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Abstract. For some families of classical orthogonal polynomials defined on appropriate intervals, it is shown that the

corresponding Jacobi matrices are totally positive and their bidiagonal factorizations can be accurately computed. By exploiting

these facts, an algorithm to compute with high relative accuracy the eigenvalues of those Jacobi matrices, and consequently

the nodes of Gaussian quadrature formulae for those families of orthogonal polynomials, is presented. An algorithm is also

presented for the computation of the eigenvectors of these Jacobi matrices, and hence the weights of Gaussian quadrature

formulae. Although in this case high relative accuracy is not theoretically guaranteed, the numerical experiments with our

algorithm provide very accurate results.
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1. Introduction. The aim of this work is to show the role of the bidiagonal factorization of totally

positive matrices (see [4] and [38] for general results on total positivity) in the construction of Gaussian

quadrature formulae for some families of classical orthogonal polynomials, for which the corresponding

symmetric Jacobi matrix is totally positive.

The design of accurate algorithms to work with structured totally positive matrices is an important topic

of research in numerical linear algebra since, although problems in this field can be solved for such matrices

by means of standard algorithms, by taking advantage of total positivity much more accurate results can be

obtained (see, for example, [3, 26, 29]).

It is well known that the computation of the nodes and weights of a Gaussian quadrature formula is

reduced to the calculation of the roots of an orthogonal polynomial, and that these roots can be obtained by

computing the eigenvalues of its associated Jacobi matrix. This second point, which is a consequence of the

three-term recurrence relation which orthogonal polynomials satisfy, is the basis of the widely known Golub–

Welsch approach to calculate Gaussian quadrature formulae introduced in [16]. The connections between

Gauss quadrature rules and the algebraic eigenvalue problem were already present in the book of Wilf [43],

but the contribution of [16] is related to the numerical aspects, showing how to modify the QR algorithm for

computing eigenvalues and eigenvectors in such a way that only the required components of the eigenvectors

are computed. The importance and usefulness of the Golub–Welsch approach has been widely reported in

the literature (see, for instance, [7, 41, 42]).
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Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 777-791, November 2022.

A. Marco et al. 778

Although the approach we present in this work to compute Gaussian quadrature formulae is based

on linear algebra, it is not the Golub–Welsch method nor any of the variants considered in [34], but an

approach related to the representation of the positive definite Jacobi matrix J as J = LDLT , which leads

to the Cholesky factorization J = RTR. The interest of this representation has been highlighted in different

contexts in [36] and more recently in [35]. In connection with Gaussian quadrature, this approach for

positive definite Jacobi matrices was suggested by Laurie [23, 24], who expressed this computations as a

coupled two-term recursion.

Jacobi matrices are tridiagonal matrices, and if they are positive definite this implies a positive diagonal.

Of course, there exist positive definite symmetric tridiagonal matrices with negative off-diagonal entries, but

in the case of Jacobi matrices (as it will be seen in Section 2) the off-diagonal entries are
√
bi and so they

are also positive. In this case, as recalled in [28] (p. 110), the Jacobi matrix is totally nonnegative (totally

positive in the classical terminology of Pinkus [38]), and so we can use the algorithms of Plamen Koev [20]

for totally nonnegative matrices. In addition, as we will see, we are in the positive case considered in [37],

which should imply a better behavior of the corresponding algorithms.

In [28] the special case of the Gaussian quadrature formulae related to the Marchenko–Pastur measure

was considered, but only the nodes were computed, since the accurate computation of the eigenvectors of

the corresponding Jacobi matrices could not be achieved with Matlab, which has led us to look for a new

way to carry out this computation.

This problem has been clearly recalled by Gautschi at the end of the preface of [11]: There is still a

technical issue that should be mentioned. When some of the quadrature weights are very small (say, of the

order 10−50 or even 10−100), our Matlab routine gauss.m or its variable-precision counterpart sgauss.m

(both included in the dataset) may produce zero for these weights, apparently caused by the in-house Matlab

routine eig.m returning zero for very small eigenvector components.

Recently, different interesting approaches to the construction of Gaussian quadrature formulae have

appeared [13, 14, 17, 42], but those methods are not related to eigenproblems with Jacobi matrices. For

instance, [14] is based on purely iterative methods, [13] on purely asymptotic methods, while [17, 42] employ

iterative methods based on asymptotics.

In the context of the methods of [42], the authors indicate that it is reasonable to use the Golub–Welsch

algorithm to furnish initial guesses for the Newton’s method. The authors of [14] admit the Golub–Welsch

approach is interesting for computing quadrature rules of low degree. So we think the numerical linear

algebra approach is still of interest.

