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FLAT PORTIONS ON THE BOUNDARY OF THE NUMERICAL RANGE OF A 5× 5

COMPANION MATRIX∗

SWASTIKA SAHA MONDAL† , SARITA OJHA† , AND RIDDHICK BIRBONSHI‡

Abstract. The number of flat portions on the boundary of the numerical range of 5×5 companion matrices, both unitarily

reducible and unitarily irreducible cases, is examined. The complete characterization on the number of flat portions of a 5× 5

unitarily reducible companion matrix is given. Also under some suitable conditions, it is shown that a unitarily irreducible

5× 5 companion matrix cannot have four flat portions on the boundary of its numerical range. This gives a partial affirmative

answer to the conjecture given in [3] for n = 5. Numerical examples are provided to illustrate the results.
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1. Introduction. The numerical range W (A) of an n× n matrix A is the subset of the complex plane

C defined as

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

It is well-known that W (A) is a convex (Toeplitz–Hausdorff Theorem), compact subset of C. Other basic

properties of the numerical range can be found in [11, 12].

In particular, it is interesting to locate the flat portions (if any) on the boundary ∂W (A) of the numerical

range and to indicate a bound for the number of flat portions f(A) for several classes of matrices. A matrix

A is unitarily reducible if it is unitarily similar to a block diagonal matrix with at least two diagonal blocks

Aj . In this case, W (A) is the convex hull of W (Aj). The numerical range W (A) will have flat portions on

its boundary ∂W (A), unless one of the W (Aj) contains all others. For a normal matrix A, the blocks Aj
can be made one-dimensional and W (A) is nothing but the convex hull of the spectrum σ(A). Therefore,

f(A) is at most n for a normal matrix A of order n.

For n = 2, f(A) = 0 when A is unitarily irreducible (i.e., not unitarily reducible) as W (A) is an elliptical

disc. Also, for a 2 × 2 normal matrix A, f(A) = 1 where A is different from a scalar multiple of identity,

since W (A) is a line segment and finally f(λI) = 0. For n = 3, from the classification given by Kippenhahn

[15] and Keeler et al. [13], it is easily followed that f(A) is at most 2 for a non-normal unitarily reducible

matrix A and at most 1 for a unitarily irreducible matrix. For a 4× 4 matrix A, Brown and Spitkovsky [1]

have established that the sharp bound for f(A) on the boundary of the numerical range is 4, while for the

unitarily irreducible case f(A) is at most 3.
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An n× n (n ≥ 2) companion matrix is of the form

(1.1)


0 1

0 1
. . .

. . .

0 1

−a0 . . . −an−2 −an−1

 .

The characteristic polynomial of (1.1) is given by

det(A− zI) = zn + an−1z
n−1 + · · ·+ a0.

A special case of a companion matrix is the Jordan block Jn when all aj ’s are zero. Gau and Wu [8] have

given a criterion for a unitarily reducible companion matrix in terms of its eigenvalues as follows.

Theorem 1.1 ([8]). An n× n (n ≥ 2) companion matrix A is unitarily reducible if and only if σ(A) =

{aωj : j ∈ J1} ∪ { 1
āωj : j ∈ J2} for some a ∈ C \ {0} and partition J1 ∪ J2 of {1, . . . , n}, where both J1 and

J2 are non-empty; ω1, . . . , ωn being the set of all nth roots of 1. If this condition holds, then A is unitarily

similar to A1 ⊕A2 with σ(A1) = {aωj : j ∈ J1} and σ(A2) = { 1
āωj : j ∈ J2}.

Also, a companion matrix unitarily equivalent to the direct sum of three or more matrices must be unitary

(cf. [8], Corollary 1.3). Moreover, if an n× n unitarily reducible companion matrix has spectral radius one,

then it is unitary, and its numerical range is a regular n-sided polygon (cf. [8], Corollary 1.2).

In recent years, properties of the numerical range of Sn - matrices have been thoroughly studied by many

mathematicians (see [4], [5], [6]). An n× n complex matrix A is said to be of class Sn if the eigenvalues of

A are all in the open unit disc D and rank(In−A∗A) = 1. An n× n complex matrix B is said to be of class

S−1
n if all eigenvalues of B have modulus greater than one and rank(In − B∗B) = 1. For any matrix C in

Sn or S−1
n , ∂W (C) contains no line segment (see [5], [4], [10]). For a unitarily reducible companion matrix

(not unitary), Gau [10] has given the following result with the help of Sn and S−1
n matrices.

Corollary 1.2 ([10]). Let A (not unitary) be an n × n unitarily reducible companion matrix. Then,

A is unitarily equivalent to a direct sum B ⊕ C with B ∈ Sk and C ∈ S−1
n−k, 1 ≤ k ≤ n− 1.

