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Abstract. In this article, some new results on M -matrices, H-matrices and their inverse classes are proved. Specifically,

we study when a singular Z-matrix is an M -matrix, convex combinations of H-matrices, almost monotone H-matrices and

Cholesky factorizations of H-matrices.
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1. Introduction. An H-matrix A is a square complex matrix whose comparison matrix M(A) is an

M -matrix. In the overarching theory and applications of nonnegative matrices, the concepts of M -matrix

and its generalizations to Z-matrix and H-matrix are indeed ubiquitous because of their natural occurrence

in linear systems resulting from discretization of differential equations, Markov chains, Leontieff models of

the economy, dynamical systems and control theory in engineering, the linear complementarity problem in

optimization, among many other areas. As comprehensive references for the theory and applications of these

matrix classes, we mention [2] and [11].

Even with all the attention H-matrices and related classes have received, there are still unexplored

aspects of their theory regarding the eigenstructure, mapping properties, invertibility, factorizations and

their transformations. In this regard, the present work addresses, among others, the following questions and

considerations: When is a singular Z-matrix equal to a singular M -matrix based on Schur complementation?

Study convex combinations of H-matrices, almost monotone H-matrices and Cholesky factorizations of H-

matrices.

Our presentation proceeds as follows: Section 2 contains notation, definitions and results to be cited or

generalized. New results on M -matrices and inverse M -matrices are found in subsection 3.1. H-matrices and

inverse H-matrices are considered in subsection 3.2. Finally, Cholesky factorizations for certain subclasses

of H-matrices are discussed in subsection 3.3.

2. Preliminaries and terminology. Let Rm×n (Cm×n) denote the space of all real (complex) matrices

of order m× n. When n = 1, we denote these simply by Rm or Cm. The transpose of A will be denoted by

AT , the range of A by R(A) and the null space of A by N(A). The dimension of R(A) (rank of A) is denoted

by rk(A).

A matrix A = (aij) is said to be nonnegative (A ≥ 0) if aij ≥ 0 for all i, j. If aij > 0 for each i, j then

A is said to be positive (A > 0). Similar terminology and notation is used for vectors x = (xi) ∈ Rn. Array
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nonnegativity naturally induces a partial order, for example, for two matrices A = (aij) and B = (bij) in

Rm×n, A ≥ B means aij ≥ bij , for all i, j.

Recall that a square matrix A is said to be reducible, if it is permutationally similar to (X Y
0 Z ), where

X and Z are both square matrices. If a matrix is not reducible, then it is said to be an irreducible matrix.

The Frobenius normal form of a reducible matrix A is given by a block triangular matrix PAPT = (Rij),

i, j = 1, 2, . . . , p, in which each square diagonal block Rii is either irreducible or a 1×1 null matrix, and P is

a permutation matrix. If A is a symmetric reducible matrix, then one has PAPT = diag(R11, R22, . . . , Rpp).

2.1. Schur complements. Let α, β ⊆ {1, 2, . . . , n}, whose elements are in the ascending order. Given

a matrix A = (aij) ∈ Cn×n, then A[α, β] denotes the submatrix of A that lies in the rows and columns

indexed by the subsets α and β, respectively. When α or β is empty, the corresponding submatrix is

considered vacuous; if it is square, by convention it has determinant equal to 1. We abbreviate A[α, α] by

A[α] and refer to it as a principal submatrix of A.

Given α ⊆ {1, 2, . . . , n}, we let αc denote the complement of α in {1, 2, . . . , n}. Next, let A[α] be

invertible. Then, the Schur complement of A[α] in A is denoted and defined by

A/A[α] = A[αc]−A[αc, α]A[α]−1A[α, αc].

For a given matrix A, let A[α] be invertible for some α. Then, A is invertible if and only if A/A[α] is

invertible. This follows from the formula

det(A) = det(A[α]) det(A/A[α]).

The next result will be used quite frequently in our discussion.

Lemma 2.1. [1, Lemma 2.1]

If the principal submatrix A[α] of A and the corresponding Schur complement A/A[α] in A are invertible,

then

(A−1)[αc] = (A/A[α])−1.

2.2. Background on M-matrices and inverse M-matrices. An excellent source for a detailed

study of nonnegative matrices and M -matrices is [2]. We summarize some facts to be used here frequently

and include some key results for reference.

Given a square matrix B, let σ(B) denote the spectrum of B and let ρ(B) denote the spectral radius of

B, that is,

ρ(B) = max{|λ| : λ ∈ σ(B)}.

The Perron-Frobenius theorem states that for every square nonnegative matrix B, ρ(B) ∈ σ(B) and there

is a nonnegative eigenvector of B corresponding to ρ(B).