In fact, the very recent paper [21] considers the numerical linear algebra approach to compute Gaussian

quadrature rules. In that paper, which mainly addresses the special case of symmetric weight functions, the

authors indicate that the use of LAPACK subroutine DLASQ1 (which was called by the algorithm TNEigen-

Values used in [28]) provides high relative accuracy in the computation of the nodes. As for the computation

of the weights, the authors of [21] use an approach which is partly based on the eigenvector computation

presented in [32]. Our approach to the computation of the weights, which is presented in detail in Section 4,

is based on the computation of the right singular vectors of a bidiagonal matrix by means of the LAPACK

routine DBDSQR.

The rest of the paper is organized as follows. The relationship between the Gaussian quadrature formulae,

the orthogonal polynomials, and the Jacobi matrices is exposed briefly in Section 2. In Section 3, the
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bidiagonal decomposition of several totally positive Jacobi matrices corresponding to shifted Chebyshev and

Laguerre orthogonal polynomials are calculated. An algorithm that, given the bidiagonal decomposition of

a Jacobi matrix J presented in Section 3, computes the eigenvalues and eigenvectors of J is developed in

Section 4. Several numerical experiments showing the good performance of our approach are included in

Section 5. Finally, Section 6 is devoted to the conclusions and some final comments.

2. Gaussian quadrature formulae, orthogonal polynomials, and Jacobi matrices. Let dw(t)

be a nonnegative measure on the interval (a, b) such that the moments:

µk =

∫ b

a

xkdw(x), k = 0, 1, 2, . . .

exist and are finite.

A classical problem in numerical analysis is to approximate the value of the integral:∫ b

a

f(x)dw(x)

by means of a quadrature formula:∫ b

a

f(x)dw(x) ≈ w1f(x1) + · · ·+ wnf(xn),

where the nodes {xi}ni=1 and the weights {wi}ni=1 must be adequately selected.

A quadrature formula has degree of exactness d when it is exact for all polynomials of degree less than

or equal to d. Using orthogonal polynomial theory, it is proved that the maximum degree of exactness of

an n-point quadrature formula is 2n− 1 (see, for example, [39]). The Gaussian quadrature formulae are the

quadrature formulae that yield this optimal degree of exactness.

The Gaussian quadrature formulae theory is based on the orthogonal polynomial theory. A good intro-

duction to the orthogonal polynomial theory can be found in [2, 40] (see also Chapter 1 of [8]), but for the

sake of completeness the basic points of this theory that we will need in this work are summarized below.

A sequence of polynomials {pj}∞j=0, where pn(x) has degree n, is known as an orthogonal polynomial

sequence with respect to the scalar product:

(f, g) =

∫ b

a

f(x)g(x)dw(x)

associated to the measure dw(x) if

(pj , pk) = 0, j ̸= k.

As it is well known, given an orthogonal polynomial sequence associated with one measure, each pn(x) is

uniquely determined up to multiplication by a nonzero constant. An usual way to determine an unique

orthogonal polynomial sequence associated with a measure is to enforce all the polynomials to be monic.

We will proceed in this way and, from now on, all the orthogonal polynomials considered in this work will

be monic.

The next three theorems (see [30, 40]) will help us in our aim of computing Gaussian quadrature formulae.
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Theorem 2.1. Let pn(x) be the monic orthogonal polynomial of degree n. Then, the n roots of pn(x)

are real, simple, and they belong to the interval (a, b).

Theorem 2.2. Let ∫ b

a

f(x)dw(x) ≈ w1f(x1) + · · ·+ wnf(xn),

be a quadrature formula with degree of exactness 2n − 1. Then, the points {xi}ni=1 are the zeros of the

orthogonal polynomial pn(x) associated with the measure dw(x) on the interval (a, b).

Theorem 2.3. The weights {wi}ni=1 of a Gaussian quadrature formula are all positive.

Another fundamental point in the orthogonal polynomial theory is the following three-term recurrence

relation that polynomials in sequence {pj}∞j=0 satisfy

(2.1)
p0(x) = 1, p1(x) = x− a0,

pk+1(x) = (x− ak)pk(x)− bkpk−1(x), k = 1, 2, . . . ,

where the coefficients of the recurrence relation are

(2.2) ak =
(pk, xpk)

(pk, pk)
, k = 0, 1, . . . ; bk =

(pk, pk)

(pk−1, pk−1)
, k = 1, 2, . . . .

It is also usually defined as:

b0 =

∫ b

a

dw(x),

i.e., the measure of the interval (a, b).

At this point, and by means of Theorem 2.2, we have reduced the problem of computing the nodes

{xi}ni=1 of a Gaussian quadrature formula to the problem of computing the roots of an n-degree orthogonal

polynomial. Furthermore, taking into account Theorem 2.1, we also know that these roots are real, simple

and in the open interval (a, b).

The following theorem of Golub and Welsch [16], which connects the three topics in the title of this

section (Gaussian quadrature formulae, orthogonal polynomials, and Jacobi matrices), will give us an effective

procedure for computing these roots, and also the weights {wi}ni=1 of a Gaussian quadrature formula.

