ are larger than the q eigenvalues corresponding to the

eigenvectors in Cn
−.

Now we shall examine an appropriate analogue of the Rayleigh-Ritz ratio, defined

as

RA(x) =
x†Ax

x†x
.

This ratio and its properties in the pseudo-Hermitian context were also considered in

[1], [2], and [4]. For example, it was established that if A ∈ g∗
adm

has the eigenvalues

λp ≥ λp−1 ≥ · · · ≥ λ1 > µ1 ≥ µ2 ≥ · · · ≥ µq ,(2.1)

then one has

λ1 = min
x∈Cn

+

RA(x) and µ1 = max
x∈Cn

−

RA(x) .

Next, let v1, .., vp, w1, ..., wq be a basis of eigenvectors of A in Cn, corresponding

to the eigenvalues λ1, ..., λp, µ1, ..., µq respectively and orthonormal with respect
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to 〈·, ·〉. In particular, we have that ||vi||2 = 1, ||wj ||2 = −1 and the pairing of any

two different vectors from this basis equals zero. Let also, for convenience, denote

V = Span{v1, ...,vp} and W = Span{w1, ...,wq}. Note that for

x = α1v1 + · · ·+ αpvp + β1w1 + · · ·βqwq

the quotient RA(x) can be written as

RA(x) =
x†Ax

x†x
=

∑p
i=1

|αi|2λi −
∑q

j=1
|βj |2µj

∑p
i=1

|αi|2 −
∑q

j=1
|βj |2

.

From the fact that 〈·, ·〉 restricts to a positive definite Hermitian pairing on the

subspace V , which is orthogonal to W with respect to 〈·, ·〉, one can easily deduce:

λk = min
x∈Cn

+
, x⊥v1,...,vk−1

RA(x) and λk = max
x∈V \{0}, x⊥vk+1,...,vp

RA(x) .

A similar statement is, of course, valid for µk’s:

µk = max
x∈Cn

−

, x⊥w1,...,wk−1

RA(x) and µk = min
x∈W\{0}, x⊥wk+1,...,wq

RA(x) .

Now we will state a result similar to the classical Courant-Fischer theorem. A

similar result was independently obtained in [2, Theorem 2.3 (I)]. Note that in [1] and

[2] a larger class of elements is considered, what they call J-Hermitian matrices with

non-interlacing eigenvalues. Our admissible elements fall into their category (I). The

proof follows a standard argument and thus is not given. It can also be derived using

Hermitian pencils and applying the results of Najman and Ye [9].

Theorem 2.1. Let A ∈ g∗adm be an admissible pseudo-Hermitian matrix with

eigenvalues as in (2.1). Let k be an integer, 1 ≤ k ≤ p. Then

λk = min
u1,...,un−k∈Cn

max
x∈Cn

+
, x⊥u1,...,un−k

RA(x)(2.2)

λk = max
u1,...,uk−1∈Cn

min
x∈Cn

+
, x⊥u1,...,uk−1

RA(x)(2.3)

Note that, in general, the ratio RA(x) is not bounded from above on Cn
+. There-

fore in the right hand side of the formula (2.2), the maximum should be taken over

the (n−k)-tuples of vectors for which it is actually achieved, and otherwise one might

want to use sup instead of max.

The above theorem obviously has a natural counterpart, consisting of two series

of minimax and maximin identities, for µk’s. We omit stating and proving those,

since it can easily be done if one replaces A by its negative.
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It is also worth noticing that one can rewrite the equality (2.2) in the following

form:

λk = min
Wk

max
x∈Cn

+
, x∈Wk

RA(x) ,(2.4)

where Wk is a subspace of dimension k, which in fact can be taken entirely lying in

Cn
+ (with the exception of the origin, of course).

One can also obtain a result similar to Ky Fan’s [3], that for an admissible pseudo-

Hermitian matrix A as above, and a positive integer k ≤ p, one has

λ1 + λ2 + · · ·+ λk = min
〈xi,xj〉=δij

k∑

i=1

RA(xi) .(2.5)

Note that the condition 〈xi,xj〉 = δij automatically implies that all of the xi’s

belong to C
n
+.

As another easy corollary to Theorem 2.1, we have the following analogue of

classical Weyl inequalities:

Proposition 2.2. Let A,B ∈ g∗
adm

and let λi(A), µj(A), λi(B), µj(B), λi(A+

B), µj(A + B) be the eigenvalues of A, B, and A + B arranged in the order as in

(2.1). Then for each 1 ≤ k ≤ p and 1 ≤ ℓ ≤ q we have:

λk(A+B) ≥ λk(A) + λ1(B) and µℓ(A+B) ≤ µℓ(A) + µ1(B) .

3. Lidskii-Wielandt and Thompson-Freede type inequalities. In this sec-

tion we will establish stronger inequalities for the eigenvalues of the sum of two ad-

missible pseudo-Hermitian matrices. The first goal of this section is to prove the

following

Theorem 3.1. Let A,B ∈ g∗
adm

and let λi(A), µj(A), λi(B), µj(B), λi(C),

µj(C) be the eigenvalues of A, B, and C = A+B arranged in the order as in (2.1).