A real square matrix whose off-diagonal entries are nonpositive is called a Z-matrix. Any Z-matrix A

may be represented as A = sI − B, where B is a nonnegative matrix and s is a real number. In such a

representation, if in addition one also has s ≥ ρ(B), then A is called an M -matrix. If s > ρ(B), then by the

Perron-Frobenius theorem, A is an invertible M -matrix. If s = ρ(B), then A is a singular M -matrix.
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It is well-known that a Z-matrix A is a nonsingular M -matrix if and only if A−1 exists and A−1 ≥ 0;

if A is additionally an irreducible Z-matrix, then A is a nonsingular M -matrix if and only if A is inverse

positive, that is, A−1 exists and A−1 > 0.

Of interest to us herein are two additional necessary and sufficient conditions for a Z-matrix A to be an

invertible M -matrix: (1) that A is positive stable, that is, the real part of each eigenvalue of A is positive;

(2) that A is semipositive, that is, there exists a vector x > 0 such that Ax > 0. Such a vector x will be

referred to as a semipositivity vector for x.

Note also that a real matrix A is an M -matrix if and only if A + ϵI is an invertible M -matrix for all

ϵ > 0. While this fact is useful in a few instances to prove results on singular M -matrices, this does not

apply in many crucial situations. This is due to the reason that singular M -matrices behave significantly

differently from their invertible counterpart. One instance of this is illustrated in Theorem 2.2.

A matrix is called an inverse M -matrix if it is invertible and its inverse is an M -matrix. Since the inverse

of an invertible M -matrix is nonnegative, inverse M -matrices form an important subclass of the set of all

nonnegative matrices. We refer the reader to [9], [10] and the monograph [11] for more details on inverse

M -matrices.

In the next result, we collect some of the important properties of singular, irreducible M -matrices. Let

us recall that a square matrix A is called almost monotone if Ax ≥ 0 =⇒ Ax = 0. An example of an almost

monotone matrix is given by A = ( 1 −1
−1 1 ).

Theorem 2.2. [2, Theorem 4.16]

Let A ∈ Rn×n be a singular, irreducible M -matrix. Then the following statements hold.

(a) Every proper principal submatrix of A is a nonsingular M -matrix.

(b) rk(A) = n− 1.

(c) There exists x > 0 such that Ax = 0.

(d) A is almost monotone.

2.3. H-matrices and inverse H-matrices. Let A = (aij) ∈ Cn×n. The comparison matrix of A,

denoted by M(A) = (mij), is defined by

mij =

{
|aij |, i = j.

−|aij |, i ̸= j.

Observe that M(A) is a Z-matrix. A is called an H-matrix if M(A) is an M -matrix.

The set of equimodular matrices associated with A, denoted by Ω(A), is defined by

Ω(A) = {B ∈ Cn×n : M(A) = M(B)}.

Note that both A and M(A) are in Ω(A). The authors of [3] show that there are three distinguishing types

of H-matrices that one must take into account, in any consideration. While we shall not discuss all these

three classes, we shall be concerned with the class HI that consists of all those matrices A for which the

comparison matrix M(A) is invertible, that is,

HI = {A ∈ Cn×n : M(A) is invertible}.
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Let us just add the rather well-known fact that, whenever the comparison matrix is invertible, all the matrices

belonging to the equimodular class are invertible.

An invertible matrix A ∈ Cn×n is called an inverse H-matrix, if M(A−1) is an invertible M -matrix. In

the notation given earlier, this means that A−1 ∈ HI . This is stronger than requiring a nonsingular matrix

A be an H-matrix. For instance, A = ( 1 1
−1 1 ), is invertible, whereas M(A) = ( 1 −1

−1 1 ) is singular. Also

observe that M(A−1) = 1
2M(A) is singular.

The class of inverse H-matrices has been introduced and investigated in [5]. It follows that an inverse

M -matrix is an inverse H-matrix ([5, Remark 1.6]). Some classes of nested matrices have been identified to

be inverse H-matrices (Theorem 2.5, Theorem 2.7 and Theorem 2.9 [5]).

Remark 2.3. Let A be a triangular matrix with non-zero diagonal entries. Then, A is an H-matrix.

This follows from the fact that all the diagonal entries of M(A) are positive and coincide with the eigenvalues

of M(A).

Remark 2.4. All diagonal entries of an H-matrix whose comparison matrix is invertible are non-zero.

This is because the diagonal entries of the invertible M(A) are necessarily positive. There certainly exist

H-matrices with zero diagonal entries, which must be reducible. Indeed, an irreducible H-matrix, has the

property that all its diagonal entries are non-zero [4, Theorem 3].

H-matrices are intimately connected to diagonally dominant matrices and matrices with positive prin-

cipal minors as reviewed below.

The matrix A ∈ Cn×n is called diagonally dominant (DD) if

|aii| ≥
∑
i̸=j

|aij |, i = 1, 2, . . . , n.

If all the inequalities above hold strictly, A is called strictly diagonally dominant (SDD). A is said to be

(strictly) generalized diagonally dominant ((S)GDD), if there exists a positive diagonal matrix D such that

AD is (S)DD.

Remark 2.5. It is well-known that M(A) is an invertible M-matrix if and only if A is GSDD. We also

have that an irreducible A ∈ Cn×n is an H-matrix if only if A is GDD [4, Theorem 4]. These two facts have

been used to obtain numerical characterizations of H-matrices by iteratively seeking the diagonal scaling D;

see [12].