Theorem 2.4. Let

J =



a0
√
b1 0 0 0√

b1 a1
√
b2 0 0

...
. . .

. . .
. . .

...

0
. . .

√
bn−2 an−2

√
bn−1

0 0 . . .
√
bn−1 an−1


be the Jacobi matrix of order n built from the three-term recurrence relation (2.1). The nodes {xi}ni=1 of the

corresponding Gaussian quadrature formulae are the eigenvalues of J , and the weights {wi}ni=1 are

wi = b0v
2
i1, i = 1, 2, . . . , n,

where vi1 is the first component of the normalized eigenvector vi of J corresponding to the eigenvalue xi,

and

b0 =

∫ b

a

dw(x).
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This theorem will be key in our approach since it let us to reduce our initial problem, the computation

of the nodes {xi}ni=1 and weights {wi}ni=1 of a Gaussian quadrature formula, to the computation of the

eigenvalues and eigenvectors of a matrix whose nonzero entries are the coefficients ai of the three-term

recurrence relation (2.1) and the square roots of the coefficients bi also in (2.1). Looking at (2.2), it is easily

seen that bi > 0 (i = 1, 2, . . .), and therefore
√
bi is always defined.

This expression of the weights related to the eigenvectors of J is a consequence of the confluent form of

the Christoffel–Darboux identity (see Chapter 2 of [43], [16], and [30]).

3. Bidiagonal factorization of Jacobi matrices. In the area of numerical linear algebra, it is known

that if we have an accurate bidiagonal decomposition of a totally positive matrix many computations, such

as, for example, eigenvalue and singular value computation, can be performed with high relative accuracy

[18, 19].

From now on, given a totally positive matrix A, we will denote by BD(A) the matrix containing all the

nontrivial entries of the bidiagonal decomposition of A [19]. This bidiagonal decomposition is related to the

complete Neville elimination of the matrix A, which (when no row exchanges are needed, as it will happen

in our case) consists of computing the Neville elimination of A and also of AT . A detailed explanation of

this fact can be found in [19, 27].

The aim of this section is the accurate computation of the bidiagonal decomposition of the Jacobi

matrices corresponding to some classical orthogonal polynomials, specifically, the shifted Chebyshev on [0, 1]

(see Section 1.3 in [31]) and Laguerre polynomials. This accurate computation will allow us to calculate

in Section 4 the eigenvalues and eigenvectors of these Jacobi matrices accurately, and therefore, to obtain

the nodes and weights of the Gaussian quadrature formulae associated with these orthogonal polynomials

accurately.

Taking into account that the Jacobi matrices J are not only tridiagonal, but also symmetric (see Theorem

2.4), and that the Neville elimination for triangularizing a tridiagonal symmetric matrix is the same as

Gaussian elimination (without pivoting), the bidiagonal decomposition of J is J = LDLT , where D is a

diagonal matrix and L is a lower bidiagonal matrix with diagonal entries equal to 1. Consequently, the

matrix BD(J) is also tridiagonal and symmetric and has as diagonal entries the diagonal entries of D, and

as sub-diagonal and super-diagonal entries the sub-diagonal entries of L.

3.1. Bidiagonal decomposition of Jacobi matrices associated with shifted Chebyshev poly-

nomials on [0, 1]. We start by taking the measure function dw(x) = (1 − x)−1/2x−1/2dx on the interval

[0, 1]. The associated monic orthogonal polynomials are the monic shifted Chebyshev polynomials of the first

kind on the interval [0, 1], and their corresponding Jacobi matrix of order n (see the algorithm r jacobi01

in the package OPQ of W. Gautschi [12]) is

(3.3) J = tridiag


√
2
4

1
4

1
4 · · · 1

4
1
2

1
2

1
2

1
2 · · · 1

2√
2
4

1
4

1
4 · · · 1

4

 .

The theorem below gives the bidiagonal decomposition of J .
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Theorem 3.1. The Jacobi matrix J in equation (3.3) is totally positive and its bidiagonal decomposition

is given by the tridiagonal matrix:

(3.4) BD(J) = tridiag


√
2
2 1 1 · · · 1

1
2

1
4

1
4

1
4 · · · 1

4√
2
2 1 1 · · · 1

 .

Proof. By carring out the Neville elimination on J (which, as we have indicated before, in the symmetric

tridiagonal case is the same as Gaussian elimination) no row and column exchanges are needed, and it is

seen that the nontrivial entries of D in J = LDLT are d1,1 = 1
2 and di,i =

1
4 (i = 2, . . . , n), and that the

sub-diagonal entries in L are l2,1 =
√
2
2 and li,i−1 = 1 (i = 3, . . . , n). Consequently, J is totally positive [6]

and its bidiagonal decomposition is given by the tridiagonal matrix BD(J) in the statement of this theorem.

