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THOMPSON ISOMETRIES ON POSITIVE OPERATORS: THE
2-DIMENSIONAL CASE∗
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Abstract. In this paper, a former result of the first author is completed. The structure is de-

termined of all surjective isometries of the space of invertible positive operators on the 2-dimensional

Hilbert space equipped with the Thompson metric or the Hilbert projective metric.
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1. Introduction and Statement of the Results. In [3], the first author of
the present paper described the structure of all isometries of the space of invertible
positive operators on a Hilbert space H equipped with the Thompson metric or the
Hilbert projective metric under the condition dimH ≥ 3. Apparently, it is a natural
question to ask what happens in the case when dimH = 2. Indeed, the referee of
[3] posed that question which the author could not answer at that time; he only
conjectured that the same conclusion should hold as in higher dimensions. The aim
of this note is to present a proof of that conjecture.

We begin with recalling some definitions and notation. The general definitions
of the Thompson metric and the Hilbert projective metric are as follows. Let X
be a real normed space and K �= ∅ be a closed convex cone in X which satisfies
K ∩ (−K) = {0}. For any x, y ∈ X we write x ≤ y if y − x ∈ K. Clearly, ≤ is a
partial order on X . There is an equivalence relation ∼ on K \ {0} which is defined by
x∼ y if and only if we have positive real numbers t and s such that tx ≤ y ≤ sx. The
equivalence classes induced by ∼ are called components. Let C be a component and
for any x, y ∈ C denote by M(x/y) the quantity inf{t > 0 | x ≤ ty}. The Thompson
metric dT on C is defined by

dT (x, y) = logmax{M(x/y),M(y/x)} (x, y ∈ C)
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where log stands for the natural logarithm (for basic properties of dT we refer to the
original source [4]). Thompson introduced this metric as a modification of the Hilbert
projective metric dH which is defined on the same component by the formula

dH(x, y) = logM(x/y)M(y/x) (x, y ∈ C).

Actually, dH is not a true metric, only a pseudo-metric. Indeed, for any x, y ∈ C we
have dH(x, y) = 0 if and only if there is a positive number α such that x = αy.

It is well known that in any unital C∗-algebra A, the set A+ of all positive
elements of A is a nonempty closed convex cone in the normed linear space of all
self-adjoint elements of A which satisfies A+ ∩ (−A+) = {0}. Moreover, the invert-
ible elements in A+ form a component in A+ \ {0} which we denote by A+

−1. The
Thompson metric on this component is in an intimate connection with the natural
Finsler geometry of A+

−1 which has many applications in several fields of mathematics
(see the introduction of [3] and the references therein).

As already mentioned, in [3] the first author described the structure of all bi-
jective isometries of the space of all invertible positive operators acting on a Hilbert
space endowed with the Thompson metric or the Hilbert projective metric under the
condition dimH ≥ 3. The aim of this note is to extend those results for the remaining
case dimH = 2.

In what follows H denotes a complex Hilbert space and B(H) stands for the C∗-
algebra of all bounded linear operators on H . As in [3], it is easy to see that for any
invertible bounded linear or conjugate-linear operator S on H and for any function
τ : B(H)+−1 →]0,∞[ the transformations

A �→ SAS∗, A �→ SA−1S∗ (A ∈ B(H)+−1)

and

A �→ τ(A)SAS∗, A �→ τ(A)SA−1S∗ (A ∈ B(H)+−1)

are isometries corresponding to dT and dH , respectively. The results in [3] tell us that
if dimH ≥ 3, then there are no other kinds of bijective isometries corresponding to
those distances. The following statements assert that the same conclusions hold also
in the 2-dimensional case.

Theorem 1.1. Let H be a complex Hilbert space with dimH = 2. Suppose that
Φ : B(H)+−1 → B(H)+−1 is a surjective isometry with respect to the metric dT . Then
there exists an invertible linear or conjugate-linear operator S on H such that Φ is
either of the form

Φ(A) = SAS∗ (A ∈ B(H)+−1)
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or of the form

Φ(A) = SA−1S∗ (A ∈ B(H)+−1).

The result concerning the Hilbert projective metric reads as follows.