A complex square matrix each of whose principal minor is positive is called a P -matrix. For a P -matrix

A, every real eigenvalue of every principal submatrix of A is positive. The converse is also true. That is, if

every real eigenvalue of every principal submatrix of a matrix A is positive, then A is a P -matrix. Another

necessary and sufficient condition for a real matrix A to be a P -matrix is that, for every signature matrix

S, there exists x > 0 such that SASx > 0 [13, Theorem 1]. Recall that a matrix A = (aij) is said to

be quasidominant if there exists a positive vector d = (d1, d2, . . . , dn)
T such that for each i, the following

inequality holds:

diaii >
∑
j ̸=i

dj |aij |.

It is known that a square matrix A is a quasidominant if and only if there exists x > 0 such that SASx > 0,

for every signature matrix S; see [13, Theorem 2]. Let A be a real matrix with positive diagonal entries.
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Then, A is quasidominant if and only if A ∈ HI . The following is a simple consequence of this observation:

If A ∈ Rn×n belongs to HI and has positive diagonal entries, then A is a P -matrix.

3. New results. In this section, we obtain new results on M -matrices, H-matrices and their inverse

classes.

3.1. M-matrices and inverse M-matrices. Let us start by recalling the following result: Let A be

a Z-matrix such that for some α ⊆ {1, 2, . . . , n} both the principal submatrix A[α] as well as the Schur

complement A/A[α] are invertible M -matrices. Then, A is an invertible M -matrix [1, Theorem 2.2]. In the

next result, we obtain an analogue for the case of singular M -matrices, while Theorem 3.2 studies inverse

M -matrices.

Theorem 3.1. Let A ∈ Rn×n be a singular Z-matrix. If for some α ⊆ {1, 2, . . . , n} A[α] is an invertible

M -matrix and A/A[α] is a singular M -matrix, then A itself is an M -matrix.

Proof. Let ϵ > 0. We show that A+ ϵI is an invertible M -matrix. Note that for the given subset α, the

matrix A[α] + ϵI[α] = (A + ϵI)[α] is an invertible M -matrix. Then, the Schur complement of A + ϵI with

respect to the subset α is well defined and is given by

(A+ ϵI)/(A+ ϵI)[α] = (A[αc] + ϵI[αc])−A[αc, α](A[α] + ϵI[α])−1A[α, αc].

Since A[αc, α], A[α, αc] are nonpositive matrices and as (A[α] + ϵI[α])−1 ≥ 0, it follows that (A+ ϵI)/(A+

ϵI)[α] is a Z-matrix. Further, A/A[α] + ϵI[αc] is an invertible M -matrix. Also, since A[α] is an invertible

M -matrix and A[α] ≤ (A[α] + ϵI[α]), we have (A[α] + ϵI[α])−1 ≤ A[α]
−1

. Hence, we have

(A[αc] + ϵI[αc])−A[αc, α]A[α]−1A[α, αc]

≤ (A[αc] + ϵI[αc])−A[αc, α](A[α] + ϵI[α])−1A[α, αc],

which implies that

(A/A[α] + ϵI[αc]) ≤ (A+ ϵI)/(A+ ϵI)[α].

Since A/A[α] + ϵI[αc] is an invertible M -matrix, it now follows that

(A+ ϵI)/(A+ ϵI)[α],

is an invertible M -matrix. From the remark made earlier, it now follows that A + ϵI is an invertible M -

matrix.

Theorem 3.2. Let A ∈ Rn×n such that A−1 is a Z-matrix. If for some α ⊆ {1, 2, . . . , n} both A[α] and

A/A[α] are inverse M -matrices, then A is an inverse M -matrix.

Proof. The matrices A[α] and A/A[α] are inverse M -matrices. So, (A[α])−1 and (A/A[α])−1 are M -

matrices. As pointed earlier, (A−1)[αc] = (A/A[α])−1 and so A/A[α] = ((A−1)[αc])−1. Reversing the roles

of A and A−1, as well as α and αc, we then have (A[α])−1 = A−1/A−1[αc] By applying the result for

invertible M -matrices (as stated earlier), it follows that A−1 is an invertible M -matrix, that is, A is an

inverse M -matrix.

Remark 3.3. It is quite well-known that the sum of two M -matrices is not necessarily an M -matrix.

Let A,B ∈ Rn×n be invertible M -matrices (so that their diagonal entries are positive). Then, A is said to
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proportionally dominate B rowwise, if for each i, j we have
aij
aii

≥ bij
bii

. Columnwise proportional dominance is

defined analogously. If A proportionally dominates B rowwise or columnwise, then for any numbers r, s ≥ 0

with r+s > 0, the matrix Mrs := rA+sB is an M -matrix [6]. Let us also include a more general result. Let

A,B be invertible M -matrices possessing a common semipositivity vector, viz., there exists u > 0 such that

Au,Bu > 0. It follows that the convex combination Mα := αA+ (1− α)B is an M -matrix for all α ∈ [0, 1]

[16, Theorem 3.4]. More can be said. The matrix Mα is an M -matrix for all α ∈ [0, 1] if and only if the

matrix B−1A has no negative real eigenvalues. As a consequence, we also have that Mα is an M -matrix if

and only if B−1A is an M -matrix [7]. These considerations motivate us to consider the question of when

the convex combination of inverse M -matrices is again an inverse M -matrix.