Moreover, Gau and Wu [9] have shown that for a companion matrix A, the number of line segments on

∂W (A) is at most the size of the matrix. In 2012, Eldred et al. [3] have given the necessary and sufficient

conditions for the existence of flat portions for companion matrices as follows.

Theorem 1.3 ([3]). Let A be given by (1.1). Then for W (A) to have a flat portion on the boundary,

it is necessary that

(1.2)

n−2∑
j=0

ajω
n−jsin

π(j + 1)

n
= sin

π

n
,

and
(1.3) Re(an−1ω) =

n−1∑
j=2

|γj |2

cosπn − cosπjn
− cos

π

n

for some ω with |ω| = 1 and

(1.4) γj =
1√
2n

(
sin

πj(n− 1)

n
−
n−2∑
k=0

akω
n−ksin

πj(k + 1)

n

)
for j = 2, . . . , n− 1.
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If the conditions (1.2) and (1.3) hold, then the potential flat portion passes through the point ω̄ cos πn and

has the slope π/2− argω.

Theorem 1.4 ([3]). Let the conditions (1.2) and (1.3) hold for some matrix A given by (1.1) and ω

having absolute value 1. Then, ∂W (A) has a flat portion passing through ω̄ cos πn if and only if at least one

of the scalar products ⟨Im(wA)x1, x2⟩ and ⟨Im(wA)x2, x2⟩ differs from zero where

x1 = Ω−1

[
v1
0

]
, x2 = Ω−1

[
V 0

0 1

]
ξ and Im(ωA) = (ωA)−(ωA)∗

2i ,

with Ω, v1, V given by

Ω = diag[1, ω, . . . , ωn−1], v1 = [sin π
n , . . . , sin

π(n−1)
n ]T , V =

√
2
n

[
sin πjk

n

]n−1

k,j=1
and

ξ = [0, ξ2, . . . , ξn−1, 1]
T , ξj =

γ̄j
cos π

n−cos πj
n

, j = 2, . . . , n− 1.

The number of flat portions on ∂W (A) of the matrix (1.1) coincides with the number of distinct unimodular

solutions ω of (1.2), (1.3) such that the “if and only if” conditions of Theorem 1.4 are satisfied. For n = 4,

Eldred et al. [3] have proved that a 4×4 companion matrix cannot have three flat portions on the boundary

of its numerical range.

A companion matrix of order 5 is given by

(1.5) A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−a0 −a1 −a2 −a3 −a4

 .

In this article, we look into the presence of flat portions on the boundary of the numerical range for a 5× 5

companion matrix A given in (1.5). Section 2 contains the results obtained for 5 × 5 unitarily reducible

companion matrices (not unitary). In this case, we show that the possible values of f(A) are 0, 2 and

4. In Section 3, we deal with the unitarily irreducible companion matrices where we partially answer the

conjecture given in [3] for n = 5.

2. Unitarily reducible 5× 5 companion matrices. Let us first take the companion matrix A (not

unitary) defined in (1.5) be unitarily reducible. Then for n = 5, combining Theorem 1.1 and Corollary 1.2,

we can conclude that such a matrix A ∈M5(C) is unitarily equivalent to the direct sum B⊕C
(
B ∈ Sk and

C ∈ S−1
5−k for k = 1, 2, 3, 4

)
with

(2.6) σ(B) =
{
aωj : j ∈ J1

}
and σ(C) =

{
1

ā
ωj : j ∈ J2

}
,

respectively, such that |a| < 1, ω (̸= 1) being a primitive 5th root of unity and J1, J2 form a partition of

{1, . . . , 5}. Thus, W (A) = W (B ⊕ C) = conv{W (B),W (C)}, where “conv” denotes the convex hull of the

sets W (B) and W (C).

Also, from the results given in [6] and [10], the matrices B and C are unitarily equivalent to the upper

triangular matrices P1 ∈ Sk and P2 ∈ S−1
5−k (k = 1, 2, 3, 4), respectively. Hence, W (B) = W (P1) and

W (C) =W (P2). Thus we have
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(2.7) W (A) = conv{W (B),W (C)} = conv{W (P1),W (P2)}.

Now we have the following results.

Theorem 2.1. Let A be a unitarily reducible 5×5 companion matrix (not unitary) defined in (1.5) with

the set of eigenvalues aωj1 , aωj2 , 1
āω

j3 , 1
āω

j4 , 1
āω

j5 , where a( ̸= 0) ∈ C and |a| < 1, ω (̸= 1) denotes a

primitive 5th root of unity and {j1, j2}, {j3, j4, j5} form a partition of {1, 2, 3, 4, 5}. Then for some suitable

ϕ ∈ R, the numerical range W (eiϕA) is symmetric about the real axis.