Let us observe that the total positivity of J can also be deduced from the fact that J is a positive definite

tridiagonal matrix (see Theorem 2.1 and Theorem 2.4) whose all off-diagonal entries are nonnegative [1, 38].

Now let us consider the measure function dw(x) = (1−x)1/2x1/2dx on the interval [0, 1] and its associated

monic orthogonal polynomials, that is, the monic shifted Chebyshev polynomials of the second kind on the

interval [0, 1]. Their corresponding Jacobi matrix of order n is (see r jacobi01 in the package OPQ of W.

Gautschi [12])

(3.5) J = tridiag

 1
4

1
4

1
4 · · · 1

4
1
2

1
2

1
2

1
2 · · · 1

2
1
4

1
4

1
4 · · · 1

4

 ,

and its bidiagonal decomposition is given by the following theorem. Its proof and the proofs of the other

theorems in this section are analogous to the one of Theorem 3.1.

Theorem 3.2. The Jacobi matrix in (3.5) is totally positive and its bidiagonal decomposition is contained

in the tridiagonal matrix:

(3.6) BD(J) = tridiag

 1
2

2
3

3
4 · · · n−1

n
1
2

3
8

4
12

5
16 · · · n+1

4n
1
2

2
3

3
4 · · · n−1

n

 .

Then we take the monic shifted Chebyshev polynomials of the third kind on the interval [0, 1], i.e., the

monic orthogonal polynomials associated with the measure function dw(x) = (1 − x)−1/2x1/2dx on the

interval [0, 1]. As it is known (see r jacobi01 in the package OPQ of W. Gautschi [12]), the Jacobi matrix

associated to these polynomials is

(3.7) J = tridiag

 1
4

1
4

1
4 · · · 1

4
3
4

1
2

1
2

1
2 · · · 1

2
1
4

1
4

1
4 · · · 1

4

 .

The next theorem provides the explicit expressions of the nontrivial entries in the bidiagonal decomposition

of J .
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Theorem 3.3. The Jacobi matrix presented in (3.7) is totally positive and its bidiagonal decomposition

is given by the tridiagonal matrix:

(3.8) BD(J) = tridiag


1
3

3
5

5
7 · · · 2n−3

2n−1
3
4

5
12

7
20

9
28 · · · 2n+1

4(2n−1)
1
3

3
5

5
7 · · · 2n−3

2n−1

 .

Finally, we consider the monic shifted Chebyshev polynomials of the fourth kind on the interval [0, 1], that

is to say, the monic orthogonal polynomials associated with the measure function dw(x) = (1−x)1/2x−1/2dx

on the interval [0, 1]. Their associated Jacobi matrix is (see r jacobi01 in the package OPQ of W. Gautschi

[12]):

(3.9) J = tridiag

 1
4

1
4

1
4 · · · 1

4
1
4

1
2

1
2

1
2 · · · 1

2
1
4

1
4

1
4 · · · 1

4

 ,

and its bidiagonal decomposition is provided by the following theorem.

Theorem 3.4. The Jacobi matrix in equation (3.9) is totally positive and its bidiagonal decomposition

is given by the tridiagonal matrix:

(3.10) BD(J) = tridiag

 1 1 1 · · · 1
1
4

1
4

1
4

1
4 · · · 1

4

1 1 1 · · · 1

 .

3.2. Bidiagonal decomposition of Jacobi matrices associated with Laguerre polynomials.

Let dw(x) be the measure function on the interval [0,+∞), where w(x) = e−x. As it is well known (see,

for instance, [8]) the corresponding monic orthogonal polynomials are the monic Laguerre polynomials and

their associated Jacobi matrix of order n is

(3.11) J = tridiag

 1 2 3 · · · n− 1

1 3 5 7 · · · 2n− 1

1 2 3 · · · n− 1

 .

The following theorem provides the exact bidiagonal decomposition of J . Its proof and the one of the

other theorem in this section are similar to the one of Theorem 3.1.

Theorem 3.5. The Jacobi matrix J in (3.11) is totally positive and its bidiagonal decomposition is given

by the tridiagonal matrix:

(3.12) BD(J) = tridiag

 1 1 1 · · · 1

1 2 3 4 · · · n

1 1 1 · · · 1

 .

Finally, we consider the monic generalized Laguerre polynomials, that is, the orthogonal polynomials

associated with the measure function dw(x) = xαe−xdx, where α > −1, on the interval [0,∞). Their

corresponding Jacobi matrix J of order n is [8]

(3.13) J= tridiag

[ √
1+α

√
2(2+α) · · ·

√
(n−1)(n−1+α)

1+α 3+α 5+α · · · 2n−1+α√
1 + α

√
2(2 + α) · · ·

√
(n− 1)(n− 1 + α)

]
.
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The next theorem gives the explicit expressions for the nontrivial entries in the bidiagonal factorization

of J .