Theorem 3.4. Let A, B be inverse M -matrices such that AB−1 (or BA−1) is a positive diagonal matrix.

Then, for any 0 < λ < 1, the convex combination λA+ (1− λ)B is an inverse M -matrix.

Proof. Let A and B be inverse M -matrices such that AB−1 is a positive diagonal matrix. First, observe

that for 0 < λ < 1, λA+ (1− λ)B ≥ 0, since A,B ≥ 0. Also,

(λA+ (1− λ)B)−1 = B−1(λAB−1 + (1− λ)I)−1.

Since AB−1 is a positive diagonal matrix, D = (λAB−1 + (1 − λ)I)−1 is also a positive diagonal matrix.

Consider

(λA+ (1− λ)B)−1 = B−1D.

Since B−1 is a Z-matrix (as it is an M -matrix), the product B−1D is a Z-matrix, showing that (λA+ (1−
λ)B)−1 is a Z-matrix. Thus, (λA+ (1− λ)B)−1 is an M -matrix.

If BA−1 is positive, then one uses:

(λA+ (1− λ)B)−1 = A−1(λI + (1− λ)BA−1)−1.

Remark 3.5. If one relaxes the hypotheses in Theorem 3.4, by just assuming A to be nonnegative, then

the conclusion still holds. Thus, the following assertion is true: Let A be an nonnegative matrix and B be

an inverse M -matrix such that AB−1 is a positive diagonal matrix. Then, for any 0 < λ < 1, the convex

combination λA+(1−λ)B is an inverse M -matrix. The corresponding proposition, when the roles of A and

B are interchanged, also holds true.

Corollary 3.6. Let A, B be inverse M -matrices such that AB−1 (or BA−1) is an M -matrix. Suppose

that A−1 ≤ B−1. Then, for any 0 < λ < 1 the convex combination λA+ (1− λ)B is an inverse M -matrix.

Proof. Since A ≥ 0, the inequality A−1 ≤ B−1 yields AB−1 ≥ I. Also, since AB−1 is an M -matrix, its

off-diagonal entries are nonpositive. This means that AB−1 is a positive diagonal matrix. By Theorem 3.4,

it now follows that λA + (1 − λ)B is an inverse M -matrix. An entirely similar argument applies when we

assume that B−1A is an M -matrix.

Let us illustrate Theorem 3.4 by an example.

Example 3.7. Let A =
(

2 1 2
6 5 8
4 3 6

)
and B =

(
1 1/2 1
3 5/2 4

4/3 1 2

)
. Their inverses are given by A−1 =(

3/2 0 −1/2
−1 1 −1

−1/2 −1/2 1

)
and B−1 =

(
3 0 −3/2

−2 2 −3
−1 −1 3

)
Then, A and B are inverse M -matrices and AB−1 = D,
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where D =
(

2 0 0
0 2 0
0 0 3

)
. For 0 < t < 1,

tA+ (1− t)B =

 t+ 1 (t+ 1)/2 t+ 1

3(t+ 1) 5(t+ 1)/2 4(t+ 1)

(8t+ 4)/3 2t+ 1 4t+ 2


is a nonnegative matrix and

(tA+ (1− t)B)−1 =

 3/(t+ 1) 0 −3/(4t+ 2)

−2/(t+ 1) 2/(t+ 1) −3/(2t+ 1)

−1/(t+ 1) −1/(t+ 1) 3/(2t+ 1)


is a Z-matrix, proving that tA+ (1− t)B is an inverse M -matrix.

3.2. H-matrices and inverse H-matrices. We begin with the question of when the convex combi-

nation of two H-matrices is again an H-matrix, with Remark 3.3 providing the motivation. We present a

framework for an affirmative answer, and this is the result of Theorem 3.8. It is also pertinent to point to

the result [16, Theorem 3.16]: Let A,B ∈ HI with real entries. Further, let A,B both be positive stable

(meaning that the eigenvalues lie in the open right half of the complex plane). Then, for any t ∈ [0, 1], the

matrix tA+ (1− t)B is a positive stable H-matrix if tM(A) + (1− t)M(B) is an M -matrix for all t ∈ [0, 1].

Finally, it must be mentioned that a real matrix A ∈ HI is a positive stable matrix if and only if all its

diagonal entries are positive [7]. In our result, we are not assuming that the comparison matrix is invertible.