Proof. Clearly, A is unitarily equivalent to the direct sum B ⊕ C where B ∈ S2 and C ∈ S−1
3 with

σ(B) = {aωj1 , aωj2} and σ(C) = { 1
āω

j3 , 1
āω

j4 , 1
āω

j5} as in (2.6). Then ∂W (B) is an ellipse with foci at

aωj1 , aωj2 and ∂W (C) is an oval with foci at 1
āω

j3 , 1
āω

j4 , 1
āω

j5 .

Let a = reiθ, where θ = arg(a) and r ∈ R. So, ae−iθ = r and 1
āe

−iθ = 1
r . The eigenvalues of the matrix

e−iθA are now of the form:

rωj1 , rωj2 , 1
rω

j3 , 1
rω

j4 , 1
rω

j5 .

Let ω = e
2kπi

5 = cos 2kπ
5 + i sin 2kπ

5 for some k = 1, 2, 3, 4. For this particular value of k, consider ψ =
2
5kπ(2j1 + 2j2). Thus e

iψ = e
2
5kπi(2j1+2j2) = ω2(j1+j2) and hence the eigenvalues of the matrix eiψe−iθA are

as follows:

rω3j1+2j2 , rω2j1+3j2 , 1
rω

j3+2(j1+j2), 1
rω

j4+2(j1+j2), 1
rω

j5+2(j1+j2).

Since ω3j1+2j2 · ω2j1+3j2 = ω5(j1+j2) = 1, therefore the values rω3j1+2j2 and rω2j1+3j2 are conjugate to each

other (i.e., any pair of the form {rω2, rω3} or {rω, rω4}). Moreover, these two eigenvalues correspond to

the foci of an ellipse which is the boundary of the numerical range of eiψe−iθB ∈ S2. So, W (eiψe−iθB) is

symmetric with respect to the real axis.

Now the remaining three eigenvalues 1
rω

j′3 , 1
rω

j′4 , 1
rω

j′5 (where j′m = jm+2j1+2j2, m = 3, 4, 5) are the foci

of an oval which is the boundary of the numerical range of eiψe−iθC ∈ S−1
3 . Among these three eigenvalues,

one takes the value 1
r and remaining two eigenvalues are conjugate to each other as {j1, j2}, {j3, j4, j5} form

a partition of {1, 2, 3, 4, 5}.
By Theorem 2.4 of [10], any matrix in S−1

3 with the eigenvalues 1
rω

j′3 , 1
rω

j′4 , 1
rω

j′5 (taken in order as above)

has an upper triangular matrix representation as follows

C ′ =

 1
rω

j′3 1−r2
r2

1−r2
r3 ω̄j

′
4

0 1
rω

j′4 1−r2
r2

0 0 1
rω

j′5

 .
Then C ′ ∈ S−1

3 . Without any loss of generality, we may take ωj
′
4 = 1 and thus ωj

′
3 and ωj

′
5 are conjugate to

each other. Therefore C ′ takes the form as follows

C1 =

 1
rω

j′3 1−r2
r2

1−r2
r3

0 1
r

1−r2
r2

0 0 1
rω

j′5

 ∈ S−1
3 .

Our aim is to show that the numerical range W (C1) of C1 is symmetric with respect to the real axis; that

is, z ∈W (C1) implies z̄ ∈W (C1).
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To prove this, let us consider z = α+ iβ ∈W (C1). Then, there exists x = [f, g, h]T ∈ C3 with ∥x∥ = 1 such

that

α+ iβ = x∗C1x =
1

r
ωj

′
5 |h|2 + 1

r
ωj

′
3 |f |2 + 1

r
|g|2 + 1− r2

r2
(ḡh+ f̄g) +

1− r2

r3
f̄h.

Take x′ = [h, g, f ]T . Then, ∥x′∥ = 1 and we have

(x′)∗C1x
′ =

1

r
ωj

′
5 |f |2 + 1

r
ωj

′
3 |h|2 + 1

r
|g|2 + 1− r2

r2
(gh̄+ fḡ) +

1− r2

r3
fh̄.

Since 1
rω

j′3 and 1
rω

j′5 are conjugate to each other, so (x′)∗C1x
′ = α− iβ = z̄ ∈W (C1). Therefore, W (C1) is

symmetric with respect to the real axis.

Also from Theorem 2.7 of [10], we know that any two matrices in S−1
3 having same set of eigenvalues

(counting multiplicities) are unitarily equivalent. Therefore, W (eiψe−iθC) is also symmetric with respect to

the real axis.

Hence, the convex hull of W (eiψe−iθB) and W (eiψe−iθC), that is, W (eiϕA) where ϕ = ψ − θ, is also

symmetric with respect to the real axis.

