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KANTOROVICH TYPE INEQUALITIES FOR ORDERED LINEAR

SPACES∗

MAREK NIEZGODA†

Abstract. In this paper Kantorovich type inequalities are derived for linear spaces endowed

with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ

and vectors x and y under which the inequality

Φ(x) ◦2 Φ(y) ≤
C + c

2
√
Cc

Ψ(x ◦1 y)

is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure

Appl. Math., 5 (3), Art. 76, 2004] and Bourin [Linear Algebra Appl., 416:890–907, 2006] are gener-

alized. The inequalities are applied to C∗-algebras and unital positive maps.
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1. Introduction. Let A be an n × n positive definite matrix such that 0 <

mIn ≤ A ≤ MIn for some scalars 0 < m < M . The Kantorovich inequality asserts

that (cf. [16, pp. 89-90], [20, p. 28])

z∗Az · z∗A−1z ≤ (M +m)2

4Mm
(z∗z)2,(1.1)

where z ∈ C
n is a column vector and ∗ means conjugate transpose. The constant

κ = (M+m)2

4Mm is called Kantorovich constant [21, p. 688]. Note that
√
κ = M+m

2
√
Mm

is

the ratio of the arithmetic to geometric mean of M and m.

Let V be a linear space over C or R equipped with inner product 〈·, ·〉 and norm

‖ · ‖ = 〈·, ·〉1/2. Dragomir [11, Theorem 2.2] proved the following Kantorovich type

inequality:

‖x‖‖y‖ ≤ |C + c|
2
√

Re (Cc̄)
|〈x, y〉| for x, y ∈ V ,(1.2)

provided scalars c, C satisfy Re (Cc̄) > 0 and

0 ≤ Re 〈x− cy, Cy − x〉(1.3)
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(cf. [12, Theorem 1]). As observed in [12, p. 225], (1.2) generalizes Pólya-Szegö,

Greub-Reinboldt and Cassels inequalities.

Inequality (1.2) is a reverse of Schwarz’s inequality

|〈x, y〉| ≤ ‖x‖‖y‖ for x, y ∈ V .(1.4)

A consequence of (1.4) and (1.2) is the following result of Bourin [5, Theorem 2.9]:

n
∑

j=1

a[j]b[j] ≤
M +m

2
√
Mm

n
∑

j=1

ajbj ,(1.5)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are n-tuples of positive numbers with

0 < m ≤ aj

bj
≤ M , j = 1, . . . , n, and, in addition, a[1] ≥ . . . ≥ a[n] and b[1] ≥ . . . ≥ b[n]

are the entries of a and b, respectively, arranged in nonicreasing order.

For other Kantorovich type inequalities, the reader is referred to [2, 5, 6, 7, 16,

18, 20, 21].

In this paper we study Kantorovich type inequalities in the framework of linear

spaces equipped with binary operations ◦1 and ◦2. We provide conditions on two

(vector-valued) maps Φ and Ψ and vectors x and y implying the validity of the

inequality

Φ(x) ◦2 Φ(y) ≤
C + c

2
√
Cc

Ψ(x ◦1 y).(1.6)

Complementary inequalities are also derived.

2. Results. Throughout this paper, unless otherwise stated, for i = 1, 2,

Vi and Xi are linear spaces over F = C or R,

and

◦i : Vi × Vi → Xi is an F-bilinear binary operation.

For example, ◦i can be interpret as a real inner product if Xi = R, or as an algebra

multiplication if Vi = Xi is a distributive algebra.

In addition, we assume that Li ⊂ Xi is a convex cone inducing cone preorder ≤i

on Xi by

y ≤i x iff x− y ∈ Li.

We also assume that

0 ≤i x ◦i x, i.e., x2 = x ◦i x ∈ Li, for x ∈ Vi.(2.1)
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We denote

Sym (u,w) =
1

2
(u ◦2 w + w ◦2 u) for u,w ∈ V2.(2.2)

The following theorem is inspired by [11, Theorem 2.2] (cf. [12, Theorem 1]).