Theorem 3.6. The Jacobi matrix J in equation (3.13) is totally positive and its bidiagonal decomposition

is contained in the tridiagonal matrix:

(3.14) BD(J) = tridiag


√

1
1+α

√
2

2+α · · ·
√

n−1
n−1+α

1 + α 2 + α 3 + α · · · n+ α√
1

1+α

√
2

2+α · · ·
√

n−1
n−1+α

 .

Looking at the expressions of the BD(J) matrices obtained in this section (see (3.4), (3.6), (3.8), (3.10),

(3.12), and (3.14)), we notice that not only we can compute these matrices with high relative accuracy,

but we can also compute them exactly. This fact will be of great importance in our approach, since the

computation of BD(J) is the first stage in our method to compute the eigenvalues and eigenvectors of the

Jacobi matrices introduced in this section, and consequently, to the accurate computation of the nodes and

weights of the quadrature formulae for the corresponding measures (see Section 4). The importance of

accurately computing the entries of the Jacobi matrices to obtain accurate quadrature formulae has also

been recently pointed out in [25].

4. Accurate computation of the eigenvalues and eigenvectors of Jacobi matrices. In this

section, we present an algorithm that we have called MMVTNEigenVectors, to compute the eigenvalues and

eigenvectors of a totally positive Jacobi matrix J starting from its bidiagonal decomposition BD(J) (see

Algorithm 1).

Given a Jacobi matrix J which is symmetric and positive definite, let us see how a singular value

computation is an alternative here. Let J = RTR be the Cholesky factorization of J , and let R = UΣV T be

the singular value decomposition of R (where U and V are orthogonal matrices, and Σ is a diagonal matrix

with the singular values of R as diagonal entries). Then, we have

J = RTR = V ΣUTUΣV T = V Σ2V T .

Since V is an orthogonal matrix, we have

JV = V Σ2,

which means the columns of V (i.e., the right singular vectors of R) are the eigenvectors of J (and, of course,

the eigenvalues of J are the squares of the singular values of R). In fact, Laurie in Section 5 of [24] gives the

alternative of using the function svd of Matlab to compute the eigenvalues of J , and the same use of svd

is included in the algorithm TNEigenValues of P. Koev for computing the eigenvalues of a totally positive

matrix [18, 20].

Algorithm 1 to compute the eigenvalues and eigenvectors of J is given inMatlab code. The computation

of the eigenvalues of J (lines 3-5 in Algorithm 1) is carried out by means of an adaptation of the P. Koev’s

general algorithm TNEigenValues, taking into account that in our case J is a tridiagonal, symmetric, and

totally nonnegative matrix. The input argument of TNEigenValues is B = BD(J), the matrix representing

the bidiagonal decomposition of J . As recalled in [28], for the tridiagonal case B = BD(J) contains the

entries of the factorization J = LDLT , and so the Cholesky factor of J is computed as R =
√
DLT . Thus,

taking advantage of the specific structure of J , we have been able to eliminate some of the computations
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that TNEigenValues does, and our algorithm only computes, starting from BD(J), the Cholesky factor R

of J (J = RTR), and its singular values by using the LAPACK routine DLASQ1 [18, 22], based on [5].

We must observe that the algorithm TNBD of P. Koev, which gives B = BD(J), does not guarantee high

relative accuracy, and the same happens with standard algorithms for computing the Cholesky decomposition

of J . In our algorithm, we use as input the exact expressions for B, providing an approach which computes

with high relative accuracy all the eigenvalues of the Jacobi matrices J considered in Section 3, and in

consequence, the nodes {xi}ni=1 of the Gaussian quadrature formulae corresponding to the measures in that

section.

As for the computational cost of the eigenvalue computation process, it is leaded by the cost of the

LAPACK routine DLASQ1, and consequently it is of O(n2) arithmetic operations [18], being n the order of

the Jacobi matrix.

Algorithm 1 MMVTNEigenVectors

Require: B, the matrix n× n containing the bidiagonal decomposition BD(J) of J .

Ensure: The eigenvalues a of J (a ∈ Rn) and the normalized eigenvectors of J (the columns of V ∈ Rn×n).

1: function [a, V ]=MMVTNEigenVectors(B)

2: n=size(B);

3: d=sqrt(diag(B));

4: e=diag(B,1).*d(1:length(d)-1);

5: a=mexdlasq1(d,e).∧2;

6: if nargout==2

7: [∼, V T ]=mexdbdsqr(d,e);

8: V = V T ′;

9: for i=1:n

10: V(:,i)=V(:,i)/norm(V(:,i));

11: end;

12: end

The computation of the eigenvectors of J (lines 6-12 in Algorithm 1) is accomplished by computing the

right singular vectors of the Cholesky factor R of J by means of the LAPACK routine DBDSQR [22], based

on [5]. As we have noted before, the eigenvectors of J are the right singular vectors of R.