Theorem 2.2. Let A be a unitarily reducible 5×5 companion matrix (not unitary) defined in (1.5) with

the set of eigenvalues aωj1 , aωj2 , aωj3 , 1
āω

j4 , 1
āω

j5 , where a(̸= 0) ∈ C and |a| < 1, ω (̸= 1) denotes a

primitive 5th root of unity and {j1, j2, j3}, {j4, j5} form a partition of {1, 2, 3, 4, 5}. Then for some suitable

ϕ′ ∈ R, the numerical range W (eiϕ
′
A) is symmetric about the real axis.

Proof. Similar arguments are to be followed as in Theorem 2.1.

Thus, we can conclude that if A is unitarily equivalent to B ⊕ C with

1. B ∈ S1 and C ∈ S−1
4 , then W (B) = {b} with |b| < 1 and W (C) is a convex set with no flat portion.

Hence, W (A) = conv{W (B),W (C)} has either 0 or 2 flat portions on its boundary according as b

does or does not belong to W (C).

2. B ∈ S2 and C ∈ S−1
3 , then the possible numbers of f(A) are 0, 2 and 4 (by Theorem 2.1).

3. B ∈ S3 and C ∈ S−1
2 , then the possible numbers of f(A) are 0, 2 and 4 (by Theorem 2.2).

4. B ∈ S4 and C ∈ S−1
1 , then W (B) ⊆ {z ∈ C : |z| < 1} (See pp. 181, [7]) and W (C) = {b} with

|b| > 1. Hence, ∂W (A) has exactly 2 flat portions.

Thus, we have the following result.

Theorem 2.3. Let A (not unitary) be a unitarily reducible 5× 5 companion matrix. Then, the possible

numbers of flat portions on the boundary of W (A) are 0, 2 and 4.

Let A (not unitary) be a unitarily reducible companion matrix with the set of eigenvalues σ(A) = σ(B)∪σ(C)
as described in (2.6). Then, there exist two upper triangular matrices P1 ∈ Sk and P2 ∈ S−1

5−k with

W (A) = conv{W (P1),W (P2)} (by (2.7)). The following three examples (considering ω = cos 2π
5 + i sin 2π

5 )

are constructed to show the existence of reducible companion matrices having 0, 2 and 4 flat portions on the

boundary of its numerical range.

Example 2.4 (No flat portion). Let a companion matrix A1 be such that

σ(A1) =

{
5ω

8
,
5ω4

8
,
8ω3

5
,
8

5
,
8ω2

5

}
,
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that is, a = 5
8 , J1 = {1, 4} and J2 = {3, 5, 2} as in (2.6). Then, A1 is unitarily reducible by Theorem (1.1).

The upper triangular matrices P1 ∈ S2 and P2 ∈ S−1
3 are of the following form

P1 =

[
5ω
8

39
64

0 5ω4

8

]
and P2 =

 8ω3

5
39
25

312
125

0 8
5

39
25

0 0 8ω2

5

 ,

respectively. The numerical ranges W (P1),W (P2) and W (A1) are given in Figures 1 and 2.

Figure 1. W (P1) (green) and W (P2) (blue). Figure 2. W (A1).

Example 2.5 (Two flat portions). Let a companion matrix A2 be such that

σ(A2) =

{
2ω

5
,
2ω2

5
,
2ω3

5
,
2ω4

5
,
5

2

}
,

that is, a = 2
5 , J1 = {1, 2, 3, 4} and J2 = {5} as in (2.6). Then, A2 is unitarily reducible by Theorem (1.1).

The upper triangular matrices P1 ∈ S4 and P2 ∈ S−1
1 are of the following form

P1 =


2ω
5

21
25

−42ω3

125
84
625

0 2ω2

5
21
25

−42ω2

125

0 0 2ω3

5
21
25

0 0 0 2ω4

5

 and P2 =
[
5
2

]
,

respectively. The numerical ranges W (P1),W (P2) and W (A2) are given in Figures 3 and 4.

Example 2.6 (Four flat portions). Let a companion matrix A3 be such that

σ(A3) =

{
7ω4

8
,
7ω

8
,
8ω2

7
,
8

7
,
8ω3

7

}
,
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Figure 3. W (P1) (green) and W (P2) (blue). Figure 4. W (A2).

that is, a = 7
8 , J1 = {4, 1} and J2 = {2, 5, 3} as in (2.6). Then, A3 is unitarily reducible by Theorem (1.1).

The upper triangular matrices P1 ∈ S2 and P2 ∈ S−1
3 are of the following form

P1 =

[
7ω4

8
15
64

0 7ω
8

]
and P2 =

 8ω2

7
15
49

120
343

0 8
7

15
49

0 0 8ω3

7

 ,
respectively. The numerical ranges W (P1),W (P2) and W (A3) are given in Figures 5 and 6.