Theorem 2.1. Under the above notation and assumptions, let Φ : A → V2 and

Ψ : B → X2 be maps, where A ⊂ V1 and B ⊂ X1 are nonempty sets. Let x, y ∈ A
and C, c ∈ F with Cc > 0 and C + c > 0 be such that

(i)

0 ≤1 (x− cy) ◦1 (Cy − x),(2.3)

(ii) x ◦1 y = y ◦1 x,
(iii) L1 ⊂ B and αx ◦1 y ∈ B for α ∈ {1, C + c}.

Assume that

Φ(v) ◦2 Φ(v) ≤2 Ψ(v ◦1 v) for v ∈ {x, y},(2.4)

b ≤1 a implies Ψ(b) ≤2 Ψ(a) for a, b ∈ L1,(2.5)

Ψ(αa) = αΨ(a) for α = C + c and a = x ◦1 y,(2.6)

Ψ(x ◦1 x) + αΨ(y ◦1 y) ≤2 Ψ(x ◦1 x+ αy ◦1 y) for α = Cc.(2.7)

Then the following Kantorovich type inequality holds:

Sym [Φ(x),Φ(y)] ≤2
C + c

2
√
Cc

Ψ(x ◦1 y).(2.8)

In particular, if Φ(x) and Φ(y) commute with respect to ◦2, then

Φ(x) ◦2 Φ(y) ≤2
C + c

2
√
Cc

Ψ(x ◦1 y).(2.9)

Remark 2.2. In some cases Theorem 2.1 can be simplified.

(a). If Ψ is linear then conditions (2.6)-(2.7) hold automatically and are super-

fluous in the statement of Theorem 2.1. If in addition Ψ is positive (i.e. Ψ(L1) ⊂ L2)

then (2.5) can be dropped out.
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(b). If Φ = Ψ then condition (2.4) represents a Kadison type inequality (see

(2.19)). On the other hand, if Φ(x) = [Ψ(x2)]1/2 then (2.4) holds automatically

(cf. Corollary 2.5 and Theorem 2.7, part II).

(c). Condition (2.4) is necessary for (2.8) and (2.9) to hold. In fact, if x = y then

(2.3) is met for c = C = 1. In this case, each of (2.8) and (2.9) reduces to (2.4).

Proof of Theorem 2.1. Since the operation ◦1 is bilinear, (2.3) gives

0 ≤1 C x ◦1 y − x ◦1 x− Cc y ◦1 y + c y ◦1 x,

which is equivalent to

x ◦1 x+ Cc y ◦1 y ≤1 C x ◦1 y + c y ◦1 x,

because ≤1 is a cone preorder. Now, (ii) implies

x ◦1 x+ Cc y ◦1 y ≤1 (C + c)x ◦1 y.(2.10)

By (2.1), x ◦1 x+Cc y ◦1 y ∈ L1, because Cc > 0 and L1 is a convex cone. Therefore

(2.10) yields (C + c)x ◦1 y ∈ L1. Using (2.7), (2.10), (2.5) and (2.6), we derive

Ψ(x ◦1 x) + Cc Ψ(y ◦1 y) ≤2 Ψ(x ◦1 x+ Cc y ◦1 y) ≤2 (C + c)Ψ(x ◦1 y).

Consequently, by (2.4), we obtain

Φ(x) ◦2 Φ(x) + Cc Φ(y) ◦2 Φ(y) ≤2 (C + c)Ψ(x ◦1 y).(2.11)

Hence, by Cc > 0,

1√
Cc

Φ(x) ◦2 Φ(x) +
√
CcΦ(y) ◦2 Φ(y) ≤2

C + c√
Cc

Ψ(x ◦1 y).(2.12)

On the other hand, by (2.1),

0 ≤2

(

1
4
√
Cc

Φ(x) − 4
√
Cc Φ(y)

)

◦2
(

1
4
√
Cc

Φ(x) − 4
√
Cc Φ(y)

)

.