Let us recall the following [1], [6]: Let A be an invertible M -matrix and B be a Z-matrix satisfying

A ≤ B. Then, B is an invertible M -matrix. This result holds for singular M -matrices, too. Let A be a

singular M -matrix and B be a Z-matrix satisfying A ≤ B. Then, for any ϵ > 0, we get A+ϵI ≤ B+ϵI. Also,

A+ ϵI is an invertible M -matrix. Then, B + ϵI is an invertible M -matrix, showing that B is an M -matrix.

Theorem 3.8. Let A and B be two H-matrices with positive diagonal entries such that M(A) ≤ M(B).

Then for any t ∈ [0, 1], the matrix tA+ (1− t)B is an H-matrix.

Proof. First, we show that if F and G are matrices with nonnegative diagonal entries, then M(F +G) ≥
M(F ) +M(G). Let F = (fij) and G = (gij). Since |fij + gij | ≤ |fij |+ |gij |, for all i, j one has the following

inequality for the off-diagonal entries:

−|fij + gij | ≥ −|fij | − |gij |.

As the diagonal entries of F and G are nonnegative, for all i we get

|fii + gii| = |fii|+ |gii|,

proving the claim.

Now, the diagonal entries of tA+ (1− t)B are positive. Then, from what we proved just now, we have

M(tA+ (1− t)B) ≥ M(tA) +M((1− t)B)

= tM(A) + (1− t)M(B)

≥ M(A).

Since M(A) is an M -matrix, M(tA+ (1− t)B) is an M -matrix. Now we conclude that tA+ (1− t)B is an

H-matrix.
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Let us illustrate Theorem 3.8 by an example.

Example 3.9. Let

A =

 5 −3 2

1 4 −2

1 2 3

 and B =

 6 2 −1

1 5 1

0 −2 7

 .

Then, one may verify that A and B are H-matrices (having positive diagonal entries) with M(A) ≤ M(B).

For 0 < t < 1, the matrix

tA+ (1− t)B =

−t+ 6 −5t+ 2 3t− 1

1 −t+ 5 −3t+ 1

t 4t− 2 −4t+ 7

 .

Let C := tA+ (1− t)B. The expression for the comparison matrix of C takes one of the following mutually

exclusive and collectively exhaustive forms.

For 0 < t < 1
3 , it is given by M(C) =

(−t+6 5t−2 3t−1
−1 −t+5 3t−1
−t 4t−2 −4t+7

)
.

For 1
3 < t < 2

5 , the matrix M(C) =
(−t+6 5t−2 −3t+1

−1 −t+5 −3t+1
−t 4t−2 −4t+7

)
.

For the case 2
5 < t < 1

2 , we have M(C) =
(−t+6 −5t+2 −3t+1

−1 −t+5 −3t+1
−t 4t−2 −4t+7

)
,

while for 1
2 < t < 1, it is M(C) =

(−t+6 −5t+2 −3t+1
−1 −t+5 −3t+1
−t −4t+2 −4t+7

)
.

In all the cases, M(C) has a positive row sum, and so tA+ (1− t)B is an H-matrix.

The next result addresses the question of the extent to which Theorem 2.2 can be generalized for H-

matrices. We show that the first two properties have exact analogues for H-matrices. However, the other

two properties do not hold, as illustrated by the matrix A = ( 2 3
4 6 ).

Theorem 3.10.

(a) Every principal submatrix of an H-matrix is an H-matrix.

Let A ∈ Rn×n be a singular irreducible H-matrix. Then

(b) Every proper principal submatrix of A is an invertible H-matrix.

(c) rk(A) = n− 1.

Proof. (a) Let A be an H-matrix so that M(A) is an M -matrix. Let A[α] be a principal submatrix of A.

Then, the corresponding comparison matrix of A[α] is M(A)[α], which is a principal submatrix of M(A).

Hence M(A)[α] is an M -matrix and so A[α] is an H-matrix.

(b) Since A is a singular, irreducible H-matrix, we have that M(A) is a singular, irreducible M -matrix. Let

A[α] be any proper principal submatrix of A so that (as observed above), M(A)[α] is a principal submatrix

of M(A). Hence using Theorem 2.2, we can say that M(A)[α] is a nonsingular M -matrix. Hence A[α] is a

nonsingular H-matrix.

(c) From (b), in particular, one has, rk(A) = n− 1 proving (c).

As was mentioned earlier, a singular irreducible M -matrix is almost monotone (Theorem 2.2). This

motivates us to ask the question as to which singular irreducible H-matrices are almost monotone. Below,

we give an interesting answer.
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Theorem 3.11. Let A be a singular irreducible real H-matrix with positive diagonal entries. If A is

almost monotone, then A is an M -matrix.

Proof. Since A is an irreducible H-matrix with positive diagonal entries, there exists a positive vector

d = (d1, d2, . . . , dn)
T such that, for all i = 1, 2, . . . , n we have

aiidi = |aii|di ≥
∑
i ̸=j

|aij |dj ≥
∑
i̸=j

aijdj .

From this equation, one concludes that each row sum of AD is nonnegative, where D = diag(d1, d2, . . . , , dn).