Figure 5. W (P1) (green) and W (P2) (blue). Figure 6. W (A3).

3. Unitarily irreducible 5× 5 companion matrices. From the paper [3], we have a conjecture on

the number of flat portions f(A) on the boundary of the numerical range for a companion matrix A as given

below:

Conjecture: The equality f(A) = n − 1 for an n × n companion matrix A implies that n is odd and A is

unitarily reducible.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 17-32, January 2023.

Swastika Saha Mondal et al. 24

In our case, that is, for n = 5, the conjecture may be stated as,

A unitarily irreducible 5×5 companion matrix cannot have four flat portions on the boundary of its numerical

range.

So, we proceed to the case of a 5 × 5 unitarily irreducible companion matrix. We assume the boundary of

W (A) has a flat portion, and then, the conditions of Theorem 1.3 hold for some unimodular ω. For n = 5,

equations (1.2) and (1.3) of Theorem 1.3 turn into

(3.8) (a0ω
5 + a3ω

2)r + (a1ω
4 + a2ω

3)s = r,

(3.9) Re(a4ω) =
|γ2|2

1
2

+
|γ3|2
√
5
2

+
|γ4|2
√
5+1
2

−
√
5 + 1

4
,

where,

r = sin
π

5
=

√
10− 2

√
5

4
, s = sin

2π

5
=

√
10 + 2

√
5

4
,

and

γ2 =
1√
10

(−s− a0sω
5 − a1rω

4 + a2rω
3 + a3sω

2),

γ3 =
1√
10

(s− a0sω
5 + a1rω

4 + a2rω
3 − a3sω

2),

γ4 =
1√
10

(−r − a0rω
5 + a1sω

4 − a2sω
3 + a3rω

2).

On simplifying by using (3.8), we get

γ2 =
−ω3

√
2
√

10− 2
√
5
(2a0ω

2 +
√
5a1ω + a2),

γ3 =
5ω3

√
10
√
10− 2

√
5
(a1ω + a2),

and γ4 =
−2ω3

√
10

(a0rω
2 + a2s).

Substituting the values of γ2, γ3 and γ4 in equation (3.9), we have

Re(a4ω) =
(1 +√

5

4

)
|a0|2 +

(3 +√
5

4

)
|a1|2 +

(1 +√
5

4

)
|a2|2 −

(1 +√
5

4

)
+Re

(( 2a0ā1√
5− 1

+ a0ā2ω +
2a1ā2√
5− 1

)
ω

)
.

Thus,

(3.10)
(1 +√

5

4

)
(|a0|2 + |a2|2 − 1) +

(3 +√
5

4

)
|a1|2 = Re

((
a4 −

2√
5− 1

(
a0ā1 + a1ā2

)
− a0ā2ω

)
ω

)
.

Now, consider three cases as follows,
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1. When a0 = 0 = a2, (3.10) reduces to

(3.11)
(3 +√

5

4

)
|a1|2 −

(1 +√
5

4

)
= Re(a4ω).

Then, (3.11) is a tautology if

(3.12) a4 = 0,
(3 +√

5

4

)
|a1|2 −

(1 +√
5

4

)
= 0.

It has no unimodular solution if |a4| <
∣∣∣∣( 3+

√
5

4

)
|a1|2−

(
1+

√
5

4

)∣∣∣∣ and its (automatically unimodular)

solutions are given by

(3.13) ω =

(
3+

√
5

4

)
|a1|2 −

(
1+

√
5

4

)
a4

± i

√
|a4|2 −

((
3+

√
5

4

)
|a1|2 −

(
1+

√
5

4

))2

a4
,

in the remaining case

0 ̸= |a4| ≥
∣∣∣∣(3 +√

5

4

)
|a1|2 −

(1 +√
5

4

)∣∣∣∣.
2. When a0 = 0, (3.10) reduces to

(3.14)
(1 +√

5

4

)
(|a2|2 − 1) +

(3 +√
5

4

)
|a1|2 = Re

((
a4 −

2√
5− 1

a1ā2

)
ω

)
.

Then, (3.14) is a tautology if

(3.15) a4 −
2a1ā2√
5− 1

= 0,
(1 +√

5

4

)
(|a2|2 − 1) +

(3 +√
5

4

)
|a1|2 = 0.