In consequence, by the bilinearity of ◦2,

0 ≤2
1√
Cc

Φ(x) ◦2 Φ(x) − Φ(x) ◦2 Φ(y)− Φ(y) ◦2 Φ(x) +
√
Cc Φ(y) ◦2 Φ(y).

Hence

Φ(x) ◦2 Φ(y) + Φ(y) ◦2 Φ(x) ≤2
1√
Cc

Φ(x) ◦2 Φ(x) +
√
Cc Φ(y) ◦2 Φ(y),
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because ≤2 is induced by a convex cone. Simultaneously, by (2.2),

2Sym [Φ(x),Φ(y)] = Φ(x) ◦2 Φ(y) + Φ(y) ◦2 Φ(x).

Therefore we get

2Sym [Φ(x),Φ(y)] ≤2
1√
Cc

Φ(x) ◦2 Φ(x) +
√
Cc Φ(y) ◦2 Φ(y).(2.13)

Combining (2.12) and (2.13), we obtain the required inequality (2.8). �

Remark 2.3. Let H be a real linear space with an inner product 〈·, ·〉 and norm

‖ · ‖ = 〈·, ·〉1/2. It is not hard to verify that Dragomir’s result (1.2) (with F = R and

C, c > 0) can be obtained from Theorem 2.1 by setting

V1 = H, V2 = X1 = X2 = R, L1 = L2 = R+,

x ◦1 y = 〈x, y〉 for x, y ∈ H, and α ◦2 β = αβ for α, β ∈ R,

Φ(x) = ‖x‖ for x ∈ H, and Ψ(α) = |α| for α ∈ R.

In this case, (2.11) takes the form of inequality from [12, Lemma 1].

If Xi is an algebra with unity ei and convex cone Li ⊂ Xi (i = 1, 2), then a linear

map Ψ : X1 → X2 is said to be a unital positive map if Ψ(e1) = e2 and ΨL1 ⊂ L2.

Theorem 2.4. Under the assumptions before Theorem 2.1, let Vi = Xi and let

(Vi, ◦i) be algebra with unity ei (i = 1, 2).

Let x ∈ V1 be such that

0 ≤1 (x − ce1) ◦1 (Ce1 − x)(2.14)

for some scalars C, c ∈ F with Cc > 0 and C + c > 0.

Assume that Ψ : V1 → V2 is a positive linear map (i.e., ΨL1 ⊂ L2) and Φ : V1 →
V2 is a unital map (i.e., Φ(e1) = e2) satisfying

Φ(x) ◦2 Φ(x) ≤2 Ψ(x ◦1 x) and e2 ≤2 Ψ(e1).(2.15)

Then we have the inequality

Φ(x) ≤2
C + c

2
√
Cc

Ψ(x).(2.16)
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Proof. Set y = e1. Conditions (2.5)-(2.7) are fulfilled, because Ψ is a positive

linear map. Moreover, (2.15) gives (2.4). According to Theorem 2.1, we get (2.9)

with y = e1 and Φ(y) = e2. This proves (2.16).

Corollary 2.5. Under the assumptions of Theorem 2.4 for Vi, Xi, Li, ◦i and
x, suppose that for each a ∈ L2 there exists unique vector b = a1/2 ∈ L2 such that

b2 = b ◦2 b = a.

Assume Ψ : V1 → V2 is a unital positive map. If (2.14) is met then we have the

inequality

[Ψ(x2)]1/2 ≤2
C + c

2
√
Cc

Ψ(x).(2.17)

Proof. Define

Φ(v) = [Ψ(v2)]1/2 for v ∈ V1.(2.18)

Then Φ is unital, since Ψ is so. It follows from (2.18) that (2.15) holds. Now, by

using (2.16), we get (2.17).