In other words, (AD)e ≥ 0, where eT = (1, 1, . . . , 1). Since A is almost monotone, one has A(De) = 0. Hence,

for all i ∈ {1, 2, . . . , n},

aiidi = −ai1d1 − . . .− aii−1di−1 − aii+1di+1 − . . .− aindn.

Substituting this in the above inequality, we get

−
∑
i ̸=j

aijdj ≥
∑
i̸=j

|aij |dj .

Rewriting the above, we have ∑
i̸=j

(aij + |aij |)dj ≤ 0.

Since all the dj ’s are positive, it follows that aij ≤ −|aij | ≤ 0, showing that all the off-diagonals of A are

nonpositive. Thus, A is a Z-matrix and so A = M(A), proving that A is an M -matrix.

Example 3.12. In Theorem 3.11, the assumption that the diagonal entries are positive is indispensable.

The matrix

A =

(
−1 1

1 −1

)
,

is a singular H-matrix. Note that A has a negative diagonal entry (and so it is not an M -matrix), and it is

almost monotone.

It is clear that if A ∈ HI , then any principal submatrix of A also satisfies this property. In the next

result, we have an analogue for inverse H-matrices.

Theorem 3.13. Every principal submatrix of an inverse H-matrix is also an inverse H-matrix.

Proof. Let A be an inverse H-matrix and A[α] be a principal submatrix of A whose rows and columns

are indexed by α ⊆ {1, 2, . . . , n}. Then, one has (A[α])−1 = A−1/A−1[αc]. It was shown in [3] that the

Schur complement of an H-matrix whose comparison matrix is invertible is also an H-matrix with invertible

comparison matrix, hence one has (A[α])−1 is an H-matrix whose comparison matrix is invertible. Thus,

A[α] is an inverse H-matrix.

In [5], a closure property of inverse H-matrices is shown to hold for a subclass of inverse H-matrices.

This subclass is a proper subclass of class of inverse H-matrices with positive diagonal entries. In the next

result we show that this extends to the larger class.

Theorem 3.14. Let A be an inverse H-matrix with positive diagonal entries. Then A+D is an inverse

H-matrix for every nonnegative diagonal matrix D.
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Proof. Take A = B−1, where B ∈ HI . Then, there exists a positive diagonal matrix D1 such that BD1

is strictly row diagonally dominant. First, for simplicity, we consider the case D = αI, α > 0. Then,

(αI +A)−1D1 = (αI +B−1)−1D1

= (αD−1
1 + (BD1)

−1)−1.

Since BD1 is strictly row diagonally dominant, αD−1
1 + (BD1)

−1 is strictly column diagonally dominant.

So, (αI +A)−1D1 is a strictly row diagonally dominant matrix. Hence, αI +A ∈ HI , whenever α > 0.

We next demonstrate the desired result assuming that D is a positive diagonal matrix. Then, since A ∈ HI ,

D−1A ∈ HI . This implies D−1A+ I ∈ HI . Now D(D−1A+ I) = A+D ∈ HI . A continuity argument yields

the result for a nonnegative diagonal matrix.

It is well-known that, if A ∈ Rn×n belongs to HI and has positive diagonal entries, then A is a P -matrix

[11, Proposition 4.5.11]. The following result shows that an analogous result for inverse H-matrices also

holds.

Theorem 3.15. Let A ∈ Rn×n. If A is an inverse H-matrix such that the diagonal entries of A−1 are

positive, then A is a P -matrix.

Proof. By definition, M(A−1) is an invertible M -matrix. By the fact that the diagonal entries of A−1

are positive, it follows that A−1 is a P -matrix. Since the inverse of P-matrix is always a P-matrix [11,

Theorem 4.3.2], A is also a P -matrix.

Example 3.16. In Theorem 3.15, the assumption that the diagonal entries of A−1 are positive cannot

be dispensed with. Let A =
(

2 0 1
1 −2 0

−1 0 2

)
. Then A−1 =

(
2/5 0 −1/5
1/5 −1/2 −1/10
1/5 0 2/5

)
. Now one can observe that the row

sum of the comparison matrix of A−1 are positive and so A is an inverse H-matrix. However, A is not a

P -matrix. Note that A−1 has a negative diagonal entry.

3.3. Cholesky factorization for H-matrices. In this section, we pursue the problem of obtaining

Cholesky factorizations for some classes of H-matrices. The motivation for such a consideration comes from

the following two results.

Theorem 3.17. [8, Theorem 1] Let A ∈ Rn×n be a symmetric M -matrix. Then, there exists a triangular

M -matrix G such that A has the representation A = GGT .

Theorem 3.18. [15, Theorem 2] If A is a symmetric, singular M -matrix, then there exists a permutation

matrix P such that PAPT = GGT , where G is a triangular, singular M -matrix.

A verbatim analogue of Theorem 3.17 for an invertible H-matrix is false. Let A =
( −2 2

2 3

)
. Then,

A ∈ HI . If A = GGT then,

A =

(
a11 0

a12 a22

)(
a11 a12
0 a22

)
.