Then for each m integers 1 ≤ i1 < i2 < · · · < im ≤ p and ℓ integers 1 ≤ j1 < j2 <

· · · < jℓ ≤ q we have

m∑

k=1

λik(C) ≥
m∑

k=1

λik (A) +

m∑

k=1

λk(B)(3.1)

and

ℓ∑

k=1

µjk(C) ≤
ℓ∑

k=1

µjk(A) +

ℓ∑

k=1

µk(B) .(3.2)
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In what follows, we will only work on proving (3.1), as (3.2) is similar.

For m ≤ p, let us have a fixed m-tuple of integers 1 ≤ i1 < i2 < · · · < im ≤ p.

Consider a flag of subspaces Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim , where Vij \ {0} ⊂ Cn
+ and the

subscript indicates the dimension of the corresponding subspace. We say that a set

of vectors {xi1 , xi2 , ..., xim}, orthogonal with respect to 〈·, ·〉, is subordinate to this

flag, if xij ∈ Vij and 〈xij ,xik〉 = δjk.

Denote by Pm the projection operator onto Y = Span{xi1 ,xi2 , ...,xim}. Here

the projection is taken with respect to 〈·, ·〉, and is therefore given by the matrix

XX†, where the j-th column of X is xij . For any A ∈ g∗, the operator PmAPm

is also pseudo-Hermitian, but its restriction to Y is actually Hermitian, and we let

η1 ≤ η2 ≤ · · · ≤ ηm be its eigenvalues. We have the following analogue of a classical

result of Wielandt [13]:

Lemma 3.2. For A ∈ g∗
adm

with eigenvalues as in (2.1), and ηi’s as above, we

have

m∑

j=1

λij = min
Vi1

⊂Vi2
⊂···⊂Vim

max
xij

∈Vij

m∑

j=1

ηj .

We postpone proving this rather technical lemma till the next section, and now

state an easy corollary:

Proposition 3.3. For A ∈ g∗
adm

with eigenvalues as in (2.1) and an m-tuple of

integers 1 ≤ i1 < i2 < · · · < im ≤ p, one has

m∑

j=1

λij = min
Vi1

⊂Vi2
⊂···⊂Vim

max
xij

∈Vij

m∑

j=1

RA(xij ) .(3.3)

Proof. One can easily see that
∑m

j=1
RA(xij ) is exactly the trace of the Hermitian

operator PmAPm acting on the space Y , because

〈PmAPmxij ,xik〉 = 〈Axij ,xik 〉 ,

and as such, equals
∑m

j=1
ηj .

Now we can establish an analogue of Lidskii-Wieland inequalities and prove The-

orem 3.1.

Proof. For a given m-tuple of integers 1 ≤ i1 < i2 < · · · < im ≤ p, let us choose

a flag of subspaces Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim in Cn
+ so that for any orthogonal set of
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vectors {xi1 , xi2 , ..., xim} subordinate to this flag, one has

m∑

j=1

λij (C) ≥
m∑

j=1

RC(xij ) .

As Proposition 3.3 shows, this is always possible. Now note that

m∑

j=1

RC(xij ) =

m∑

j=1

RA(xij ) +

m∑

j=1

RB(xij ) ,

and use Proposition 3.3 once again to choose an orthogonal set of vectors {xi1 , xi2 ,

..., xim} subordinate to the flag Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim such that

m∑

j=1

RA(xij ) ≥
m∑

j=1

λij (A).

Next, note that (2.5) implies that

m∑

j=1

RB(xij ) ≥
m∑

j=1

λj(B) ,

and the result follows.

A particular case of the above theorem for consecutive sets of integers when ik = k

and jk = k has independently appeared in [2].

We now state an analogue of Thompson-Freede inequalities [11] (without proof).

Let us have two m-tuples of integers 1 ≤ i1 < i2 < · · · < im ≤ p and 1 ≤ j1 < j2 <

· · · < jm ≤ p such that im + jm ≤ m+ p. Then

m∑

h=1

λih+jh−h(C) ≥
m∑

h=1

λih (A) +

m∑

h=1

λjh(B) .

A similar inequality can be stated for µ’s as well.

4. Proof of Lemma 3.2. Following the standard path of proving such results

as outlined, for example, in the Appendix by B.V. Lidskii to [6], the lemma will follow

if we prove the following two statements:

I. For any flag of subspaces Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim in Cn
+, there exist a subordinate

set of vectors {xi1 , xi2 , ..., xim}, such that

m∑

j=1

ηj ≥
m∑

j=1

λij .
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II. There exists a flag Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim such that for any subordinate set of

vectors {xi1 , xi2 , ..., xim}, one has

m∑

j=1

λij ≥
m∑

j=1

ηj .