Theorem 1.2. Let H be a complex Hilbert space with dimH = 2. Suppose that
Φ : B(H)+−1 → B(H)+−1 is a surjective isometry with respect to the Hilbert projective
metric. Then there exists an invertible linear or conjugate-linear operator S on H and
a function τ : B(H)+−1 →]0,∞[ such that Φ is of the form

Φ(A) = τ(A)SAS∗ (A ∈ B(H)+−1).

Remark 1.3. One may wonder why the inverse operation does not show up in
the formulation of Theorem 1.2. The fact is that it does in some hidden way. To see
this, let {e1, e2} be an orthonormal basis of the 2-dimensional space H . Define the
map U : H → H by

Ux = 〈e2, x〉e1 − 〈e1, x〉e2 (x ∈ H).

It is easy to see that U is an antiunitary operator with the property that

P⊥ = UPU∗ (P ∈ P1(H)).

One can deduce that

A−1 =
1

detA
UAU∗ (A ∈ B(H)+−1)

implying that every transformation on B(H)+−1 of the form

A �−→ τ(A)SA−1S∗

with invertible linear or conjugate-linear operator S : H → H and function τ :
B(H)+−1 →]0,∞[ is also of the form that appears in Theorem 1.2.

2. Proofs. We start with some necessary notation. The spectrum of an operator
A ∈ B(H) is denoted by σ(A). Let P1(H) stand for the set of all rank-1 projections on
H and denote by tr the trace functional. As usual, I stands for the identity operator
on H . For P ∈ P1(H) we write P⊥ = I − P . The diameter of any subset K of R is
denoted by diamK.

We present the proof of our first result Theorem 1.1.
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Proof. We first recall the following formula relating to the Thompson metric:

(2.1) dT (A,B) = || logA−1/2BA−1/2|| (A,B ∈ B(H)+−1).

A proof can be found, e.g., in [3].

By an observation made in the paragraph preceding the formulation of Theo-
rem 1.1, we deduce that the transformation

A �−→ Φ(I)−1/2Φ(A)Φ(I)−1/2 (A ∈ B(H)+−1)

is a surjective isometry with respect to the Thompson metric which has the additional
property that it sends I to I. Hence, regarding the statement of Theorem 1.1 we may
and do assume that Φ already has this property, i.e., Φ(I) = I.

In the proof of Theorem 1 in [3] we proved that any surjective Thompson isometry
preserves the geometric mean of invertible positive operators and then that it also
preserves the Jordan triple product, i.e., satisfies

(2.2) Φ(ABA) = Φ(A)Φ(B)Φ(A) (A,B ∈ B(H)+−1).

Next it was proved at the beginning of the proof of Theorem 1 in [2] that (2.2) implies
that

(2.3) AB = BA ⇐⇒ Φ(A)Φ(B) = Φ(B)Φ(A) (A,B ∈ B(H)+−1)

and

(2.4) Φ(AB) = Φ(A)Φ(B) (A,B ∈ B(H)+−1, AB = BA).

One can easily check that those arguments in [2, 3] do not require that dimH ≥ 3,
and hence the above observations remain valid also in the present case dimH = 2.

As the positive scalar multiples of I are exactly the elements of B(H)+−1 which
commute with all elements, it follows from (2.3) that there is a function f :]0,∞[→
]0,∞[ such that

Φ(λI) = f(λ)I (λ > 0).

It is clear that f(1) = 1. Moreover, it follows from (2.1) that

(2.5) | log f(λ)− log f(µ)| = | logλ− logµ| (λ, µ > 0).

Let F = log ◦f ◦ exp. Then (2.5) implies that F : R → R is an isometry. It is well
known and in fact very easy to see that there exists a real number a such that either
we have

F (x) = a+ x (x ∈ R)
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or we have

F (x) = a− x (x ∈ R).

As f(1) = 1, we deduce that either

f(λ) = λ (λ > 0)

or

f(λ) =
1
λ

(λ > 0).

In the first case, let φ = Φ. While in the second case we define φ by

φ(A) = Φ(A)−1 (A ∈ B(H)+−1).