In particular, this yields a211 = −2, an absurdity. Observe that, for an invertible symmetric matrix which

has the representation as in Theorem 3.17, the diagonals must be positive. Interestingly, the moment this

extra condition is imposed, one obtains the desired representation. Next, we show this.

Theorem 3.19. Let A be a real symmetric matrix with positive diagonal entries. If A ∈ HI , then A has

a representation A = GGT , where G is a triangular matrix, with G ∈ HI .
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Proof. We prove this result by induction on the order of the matrix. Consider the case when n = 2. Let

A = ( a b
b d ) ∈ HI with a, d > 0. We claim that there exist a11, a12, a22 ∈ R such that(

a b

b d

)
=

(
a11 0

a12 a22

)(
a11 a12
0 a22

)
=

(
a211 a11a12

a12a11 a212 + a222

)
.

Thus, we have the following requirements:

a11 = ±
√
a, a12 = ±b/

√
a and a222 = d− a212 = (ad− b2)/a.

Since, a > 0 and det(A)/a > 0, the numbers a11, a12 and a22 are well defined. This establishes the basis

step.

Let us suppose that the theorem is true for matrices of order n− 1. We can write

A =

(
An−1 b

bT ann

)
,

where b ∈ Rn−1 (being written as a column vector) and An−1 ∈ HI is symmetric, with positive diagonal

entries. By the induction hypothesis, there is a triangular matrix Gn−1 ∈ HI such that

Gn−1G
T
n−1 = An−1.

Clearly, Gn−1 is nonsingular. Let c be such that Gn−1c = b. We must show that there exists x such that

(1)

(
Gn−1 0

cT x

)(
GT

n−1 c

0 x

)
=

(
An−1 b

bT ann

)
.

Thus, x is required to satisfy the condition

(2) cT c+ x2 = ann.

Note that

ann − cT c = ann − bT (Gn−1G
T
n−1)

−1b

= ann − bTA−1
n−1b

= A/An−1,

is the Schur complement of An−1 in A, which is positive. Thus, equation (2) has a solution given by

x =
√

ann − cT c. Define

G :=

(
Gn−1 0

cT
√
ann − cT c

)
.

Then, the triangular matrix G ∈ HI , due to the fact that every triangular matrix with non-zero diagonal

entry belongs to HI . Equation (1) provides the sought after representation for the matrix A, completing the

proof.

Let us illustrate Theorem 3.19 by an example.
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Example 3.20. Consider

A =

4 2 1

2 3 0

1 0 1

 .

Clearly, A is an invertible, symmetric, real H-matrix with positive diagonal entries. We can write

A =

(
A2 b

bT a33

)
,

where A2 = ( 4 2
2 3 ) and b = (1, 0)T . Now we write A2 = G2G

T
2 , where

G2 =

(
2 0

1
√
2

)
.

Therefore, c = G−1
2 b = ( 12 ,−

1
2
√
2
)T and

√
a33 − cT c =

√
5
8 .

It may be verified that A = GGT , where

G =

(
G2 0

cT
√

a33 − cT c

)
=

2 0 0

1
√
2 0

1
2 − 1

2
√
2

√
5
8

 .

Clearly G ∈ HI .

Theorem 3.21. Let A be a real symmetric, invertible, irreducible, H-matrix such that M(A) is singular.

Let the diagonal entries of A be positive. Then, A can be factorized as A = GGT , where G is a triangular,

invertible H-matrix.

Proof. Similar to the proof of Theorem 3.19.

For the case of reducible matrices, we have:

Theorem 3.22. Let A be a symmetric, invertible, real H-matrix such that M(A) is singular. Suppose

that the diagonal entries of A are positive. Then, there exists a permutation matrix P such that PAPT =

GGT , where G is a triangular, invertible, real H-matrix.

Proof. There exists a permutation matrix P such that

PAPT = diag(A1, A2, . . . , Ak),

where, for each i, Ai is an irreducible matrix. From the given conditions, one has Ai is a symmetric,

irreducible real H-matrix with positive diagonal entries. If M(Ai) is invertible then by Theorem 3.19, there

exists Gi, a triangular, invertible real H-matrix such that Ai = GiG
T
i . Else if M(Ai) is a singular matrix

then by Theorem 3.21 there exists Gi, a triangular, invertible real H-matrix such that Ai = GiG
T
i . Thus,

PAPT = GGT , where G = diag(G1, G2, . . . , Gk) is a invertible, real H-matrix.

Theorem 3.23. Let A be a real symmetric, singular H-matrix represented as a block matrix

A =

(
A11 A12

AT
12 A22

)
,

where A11 is a nonsingular matrix with positive diagonal entries. If rk(A) = rk(A11), then there exists a

triangular real H-matrix G such that A = GGT .
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Proof. Since A11 is a symmetric, nonsingular real H-matrix with positive diagonal entries, by Theorem

3.19, one has A11 = G1G
T
1 , where G1 is a triangular, nonsingular real H-matrix. Since rk(A)=rk(A11), one

has

A22 = AT
12(G

T
1 )

−1G−1
1 A12.