We will first prove II. Set

Vij = Span{v1, ...,vij} ,

where v1, .., vp ∈ Cn
+ are eigenvectors of A, corresponding to the eigenvalues λ1, ...,

λp respectively. Note that Vij \ {0} ⊂ Cn
+. Let {xi1 , xi2 , ..., xim} be a set of vectors

subordinate to the chosen flag, and let Wℓ be an ℓ-dimensional subspace in their span.

We know from the classical minimax identities that

ηℓ ≤ max
x∈Wℓ

RPmAPm
(x) .

Note that for x ∈ Wℓ, we have RPmAPm
(x) = RA(x). Thus if we let

Wℓ = Span{xi1 ,xi2 , ...,xiℓ} ,

then the fact that Wℓ ⊂ Viℓ will imply

max
x∈Wℓ

RA(x) ≤ max
x∈Vℓ

RA(x) .

But the maximum in the right-hand side is achieved on the eigenvector viℓ and equals

λiℓ . (We recall that the operatorA is trivially Hermitian on the span of its eigenvectors

from Cn
+.) Thus

ηℓ ≤ max
x∈Wℓ

RPmAPm
(x) = max

x∈Wℓ

RA(x) ≤ max
x∈Vℓ

RA(x) = λiℓ ,

proving II.

Now we turn to proving I, by induction on p. Note that for p = 1, the statement

amounts to showing that

λ1 = min
V1

η1 ,

where V1 is a one-dimensional subspace in Cn
+. This is not hard to establish directly,

and in any case, is an easy consequence of [4, Proposition 4.1].
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Now we can take m < p, since in the case when m = p, the statement is again a

consequence of [4]. We consider two subcases:

1). When im < p, there exists a (p − 1)-dimensional subspace Rp−1 of Cn
+,

containing the whole flag Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim . Let Pp−1 be the operator of

projection onto Rp−1, taken with respect to the pseudo-Hermitian scalar product

〈·, ·〉. Consider the pseudo-Hermitian operator Ap−1 = Pp−1APp−1, which is actually

Hermitian, being restricted to Rp−1. Clearly for all x ∈ Rp−1, one has RAp−1
(x) =

RA(x). If we denote by ξ1, .., ξp−1 the eigenvalues of Ap−1, in the non-decreasing

order, then according to [4], one has

ξi ≥ λi for 1 ≤ i ≤ p− 1 .(4.1)

By the induction hypothesis, for any flag Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vim in Rn−1, there exists

a subordinate system of vectors {xi1 , xi2 , ..., xim} such that

m∑

j=1

ηj ≥
m∑

j=1

ξij ,

and we are done in this case.

2). Now consider the case im = p. Assume im = p, im−1 = p−1, ..., im−s = p−s

and that the number (p − s − 1) is not a part of the m-tuple 1 ≤ i1 < i2 < · · · <
im ≤ p. Let it be the largest remaining element of this m-tuple (the case when there

is no such left requires only a minor and trivial modification of our discussion). The

corresponding flag of subspaces now takes the form

Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vit ⊂ Vit+1 ⊂ · · · ⊂ Vp .

Let vp−s, vp−s+1, ..., vp be the eigenvectors of A corresponding to the s + 1 largest

eigenvalues. Let Rn−1 be the subspace of Cn spanned by these vectors and containing

Vit and all thewj ’s. Such a subspace exists since it ≤ p−s−2 and thus s+1+it ≤ p−1.

Consider yet another flag of subspaces:

Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vit ⊂ Rp−s−1 ⊂ Rp−s ⊂ · · · ⊂ Rp−1 ,(4.2)

where Rj = Vj+1 ∩ Rn−1. (In the degenerate case when the dimension of the inter-

section does not drop by 1, we can artificially remove one extra dimension.)

Again, let us introduce the operator Ap−1 = Pp−1APp−1 on the space Rp−1 as

before. Using our inductive assumption, we can find a subordinate system of vectors

{xi1 ,xi2 , ...,xit ,xp−s−1, ...,xp−1}
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such that

m∑

j=1

ηj ≥
t∑

j=1

ξij +

p−1
∑

j=p−s−1

ξj ,

where ξ’s are the eigenvalues of Ap−1 arranged in the non-decreasing order. According

to (4.1), we have

ξi1 ≥ λi1 , ξi2 ≥ λi2 , ..., ξit ≥ λit .

The vectors vp−s, vp−s+1, ..., vp belong to the subspace Rp−1 and are eigenvectors

for Ap−1. Thus the corresponding eigenvalues λp−s, ..., λp are dominated by ξp−s−1,

..., ξp−1, which are the largest (s+ 1) eigenvalues of Ap−1. Thus we conclude that

ξi1 + ξi2 + · · ·+ ξit + ξp−s + · · ·+ ξp ≥ λi1 + λi2 + · · ·+ λit + λp−s + · · ·+ λp

Since the system {xi1 ,xi2 , ...,xit ,xp−s−1, ...,xp−1} is subordinate not only to the

original flag, but also to (4.2), we have completed the proof.
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