It has no unimodular solution if
∣∣∣a4 − 2a1ā2√

5−1

∣∣∣ < ∣∣∣( 1+
√
5

4

)
(|a2|2 − 1) +

(
3+

√
5

4

)
|a1|2

∣∣∣ and its (auto-

matically unimodular) solutions are given by

(3.16) ω =

(
1+

√
5

4

)
(|a2|2 − 1) +

(
3+

√
5

4

)
|a1|2

a4 − 2a1ā2√
5−1

± i

√∣∣a4 − 2a1ā2√
5−1

∣∣2 −
((

1+
√
5

4

)
(|a2|2 − 1) +

(
3+

√
5

4

)
|a1|2

)2

a4 − 2a1ā2√
5−1

,

in the remaining case

0 ̸=
∣∣∣a4 − 2a1ā2√

5− 1

∣∣∣ ≥ ∣∣∣(1 +√
5

4

)
(|a2|2 − 1) +

(3 +√
5

4

)
|a1|2

∣∣∣.
3. When a2 = 0, (3.10) reduces to

(3.17)
(1 +√

5

4

)
(|a0|2 − 1) +

(3 +√
5

4

)
|a1|2 = Re

((
a4 −

2√
5− 1

a0ā1

)
ω

)
.

Then, (3.17) is a tautology if

(3.18) a4 −
2a0ā1√
5− 1

= 0,
(1 +√

5

4

)
(|a0|2 − 1) +

(3 +√
5

4

)
|a1|2 = 0.
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It has no unimodular solution if∣∣∣a4 − 2a0ā1√
5− 1

∣∣∣ < ∣∣∣(1 +√
5

4

)
(|a0|2 − 1) +

(3 +√
5

4

)
|a1|2

∣∣∣,
and its (automatically unimodular) solutions are given by

(3.19) ω =

(
1+

√
5

4

)
(|a0|2 − 1) +

(
3+

√
5

4

)
|a1|2

a4 − 2a0ā1√
5−1

± i

√∣∣a4 − 2a0ā1√
5−1

∣∣2 −
((

1+
√
5

4

)
(|a0|2 − 1) +

(
3+

√
5

4

)
|a1|2

)2

a4 − 2a0ā1√
5−1

,

in the remaining case

0 ̸=
∣∣∣a4 − 2a0ā1√

5− 1

∣∣∣ ≥ ∣∣∣(1 +√
5

4

)
(|a0|2 − 1) +

(3 +√
5

4

)
|a1|2

∣∣∣.
Thus, we have the following lemma.

Lemma 3.1. Let A be a companion matrix as defined in (1.5). Assume W (A) has a flat portion on its

boundary. Then, the followings hold.

1. If a0 = 0 = a2, then |a4| ≥
∣∣∣∣( 3+

√
5

4

)
|a1|2 −

(
1+

√
5

4

)∣∣∣∣ and (3.8) has a unimodular solution ω.

Moreover, this ω must coincide with one of the values given by (3.13), unless (3.12) holds.

2. If a0 = 0, then
∣∣∣a4− 2a1ā2√

5−1

∣∣∣ ≥ ∣∣∣( 1+
√
5

4

)
(|a2|2 − 1) +

(
3+

√
5

4

)
|a1|2

∣∣∣and (3.8) has a unimodular solution

ω. Moreover, this ω must coincide with one of the values given by (3.16), unless (3.15) holds.

3. If a2 = 0, then
∣∣∣a4 − 2a0ā1√

5−1

∣∣∣ ≥
∣∣∣( 1+

√
5

4

)
(|a0|2 − 1) +

(
3+

√
5

4

)
|a1|2

∣∣∣ and (3.8) has a unimodular

solution ω. Moreover, this ω must coincide with one of the values given by (3.19), unless (3.18)

holds.

Theorem 3.2. Let A be a unitarily irreducible companion matrix as defined in (1.5), where a0a2 = 0.

Then f(A) ̸= 4.

Proof. If possible, let f(A) = 4. Then, equation (3.8) has at least four distinct unimodular solutions,

say α1, α2, α3 and α4.

Case 1: First take a0 = 0 = a2. We see that f(A) = 4 is possible only when (3.12) holds. Also for

a0 = 0 = a2, (3.8) turns into

a1sω
4 + a3rω

2 = r.

Since f(A) = 4 (by our assumption), so a1 ̸= 0. By Vieta’s formulae, α1α2α3α4 = −r
a1s

and therefore

|a1|2 = r2

s2 = 3−
√
5

2 which contradicts the tautology (3.12), that is, |a1|2 =
√
5−1
2 . Thus, if a0 = 0 = a2, then

f(A) ̸= 4.

Case 2: Now take a0 = 0. Observe that f(A) = 4 is possible only when (3.15) holds.

Therefore, equation (3.8) takes the form as follows,

(3.20) a1sω
4 + a2sω

3 + a3rω
2 = r.