ByMp and Hp we denote the linear spaces, respectively, of p×p complex matrices,

and of p× p Hermitian matrices. The Loewner cone of all p× p positive semidefinite

matrices is denoted by Lp. For matrices A,B ∈ Mp we write B ≤ A if A − B ∈ Lp.

The symbol Ip stands for the p× p identity matrix.

Remind that a linear map Ψ : Mn → Mk is said to be a unital positive map if

Ψ(In) = Ik and ΨLn ⊂ Lk (see [4, 14]). It is known that

[Ψ(A)]2 ≤ Ψ(A2) for A ∈ Ln(2.19)

(Kadison’s inequality; see [1], [4, p. 2], [8]).

Remark 2.6. (a) In the matrix setting, (2.17) reduces to a result of Ando [1].

Cf. also [6, Corollaries 2.5 and 2.9] and [17, Corollary 2.6, part (ii), p = 2].

(b) Inequality (2.17) generalizes a result of Liu and Neudecker [15, Proposition 5]

(see also [6, Lemma 1.1]):

(U∗X2U)1/2 ≤ M +m

2
√
Mm

U∗XU ,(2.20)

where U is an n× k matrix such that U∗U = Ik, and X is an n× n positive definite

matrix satisfying

0 < m ≤ λj(X) ≤ M, j = 1, . . . , n, for some scalars m,M .(2.21)
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To see this, consider

V1 = X1 = Mn, V2 = X2 = Mk, L1 = Ln, L2 = Lk,

with the usual matrix multiplication, and

Ψ(A) = U∗AU for A ∈ Mn,

where U is an n× k matrix such that U∗U = Ik.

We now interpret Theorem 2.1 in the framework of C∗-algebras Vi, i = 1, 2, and

unital positive maps. Here, for given x, y ∈ Vi, y ≤ x means x − y = a∗a for some

a ∈ Vi.

Theorem 2.7. For i = 1, 2, let Vi = Xi be a C∗-algebra with unity ei and convex

cone Li = {a∗a : a ∈ Vi} of all nonnegative elements of Vi.

Let x, y ∈ V1 be two elements such that x∗y = y∗x and

(x− cy)∗(Cy − x) ≥ 0 for some positive scalars C, c.(2.22)

Assume that Ψ : V1 → V2 is a unital positive map.

(I). If

(Ψ(v))∗Ψ(v) ≤ Ψ(v∗v) for v ∈ {x, y},(2.23)

then we have the inequality

1

2
[(Ψ(x))∗Ψ(y) + (Ψ(y))∗Ψ(x)] ≤ C + c

2
√
Cc

Ψ(x∗y).(2.24)

If, in addition, Ψ(x) and Ψ(y) are two commuting self-adjoint elements of

V2, then (2.24) becomes

Ψ(x)Ψ(y) ≤ C + c

2
√
Cc

Ψ(x∗y).(2.25)

(II). We have the inequality

1

2

(

[Ψ(x∗x)]1/2 [Ψ(y∗y)]1/2 + [Ψ(y∗y)]1/2 [Ψ(x∗x)]1/2
)

≤ C + c

2
√
Cc

Ψ(x∗y).(2.26)

If, in addition, [Ψ(x∗x)]1/2 and [Ψ(y∗y)]1/2 are two commuting elements of

V2, then we have the inequality

[Ψ(x∗x)]1/2 [Ψ(y∗y)]1/2 ≤ C + c

2
√
Cc

Ψ(x∗y).(2.27)
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Proof. Put

u ◦i v = u∗v for u, v ∈ Vi, i = 1, 2.

Then ◦i is bilinear over F = R, and (2.1) is satisfied. Since Ψ is a unital positive map,

conditions (2.5)-(2.7) are fulfilled.

(I). Take Φ = Ψ. Then (2.4) is met by (2.23). In consequence, by Theorem 2.1,

inequalities (2.8) and (2.9) hold with Φ = Ψ. Therefore (2.24) and (2.25) are valid.