Thus,

A =

(
G1G

T
1 A12

AT
12 AT

12(G
T
1 )

−1G−1
1 A12

)
=

(
G1 0

A12(G
T
1 )

−1 0

)(
GT

1 G−1
1 A12

0 0

)
= GGT .

Since every triangular matrix is an H-matrix, G is a (singular) real H-matrix.

Here is an illustrative example.

Example 3.24. Consider

A =

2 1 1

1 2 −1

1 −1 2

 =

(
A11 A12

AT
12 A22

)
,

where

A11 =

(
2 1

1 2

)
, A12 =

(
1

−1

)
and A22 = 2.

Every proper principal minor of M(A) is positive, while its determinant is zero. Here rk(A) = rk(A11) = 2.

If G = (
√
2 0

1/
√
2
√

3/2
), then A11 = GGT . Now

G−1A12 =

(
1/
√
2 0

−1/
√
6
√

2/3

)(
1

−1

)
=

(
1/
√
2

−
√

3/2

)
,

and AT
12(G

T )−1 = ( 1/
√
2 −

√
3/2 ). One may verify that

A =


√
2 0 0

1/
√
2

√
3/2 0

1/
√
2 −

√
3/2 0


√
2 1/

√
2 1/

√
2

0
√
3/2 −

√
3/2

0 0 0

 .

Corollary 3.25. Let A ∈ Rn×n be a real symmetric, singular, irreducible H-matrix, whose first n− 1

diagonal entries are positive. Then, there exists a triangular real H-matrix G such that A = GGT .

Proof. The matrix A may be partitioned as

A =

(
A11 b

bT ann

)
,

where A11 is a real symmetric H-matrix with positive diagonal entries. Since A is a singular irreducible

H-matrix, by Theorem 3.10, all its proper principal submatrices are nonsingular. Hence, rk(A11)=rk(A).

Now, the proof follows from Theorem 3.23.
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Corollary 3.26. Let A ∈ Rn×n be a real symmetric, singular, irreducible, H-matrix with n − 1 pos-

itive diagonal entries. Then, there exists a permutation matrix P such that PAPT = GGT , where G is a

triangular, singular real H-matrix.

Proof. From the hypotheses on the matrix A, it follows that there exists a permutation matrix P such

that PAPT is a symmetric, singular, irreducible, real H-matrix with first n − 1 diagonal entries positive.

Now, the proof follows from the previous corollary.

Theorem 3.27. Let A be a real symmetric, singular, H-matrix whose diagonal entries are nonnegative.

Then there exists a permutation matrix P such that PAPT = GGT , where G is a triangular, singular, real

H-matrix.

Proof. There exists a permutation matrix P such that

PAPT = diag(A1, A2, . . . , Ak),

where Ai is either an irreducible matrix or the zero matrix of order 1. Further, each Ai is a real symmetric,

H-matrix. We know that each diagonal entry of an irreducibleH-matrix is non-zero. If Ai is irreducible, then

all its diagonal entries are positive. Hence, there exists Gi, a triangular real H-matrix such that Ai = GiG
T
i .

If Ai is a zero matrix then we can choose Gi = 0. Thus, PAPT = GGT , where G = diag(G1, G2, . . . , Gk) is

a singular, real H-matrix.

Here is a numerical example.

Example 3.28. Let

A =



0 0 0 0 0 0

0 4 0 0 2 0

0 0 2 −1 0 1

0 0 −1 2 0 1

0 2 0 0 3 0

0 0 1 1 0 2


.

If we take

P =



0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0


,

then we get

PAPT =



2 1 1 0 0 0

1 2 −1 0 0 0

1 −1 2 0 0 0

0 0 0 4 2 0

0 0 0 2 3 0

0 0 0 0 0 0


.
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Thus, PAPT = GGT , where

G =



√
2 0 0 0 0 0

1/
√
2

√
3/2 0 0 0 0

1/
√
2 −

√
3/2 0 0 0 0

0 0 0 2 0 0

0 0 0 1
√
2 0

0 0 0 0 0 0


.

The concluding result shows that an analogue of Theorem 3.19 holds for inverse H-matrices. In fact, it

is a consequence of that result.

Theorem 3.29. Let A be a symmetric, real inverse H-matrix such that A−1 has all its diagonal entries

positive. Then, A has a representation A = GGT , where G is a triangular, real inverse H-matrix.

Proof. The matrix A−1 is a symmetric, real H-matrix with positive diagonal entries. By Theorem 3.19,

we can write A−1 = GGT , where G is a triangular, invertible real H-matrix. Then, A = (GT )−1G−1. Since

the inverse of a triangular matrix is again a triangular matrix, the proof is complete.

Here is an example illustrating Theorem 3.29.

Example 3.30. Consider

A =

(
2/9 −1/3

−1/3 1

)
.

Hence,

A−1 =

(
9 3

3 2

)
,

an H-matrix with positive diagonal entries. Set

GT =
1

3

(
1 0

−1 3

)
.

Then, G is a triangular, inverse H-matrix and A = GGT .
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