Since f(A) = 4 (by our assumption), a1 ̸= 0. Applying Vieta’s formula on (3.20), we get,

4∑
i=1

αi = −a2
a1

and

4∑
i=1

1

αi
= 0.
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This implies a2 = 0. Hence in this case, the tautology (3.15) reduces to (3.12) and a contradiction arises as

in Case 1.

So, if a0 = 0, then f(A) ̸= 4.

Case 3: Finally taking a2 = 0, it is clear that f(A) = 4 is possible only when (3.18) holds.

From (3.8) we get

(3.21) a0rω
5 + a1sω

4 + a3rω
2 − r = 0.

We take a0 ̸= 0 as a0 = 0 leads to the contradiction as in Case 1.

If possible, let the fifth root of (3.21) be α5. By Vieta’s formulae, we have

1

α1
+

1

α2
+

1

α3
+

1

α4
+

1

α5
= 0,

i.e., ᾱ1 + ᾱ2 + ᾱ3 + ᾱ4 = − 1

α5
.

Let z = α1 + α2 + α3 + α4 and thus z̄ = − 1
α5

. So, z̄ ̸= 0 and hence z ̸= 0. Also, we have

α1α2α3α4α5 =
1

a0
, i.e.,

α1α2α3α4

−z̄
=

1

a0
,

i.e., |z| = |a0|.

Thus,

z − 1

z̄
=

5∑
i=1

αi =
−a1s
a0r

,

i.e.,
||z|2 − 1|

|z|
=

|a1|s
|a0|r

.

Therefore, |a1|2 =
r2
∣∣|z|2 − 1

∣∣2
s2

.

From (3.18), we get

(1 +√
5

4

)
(|z|2 − 1) +

(3 +√
5

4

)(r2∣∣|z|2 − 1
∣∣2

s2

)
= 0,

i.e.,
(
|z|2 − 1

)(
(1 +

√
5) + 2

(
|z|2 − 1

))
= 0.

Hence, |z|2 = 1 (as |z|2 = 1−
√
5

2 , a contradiction) which implies |a0| = 1. From (3.18), it follows that a1 = 0

and consequently a4 = 0. Therefore, in this case (i.e., when (3.18) is true), (1.5) reduces to
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−a0 0 0 −a3 0

 with |a0| = 1.

Thus, (3.21) becomes

(3.22) a0ω
5 + a3ω

2 = 1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 17-32, January 2023.

Swastika Saha Mondal et al. 28

Since |α5| = 1
|z| = 1, we can say that equation (3.22) has five unimodular solutions. If the fifth root is not

distinct, then α5 will be a double root of (3.22), and thus, a0α
5
5 + a3α

2
5 − 1 = 0 = 5a0α

4
5 +2a3α5. This gives

|a0| = 2
3 , a contradiction. Hence, the conditions of Lemma 3.1 hold for five distinct unimodular values of ω,

but this does not give the guarantee of having five flat portions on the boundary of the numerical range of

A. So, further investigation is needed in this case.

Since all the roots of (3.22) lie on the unit circle, Theorem (A) of [2] implies a3 = 0. Thus, the characteristic

equation of the matrix A is finally reduced to z5 + a0 = 0 (with |a0| = 1). This implies that the eigenvalues

of A are 5th roots of unity. Thus, the matrix A becomes unitarily reducible (by Corollary 1.2 of [8]), which

is a contradiction.

Hence, if A is a 5× 5 unitarily irreducible companion matrix as in (1.5), where at least one of a0, a2 is zero,

then A cannot have 4 flat portions on the boundary of its numerical range.

Remark 3.3. Here, in the proof, equation (3.10) is in the form Re
(
(a + bω)ω

)
= c with a, b ∈ C and

c ∈ R. To solve this, we have considered the condition “at least one of a0, a2 is zero” to reduce it to the

form Re(aω) = c. The conjecture given in [3] for a unitarily irreducible 5× 5 companion matrix is now open

only for the case when both a0 and a2 are non-zero.

We are now going to show the existence of irreducible companion matrices which have 0, 1, 2, 3 flat

portions on the boundary of its numerical range.

Example 3.4 (No flat portion). We give an example when A is unitarily irreducible 5× 5 companion

matrix where f(A) = 0. Let a0 = a1 = a2 = a3 = 0 and a4 = −(1 + i) so that we have:

(3.23) A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1 + i

 .

Here, conditions of Corollary 2.5 of [3] are satisfied, and thus, A has no flat portion on the boundary of its

numerical range as shown in Figure 7.

Figure 7. Numerical range W (A) given in (3.23).
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Figure 8. Numerical range W (A) given in (3.24).

Example 3.5 (One flat portion). We provide an explicit example when A is unitarily irreducible 5× 5

companion matrix and f(A) = 1. Let a0 = a1 = a4 = 0, a2 = i and a3 =
√
5−1
2 so that we have:

(3.24) A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 −i 1−
√
5

2 0

 .