(II). Choose Φ(v) = [Ψ(v∗v)]1/2 for v ∈ V1. Then (2.4) holds automatically, and

(2.26) and (2.27) follow directly from (2.8) and (2.9), respectively.

In the matrix setting if Φ = Ψ is a unital positive map, then condition (2.23) of

Theorem 2.7 reduces to Kadison’s inequality (2.19). In general, Ψ and Φ need not be

linear maps (see Remark 2.3).

We now discuss inequalities (2.14) and (2.22) which are crucial conditions for

Theorems 2.4 and 2.7, respectively, to hold.

Lemma 2.8. Let V1 be a C∗-algebra with unity e1 and convex cone L1 = {a∗a :

a ∈ V1}. Suppose that for each hermitian element x ∈ V1 there exist real scalars

λj = λj,x and nonzero hermitian elements aj = aj,x ∈ L1 j = 1, . . . , n, such that

(i) x = λ1a1 + . . .+ λnan,

(ii) e1 = a1 + . . .+ an,

(iii) ajal = aj if j = l, and ajal = 0 if j 6= l,

(iv) x ∈ L1 implies λ1, . . . , λn ≥ 0.

Let c, C ∈ R and let x, y ∈ V1 be two commuting hermitian elements with invert-

ible y.

Consider conditions

ce1 ≤ xy−1 ≤ Ce1,(2.28)

c ≤ λj,xy−1 ≤ C for j = 1, . . . , n,(2.29)

(xy−1 − ce1)(Ce1 − xy−1) ≥ 0,(2.30)

(x− cy)(Cy − x) ≥ 0.(2.31)

Then (2.28) ⇒ (2.29) ⇒ (2.30) ⇒ (2.31).
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Proof. By (i) and (ii) applied to hermitian element xy−1 we have

xy−1 − ce1 = (λ1 − c)a1 + . . .+ (λn − c)an,(2.32)

Ce1 − xy−1 = (C − λ1)a1 + . . .+ (C − λn)an.(2.33)

If (2.28) holds, then xy−1 − ce1 ∈ L1 and Ce1 − xy−1 ∈ L1. So, using (iv) and

(2.32)-(2.33), we obtain

λj − c ≥ 0 and C − λj ≥ 0 for j = 1, . . . , n,

where λj = λj,xy−1 . This gives (2.29).

On the other hand, by (2.32)-(2.33) and (iii), we have

(xy−1 − ce1)(Ce1 − xy−1) = (λ1 − c)(C − λ1)a1 + . . .+ (λn − c)(C − λn)an.

In consequence, (2.29) forces (2.30) by aj ∈ L1, j = 1, . . . , n.

To see the implication (2.30) ⇒ (2.31), it is sufficient to pre- and post-multiply

(2.30) by y∗ = y, and use the commutativity of x and y.

Clearly, employing Lemma 2.8 for y = e1, we obtain the implications

ce1 ≤ x ≤ Ce1 ⇒ c ≤ λj(x) ≤ C ⇒ 0 ≤ (x− ce1)(Ce1 − x).(2.34)

Lemma 2.8 gives possibility to produce Kantorovich type inequalities with various

variants of assumptions on x and y (see [7, Theorems 2.1 and 2.4, Corollaries 2.2 and

2.3]).

We now return to Theorem 2.7 and inequality (2.27).

Corollary 2.9. For i = 1, 2, let Vi, Xi, Li and ei be as in Theorem 2.7.

Let x ∈ L1 be an invertible element such that

(x− ce1)(Ce1 − x) ≥ 0 for some positive scalars C, c.(2.35)

Assume that Ψ : V1 → V2 is a unital positive map. For any integer p, if Ψ(x
p+1

2 ) and

Ψ(x
p−1

2 ) are two commuting elements of V2, then we have the inequality

[Ψ(xp+1)]1/2 [Ψ(xp−1)]1/2 ≤ C + c

2
√
Cc

Ψ(xp).(2.36)

Proof. It follows from Lemma 2.8 that (2.35) implies

(x
p+1

2 − cx
p−1

2 )(Cx
p−1

2 − x
p+1

2 ) ≥ 0.
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That is (2.22) holds for x
p+1

2 and x
p−1

2 . Applying (2.27), we obtain (2.36).