Since the inverse operation is a surjective Thompson isometry (see the paragraph
before the formulation of Theorem 1.1), the same holds for φ : B(H)+−1 → B(H)+−1.
It is clear that

φ(λI) = λI (λ > 0)

and φ satisfies (2.2), (2.3) and (2.4).

The elements of B(H)+−1 are exactly the operators of the form λP + µP⊥ where
P ∈ P1(H) and λ, µ are positive real numbers. Let P ∈ P1(H) be fixed. It is easy
to see that given two different positive real numbers λ and µ, an invertible positive
operator commutes with λP + µP⊥ if and only if it is of the form λ′P + µ′P⊥ where
λ′ and µ′ are positive real numbers. This, together with (2.3), yields that there exists
a rank-1 projection P̃ such that for any positive real numbers λ, µ we have scalars
λ̃, µ̃ > 0 for which

φ(λP + µP⊥) = λ̃P̃ + µ̃P̃⊥.

Therefore, we have functions g, h :]0,∞[→]0,∞[ such that
(2.6) φ(λP + P⊥) = g(λ)P̃ + h(λ)P̃⊥ (λ > 0).

It is clear from (2.4) that g and h are multiplicative functions.

Since φ is multiplicative on the commuting elements of B(H)+−1 and leaves the
scalar operators fixed, we infer that

φ(P + µP⊥) =
µ

g(µ)
P̃ +

µ

h(µ)
P̃⊥ (µ > 0).

Multiplying this equality with the one in (2.6), we obtain

(2.7) φ(λP + µP⊥) = µg

(
λ

µ

)
P̃ + µh

(
λ

µ

)
P̃⊥ (λ, µ > 0).
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Let λ, µ, δ, ε > 0. Substituting A = λP + µP⊥ and B = δP + εP⊥ into the equality
(2.1), using (2.7) and the isometric property of φ we obtain

max
{∣∣∣∣log δλ

∣∣∣∣ ,
∣∣∣∣log εµ

∣∣∣∣
}
= max

{∣∣∣∣log εµg
(
δµ

λε

)∣∣∣∣ ,
∣∣∣∣log εµh

(
δµ

λε

)∣∣∣∣
}
.

This yields

(2.8) max{| log t|, | log s|} = max
{∣∣∣∣log sg

(
t

s

)∣∣∣∣ ,
∣∣∣∣log sh

(
t

s

)∣∣∣∣
}

(s, t > 0).

Substituting s = 1 into this equation, we see

| log g(t)| ≤ | log t|, | log h(t)| ≤ | log t| (t > 0).

Consequently, for the additive functions G = log ◦g ◦ exp and H = log ◦h ◦ exp we
have

|G(t)−G(s)| = |G(t− s)| ≤ |t− s|, and |H(t)−H(s)| ≤ |t− s|

for every t, s ∈ R. This gives us that G,H are continuous and hence linear. Con-
sequently, they are scalar multiples of the identity. This implies that g, h are power
functions which means that we have real numbers a and b such that

g(x) = xa (x > 0)

and

h(x) = xb (x > 0).

Substituting s = 1, t = e respectively s = e, t = 1 into (2.8), we obtain that

max{|a|, |b|} = max{|a− 1|, |b− 1|} = 1.

¿From this we infer that either a = 1 and b = 0, or a = 0 and b = 1. The equation
(2.7) implies that in the first case we have

φ(λP + µP⊥) = λP̃ + µP̃⊥ (λ, µ > 0)

while in the second case we have

φ(λP + µP⊥) = µP̃ + λP̃⊥ (λ, µ > 0).

In both cases we can conclude

(2.9) σ(φ(A)) = σ(A) (A ∈ B(H)+−1).
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This implies that φ preserves the trace of operators

(2.10) trφ(A) = trA (A ∈ B(H)+−1).

The elements of B(H)+−1 with spectrum {1, 2} are exactly the operators of the form
I + P where P ∈ P1(H). By the spectrum preserving property (2.9) of φ this yields
that for any P ∈ P1(H) there exists a unique element ψ(P ) of P1(H) such that

φ(I + P ) = I + ψ(P ).