The LAPACK routine DBDSQR computes the right singular vectors of a bidiagonal matrix by using the

implicit zero-shift QR algorithm, and therefore its computational cost is of O(n3) arithmetic operations. So,

the computational cost of the computation of the eigenvectors of J dominates the computational cost of

MMVTNEigenVectors and in consequence, it is O(n3) arithmetic operations.

As for the accuracy of this stage of our algorithm, we have to say that although the LAPACK routine

DBDSQR does not guarantee high relative accuracy in the right singular vector computation, it returns very

accurate results as the experiments included in Section 5 show.

5. Numerical experiments. This section includes two numerical experiments that illustrate the good

behavior of the algorithm introduced in the previous section when applied to the calculation of the nodes

and weights of Gaussian quadrature formulae. In the first one, tests in which measures whose associated

orthogonal polynomials are shifted Chebyshev polynomials on [0, 1] are considered, while in the second,
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cases in which measures whose corresponding orthogonal polynomials are Laguerre and generalized Laguerre

orthogonal polynomials are analyzed.

Example 5.1. Let us consider the Gaussian quadrature formulae:∫ 1

0

f(x)dw(x) ≈ w1f(x1) + · · ·+ wnf(xn),

where different values of n and different measures dw(x) are taken. Specifically, we consider n = 64, 128, 256,

and the measures on [0, 1] introduced in Section 3.1, namely dw(x) = (1 − x)−1/2x−1/2dx, dw(x) = (1 −
x)1/2x1/2dx, dw(x) = (1−x)−1/2x1/2dx and dw(x) = (1−x)1/2x−1/2dx. Their associated monic orthogonal

polynomials are the shifted Chebyshev polynomials of the first kind, the shifted Chebyshev polynomials of the

second kind, the shifted Chebyshev polynomials of the third kind, and the shifted Chebyshev polynomials of

the fourth kind, respectively.

We compute the nodes {xi}ni=1 and the weights {wi}ni=1 in each case by using the algorithm

MMVTNEigenVectors introduced in Section 4 to compute the eigenvalues and eigenvectors of the correspond-

ing Jacobi matrix J , starting from the matrix BD(J) containing the nontrivial elements of the bidiagonal

factorization of J . The expressions of the matrices J , as well as the expressions of the matrices BD(J), are

the ones in Section 3.1. Taking into account Theorem 2.4, the nodes {xi}ni=1 are the eigenvalues of J and

the weights wi = b0v
2
i1, where vi1 is the first component of the normalized eigenvector vi of J corresponding

to the eigenvalue xi and b0 =
∫ b

a
dw(x).

The values of b0 are in this case b0 = π, b0 = π/8, b0 = π/2 and b0 = π/2, respectively.

We compare the results obtained by our approach with the ones obtained when using:

• The standard command eig from Matlab to compute the eigenvalues and eigenvectors of a matrix.

• The command gauss in the package OPQ of W. Gautschi [12] (see also [9, 10]) which starting from

the coefficients of the three-term recurrence relation for the monic orthogonal polynomials computes

the nodes and the weights of the Gaussian quadrature formula. This command calls eig from

Matlab.

• The LAPACK routine DPTEQR to compute the eigenvalues and eigenvectors of a symmetric positive

definite tridiagonal matrix.

In order to compare the relative errors obtained when computing the nodes and the weights by these four

methods, we use the eigenvalues and eigenvectors computed with Mathematica by means of the commands

Eigenvalues and Eigenvectors with 100 digits of numerical precision.

The results corresponding to the node computation are given in Table 1. Taking into account that

classical algorithms for calculating eigenvalues of ill-conditioned totally positive matrices only compute the

largest eigenvalues with guaranteed relative accuracy, whereas the tiny eigenvalues may be computed with

no relative accuracy at all [18], only the relative error obtained in the computation of the smallest node of

each test is included in Table 1.

The results of the computation of the weights are presented in Table 2, where only the smallest weight

is included.

Let us observe here that, as the results obtained when using gauss and eig are practically the same,

which is logical because gauss calls eig, only the results obtained when using one of the two commands

(gauss) are included in Table 1 and Table 2.
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The ill-conditioning of the matrices considered in this example is shown in Table 3, where the two-norm

condition numbers of these matrices computed in Mathematica are included.

Table 1

Relative error of the smallest node in Example 5.1.