Here, equation (3.10) is satisfied and (3.8) has one unimodular solution i and two non-unimodular solutions√
5
√
5−7
8 + 1−

√
5

4 i,−
√

5
√
5−7
8 + 1−

√
5

4 i. For ω = i, we have ⟨Im(ωA)x1, x2⟩ = 1.06331i ̸= 0, where x1 and

x2 are determined by Theorem 1.4. Thus, the matrix A given by (3.24) has one flat portion on ∂W (A) as

shown in Figure 8.

Example 3.6 (Two flat portions). We provide an example where A is a unitarily irreducible 5 × 5

companion matrix such that f(A) = 2. Let a0 = a1 = a4 = 0, a2 = i and a3 = −
√

3+
√
5

2 so that we have:

(3.25) A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 −i
√

3+
√
5

2 0

 .

Here, equation (3.10) is satisfied and (3.8) has two distinct unimodular solutions

√√
5(

√
5−1)
8 − 1+

√
5

4 i,

−
√√

5(
√
5−1)
8 − 1+

√
5

4 i and non-unimodular solution
√
5−1
2 i.

For ω =

√√
5(

√
5−1)
8 − 1+

√
5

4 i, ⟨Im(ωA)x1, x2⟩ = 0.452254 + 0.734732i ̸= 0

and for ω = −
√√

5(
√
5−1)
8 − 1+

√
5

4 i, ⟨Im(ωA)x1, x2⟩ = −0.452254 + 0.734732i ̸= 0, where x1 and x2 are

determined by Theorem 1.4. Thus, the matrix A given by (3.25) has two flat portions on ∂W (A) as shown

in Figure 9.
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Figure 9. Numerical range W (A) given in (3.25).

Example 3.7 (Three flat portions). We provide an explicit example when A is unitarily irreducible

5× 5 companion matrix and f(A) = 3.

Let a1 =

√
2(

√
5−1)

√
5−3+

√
22+2

√
5
, a2 =

√√
5−7+

√
22+2

√
5

√
5−3+

√
22+2

√
5
,

a3 = 1−
(√

2(
√
5−1)−

√√
5−7+

√
22+2

√
5√√

5−3+
√

22+2
√
5

)(
1+

√
5

2

)
and a4 =

2
√
2

√√
5−7+

√
22+2

√
5√√

5−1
(√

5−3+
√

22+2
√
5
) so that we have:

(3.26) A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 −a1 −a2 −a3 −a4

 .

Here, equation (3.8) has three distinct unimodular solutions and (3.15) is satisfied. Three unimodular roots

of (3.8) are −1, y ± i
√
1− y2 where

y =
1

2

(
1−

√√
5− 7 +

√
22 + 2

√
5

2(
√
5− 1)

−

√√
5− 3 +

√
22 + 2

√
5

2(
√
5 + 1)

)

and non-unimodular root is

√
√
5+

√
22+2

√
5−3

2(1+
√
5)

. For ω = −1, ⟨Im(ωA)x1, x2⟩ = 1.16193i ̸= 0, for

ω =
1

2

(
1−

√√
5− 7 +

√
22 + 2

√
5

2(
√
5− 1)

−

√√
5− 3 +

√
22 + 2

√
5

2(
√
5 + 1)

)

+ i

√√√√1−

[
1

2

(
1−

√√
5− 7 +

√
22 + 2

√
5

2(
√
5− 1)

−

√√
5− 3 +

√
22 + 2

√
5

2(
√
5 + 1)

)]2
,
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Figure 10. Numerical range W (A) given in (3.26).

⟨Im(ωA)x1, x2⟩ = −0.165937 + 1.28128i ̸= 0 and for

ω =
1

2

(
1−

√√
5− 7 +

√
22 + 2

√
5

2(
√
5− 1)

−

√√
5− 3 +

√
22 + 2

√
5

2(
√
5 + 1)

)

− i

√√√√1−

[
1

2

(
1−

√√
5− 7 +

√
22 + 2

√
5

2(
√
5− 1)

−

√√
5− 3 +

√
22 + 2

√
5

2(
√
5 + 1)

)]2
,

⟨Im(ωA)x1, x2⟩ = 0.165937 + 1.28128i ̸= 0, where x1 and x2 are determined by Theorem 1.4. Thus, the

matrix A given by (3.26) has three flat portions on ∂W (A) as shown in Figure 10.

Note 3.8. All numerical ranges are plotted using the program given by C. Cowen and E. Harel, available

at http://www.math.iupui.edu/∼ccowen/Downloads/ 33NumRange.html. Numerical calculations have been

done in this article using Mathematica.
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