Example 2.10. The Kantorovich inequality (1.1) can be derived from Corol-

lary 2.9 applied to the map

Ψ(A) = z∗Az for A ∈ Mn,

where z ∈ C
n with z∗z = 1. Indeed, Ψ is a unital positive map from Mn to C. Here

V1 = X1 = Mn, L1 = Ln, V2 = X2 = C, L2 = R+.

For A > 0, let 0 < c < C be scalars such that the spectrum of A lies in the

interval [c, C]. Then (2.36) with x = A and p = 0 becomes (1.1).

In a similar way, from (2.36) one can obtain the Schopf’s inequality [20, p. 31]:

z∗Ap+1z · z∗Ap−1z ≤ (λ1 + λn)
2

4λ1λn
(z∗Apz)2,

where p is an integer, and λ1 and λn are the largest and smallest eigenvalues of an

n× n positive definite matrix A.

In the proof of Theorem 2.1, a key fact leading to (2.8) and (2.9) is inequality

(2.10). (2.10) is a consequence of the bilinearity of the operation ◦1. So, in order to

get (2.9), it is possible to use (2.10) instead of the bilinearity of ◦1. In fact, in the

literature there are inequalities of types (2.10) and (2.9) with non-bilinear ◦1.

Example 2.11. Consider the following spaces and cones

V1 = X1 = Mn, L1 = Ln, V2 = X2 = R, L2 = R+.

Define maps as follows

Φ(A) = (z∗Az)1/2 for A ∈ A = Ln,(2.37)

and

Ψ(A) = z∗Az for A ∈ B = Ln,(2.38)

where z ∈ C
n with z∗z = 1.

Take ◦2 to be the usual multiplication on R. Let ◦1 be the binary operation of

geometric mean [21, p. 689]:

A ◦1 B = G(A,B) = A1/2(A−1/2BA−1/2)1/2A1/2 for 0 < A,B ∈ Ln.
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With the aid of the version of Theorem 2.1 based on (2.10), we shall show how

to obtain the inequality [21, Theorem 2.2]:

(z∗Az)1/2(z∗Bz)1/2 ≤ C + c

2
√
Cc

z∗G(A,B)z(2.39)

for 0 < A,B ∈ Ln with 0 < cIn ≤ A,B ≤ CIn and 0 < c < C.

To do this, we use the result [13, 21]:

1

2
(A+B) ≤ C + c

2
√
Cc

G(A,B)

for 0 < A,B ∈ Ln with 0 < cIn ≤ A,B ≤ CIn and 0 < c < C. Because G(A,αB) =

α1/2G(A,B) for α > 0 [21, p. 689], substituting CcB instead of B leads to

A+ CcB ≤ (C + c)G(A,B),

which is of the form (2.10).

Furthermore, G(A,B) = G(B,A) [21, p. 689]. Clearly, conditions (2.5)-(2.7) are

satisfied. Since G(A,A) = A [21, p. 689], it is readily seen that (2.4) is met.

By the discussion before this example, we get (2.9). It is not hard to check that

(2.9), with Φ and Ψ defined by (2.37) and (2.38), can be rewritten as (2.39).

Acknowledgment. The author thanks an anonymous referee for his/her valu-

able comments.
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[12] N. Elezović, L. Marangunić and J. Pečarić. Unified treatment of complemented Schwarz and

Grüss inequalities in inner product spaces. Mathematical Inequalities & Applications,

8:223–231, 2005.

[13] M. Fujii, S. Izumino, R. Nakamoto and Y. Seo. Operator inequalities related to Cauchy-Schwarz
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