Chebyshev n Smallest node MMV gauss DPTEQR

1st

64 1.5e− 04 1.8e− 16 2.4e− 14 5.8e− 15

128 3.8e− 05 5.4e− 16 6.9e− 13 1.1e− 14

256 9.4e− 06 0 4.0e− 12 2.2e− 14

2nd

64 5.8e− 04 7.4e− 16 7.0e− 14 9.1e− 15

128 1.5e− 04 5.5e− 16 3.2e− 13 8.6e− 15

256 3.7e− 05 2.0e− 15 1.3e− 12 2.6e− 14

3rd

64 5.9e− 04 1.8e− 16 3.8e− 14 5.5e− 16

128 1.5e− 04 1.8e− 16 1.6e− 13 9.1e− 15

256 3.8e− 05 1.4e− 15 6.4e− 13 9.2e− 14

4th

64 1.5e− 04 1.8e− 16 2.9e− 13 1.8e− 16

128 3.7e− 05 3.6e− 16 1.2e− 12 3.6e− 16

256 9.4e− 06 0 5.1e− 12 0

Table 2

Relative error of the smallest weight in Example 5.1.

Chebyshev n Smallest weight MMV gauss DPTEQR

1st

64 4.9e− 02 2.8e− 15 2.0e− 14 5.8e− 15

128 2.5e− 02 5.5e− 15 5.8e− 14 1.2e− 14

256 1.2e− 02 1.8e− 14 1.4e− 13 2.0e− 14

2nd

64 2.8e− 05 2.2e− 15 2.4e− 14 1.5e− 14

128 3.6e− 06 9.2e− 14 2.2e− 14 1.5e− 14

256 4.6e− 07 3.9e− 14 7.3e− 14 8.8e− 14

3rd

64 2.9e− 05 7.4e− 15 5.9e− 14 3.4e− 15

128 3.7e− 06 8.2e− 14 5.5e− 14 2.2e− 14

256 4.6e− 07 3.3e− 13 5.0e− 14 6.6e− 14

4th

64 2.9e− 05 5.7e− 13 2.7e− 14 9.1e− 13

128 3.7e− 06 1.2e− 11 4.8e− 13 1.0e− 11

256 4.6e− 07 5.3e− 11 6.6e− 13 2.6e− 12

Example 5.2. In this case, the Gaussian quadrature formulae:∫ +∞

0

f(x)dw(x) ≈ w1f(x1) + · · ·+ wnf(xn),

are considered. As in Example 5.1, the values n = 64, 128, 256 and different measures dw(x) are taken.

In particular, the measures on [0,+∞) dw(x) = xαe−xdx with α = 0, the Laguerre case, and α =

0.9,−0.9,−0.99, the generalized Laguerre case, are now conssidered. Their corresponding Jacobi matri-

ces J are the ones displayed in Section 3.2, and the tridiagonal matrices BD(J) containing the nontrivial
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Table 3

Condition number of the matrices in Example 5.1.

Chebyshev n κ2

1st

64 6.6e+ 03

128 2.7e+ 04

256 1.1e+ 05

2nd

64 1.7e+ 03

128 6.7e+ 03

256 2.7e+ 04

3rd

64 1.7e+ 03

128 6.7e+ 03

256 2.7e+ 04

4th

64 6.7e+ 03

128 2.7e+ 04

256 1.1e+ 05

elements of the bidiagonal decomposition of the matrices J are the ones obtained in the same section. The

values of b0 are b0 = 1 in the Laguerre case, and Γ(1 + α) in the generalized Laguerre case.

We compute the nodes {xi}ni=1 and the weights {wi}ni=1 in each case by means of the same approaches

used in Example 5.1, and also by the Golub–Welsch approach by using the commands

mmq classsicorthopoly and mmq gaussquadrule in the MMQ Toolbox (Matlab software for the book

[15]) whose implementation in Matlab can be taken from [33]. mmq classsicorthopoly supplies the coeffi-

cients of the normalized recurrences for various classical orthogonal polynomials, among which are Laguerre

and generalized Laguerre but not shifted Chebyshev on [0, 1], and the corresponding moment of order zero.

mmq gaussquadrule is the Golub–Welsch algorithm and computes the nodes and the weights of the Gaussian

quadrature formula from the output of mmq classsicorthopoly.

As recalled in [34], this genuine Golub–Welsch approach means that only the first components of the

eigenvectors are computed.

The results obtained in the node computation are shown in Table 4, and the results got in the compu-

tation of the weights are given in Table 5. Table 6 is devoted to the 2-norm condition numbers computed in

Mathematica of the matrices considered in this example and illustrates the ill-conditioning of the matrices.

As in Example 5.1, the results obtained when using eig and gauss are equivalent and only the results

of gauss are included in Table 4 and Table 5.

Looking at the results of Example 5.1 and Example 5.2 shown in Table 1 and Table 4, respectively, we

note that our approach computes the nodes in both examples very accurately, in fact it is the algorithm

that gives more accurate results. As for the computation of the weights, from the results in Table 2 and

Table 5 we observe that our algorithm computes them in an accurate way. Special mention deserves the

Laguerre case (Table 5) where, although the weights are really small in size, the accuracy of our approach is

maintained while gauss and DPTEQR give results not accurate at all.
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Table 4

Relative error of the smallest node in Example 5.2.

α n Smallest node MMV GW gauss DPTEQR

0

64 2.2e− 02 3.1e− 16 1.3e− 13 2.9e− 14 1.9e− 15

128 1.1e− 02 7.7e− 16 5.4e− 13 5.4e− 13 3.1e− 15

256 5.6e− 03 1.2e− 15 2.5e− 12 3.4e− 12 5.4e− 15

0.9

64 5.3e− 02 9.2e− 16 5.1e− 14 1.3e− 14 9.4e− 15

128 2.6e− 02 3.9e− 16 3.9e− 14 3.3e− 13 9.0e− 14

256 1.3e− 02 3.7e− 15 2.9e− 12 5.9e− 13 3.4e− 13

-0.9

64 1.6e− 03 1.5e− 15 6.6e− 14 5.5e− 14 4.2e− 15

128 8.2e− 04 7.9e− 16 3.3e− 13 2.3e− 13 2.1e− 13

256 4.1e− 04 5.6e− 15 4.6e− 12 2.0e− 12 2.5e− 13

-0.99

64 1.6e− 04 2.2e− 15 7.1e− 13 4.5e− 14 2.4e− 14

128 7.9e− 05 3.5e− 16 1.7e− 12 1.7e− 13 1.0e− 14

256 3.9e− 05 1.1e− 14 2.1e− 11 3.8e− 12 5.7e− 13

Table 5

Relative error of the smallest weight in Example 5.2.

α n Smallest weight MMV GW gauss DPTEQR

0

64 2.1e− 101 1.2e− 13 4.3e− 14 8.6e+ 42 8.6e+ 67

128 8.6e− 210 1.5e− 12 3.2e− 13 1 2.4e+ 174

256 1.1e− 428 4.8e− 13 1 1 1.7e+ 394

0.9

64 5.0e− 100 3.5e− 13 3.9e− 14 6.1e+ 41 2.0e+ 65

128 3.9e− 208 9.6e− 13 2.4e− 13 1 9.1e+ 173

256 9.6e− 427 7.9e− 14 1 1 5.6e+ 196

-0.9

64 8.8e− 103 1.6e− 13 1.7e− 13 6.0e+ 44 1.8e+ 69

128 1.9e− 211 1.4e− 13 4.4e− 14 1 1.6e+ 174

256 1.4e− 430 1.3e− 12 1 1 7.2e+ 194

-0.99

64 6.5e− 103 2.1e− 15 7.8e-14 1.2e+ 45 8.7e+ 69

128 1.3e− 211 1.4e− 13 5.9e− 15 1 6.8e+ 177

256 8.8e− 431 6.8e− 13 1 1 3.0e+ 193

Remark 5.3. Let us note that the values of the smallest weights for n = 256 in Table 5, and also the

values computed by using our approach, are smaller than realmin (i.e., 2.23e− 308, the smallest normalized

positive floating point number in double precision). This phenomenon is found for Gauss–Hermite quadrature

weights in Section 3.6 of [42].

To obtain them by means of our approach, we have computed the eigenvectors by using the algorithm

MMVTNEigenVectors in Matlab, and then we have computed the weights in Mathematica by using the

formula for the weights in Theorem 2.4.

6. Conclusions and final comments. In this work, an accurate algorithm to compute the nodes

and weights of Gaussian quadrature formulae for the shifted Chebyshev on [0, 1] case and the Laguerre
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Table 6

Condition number of the matrices in Example 5.2.

α n κ2

0

64 1.0e+ 04

128 4.3e+ 04

256 1.8e+ 05

0.9

64 4.5e+ 03

128 1.8e+ 04

256 7.5e+ 04

-0.9

64 1.4e+ 05

128 5.9e+ 05

256 2.4e+ 06

-0.99

64 1.4e+ 06

128 6.1e+ 06

256 2.5e+ 07

case is presented. The good results of our approach are a direct consequence of the explicit expressions we

have obtained for the bidiagonal decomposition of the Jacobi matrices corresponding to these orthogonal

polynomials. Such expressions allow us, on one hand, to prove the total positivity of the Jacobi matrices,

and on the other hand, to compute accurately their bidiagonal decomposition. This stage is essential to

obtain the eigenvalues and eigenvectors of the Jacobi matrices, and therefore, the nodes and the weights of

the associated Gaussian quadrature formulas accurately.

The numerical experiments corroborate the accuracy of our algorithm. Referring to the nodes, the

comparison with other available methods based on linear algebra indicates that our algorithm always provides

the most accurate results. As for the weights, it can be observed that our algorithm gives always accurate

results. In particular, it is worth noting that when the weights are close to zero, our method is still accurate

while the other methods give really inaccurate results.
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