Clearly, the map ψ : P1(H)→ P1(H) is bijective. Let P,Q ∈ P1(H). Easy computa-
tion shows that

tr(I + P )(I +Q)(I + P ) = 6 + 3 trPQ

and

tr(I + ψ(P ))(I + ψ(Q))(I + ψ(P )) = 6 + 3 trψ(P )ψ(Q).

Referring to the equality (2.2) and the trace preserving property of φ we obtain

(2.11) trPQ = trψ(P )ψ(Q).

Bijective transformations on the set of all rank-1 projections on a Hilbert space of
any dimension with the above property (2.11) are said to preserve the transition
probability and they play important role in the mathematical foundations of quantum
mechanics. In fact, there they are usually called quantum mechanical symmetry
transformations. A fundamental theorem of Wigner describes the structure of all
those maps. For the present case it says that the transformation ψ is of the form

(2.12) ψ(P ) = UPU∗ (P ∈ P1(H))

with some unitary or antiunitary operator U on H . For Wigner’s theorem and some
of its generalizations we refer, e.g., the book [1] (p. 12 in the Introduction and Section
2.1). ¿From (2.12) it follows that

φ(I + P ) = U(I + P )U∗ (P ∈ P1(H)).

Define the map φ̃ by

φ̃(A) = U∗φ(A)U (A ∈ B(H)+−1).

It is clear that φ̃ : B(H)+−1 → B(H)+−1 is a surjective Thompson isometry with the
additional property that φ̃(I + P ) = I + P (P ∈ P1(H)). Clearly, φ̃ has all the
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preserver properties that are possessed by φ, in particular it satisfies (2.2), (2.3),
(2.9) and (2.10).

Pick any P ∈ P1(H). By the commutativity preserving property of φ̃ and the
equality

φ̃(2P + P⊥) = 2P + P⊥

we obtain the following: For any pair of positive real numbers λ, µ we have positive
real numbers α, β such that

φ̃(λP + µP⊥) = αP + βP⊥.

Let T = λP + µP⊥. We compute on the one hand

tr(I + P )T (I + P ) = tr φ̃((I + P )T (I + P )) = tr φ̃(I + P )φ̃(T )φ̃(I + P ) =

tr(I + P )φ̃(T )(I + P ) = tr φ̃(T ) + 3 tr φ̃(T )P = trT + 3α,

and on the other hand

tr(I + P )T (I + P ) = trT + 3 trTP = trT + 3λ.

This gives us that α = λ and next that β = µ. Consequently, we obtain that φ̃(A) = A

(A ∈ B(H)+−1). Transforming back first to φ and then to Φ and having in mind how
we have reached the assumption Φ(I) = I, we deduce that our original transformation
Φ is necessarily of one of the forms appearing in the statement of Theorem 1.1.

Turning to the proof of our second statement, just as in [3] we denote by A the
set of all positive scalar multiples of the invertible positive operator A ∈ B(H). As
noted in the introduction, we have

A = {B ∈ B(H)+−1 : dH(A,B) = 0} (A ∈ B(H)+−1).

Now the proof of Theorem 1.2 is as follows.

Proof. We know from the introduction of [3] that the Hilbert projective metric
can be calculated in the following way:

(2.13) dH(A,B) = diam log σ(A− 1
2BA− 1

2 ) (A,B ∈ B(H)+−1).

Similarly to the proof of our first result we see that the map

A �→ Φ(I)−1/2Φ(A)Φ(I)−1/2 (A ∈ B(H)+−1)
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is a surjective isometry of B(H)+−1 corresponding to the Hilbert projective metric
which has the additional property that it sends I to I. Therefore, we may and do
assume that already Φ has this property, i.e., Φ(I) = I. Then in the same way as in
the proof of [3, Theorem 2] one can deduce that

(2.14) Φ(ABA) = Φ(A)Φ(B)Φ(A) (A,B ∈ B(H)+−1).

Again, as in the proof of [3, Theorem 2] this yields that Φ preserves the commutativity,
i.e., we have

AB = BA ⇐⇒ Φ(A)Φ(B) = Φ(B)Φ(A) (A,B ∈ B(H)+−1).

Let now P ∈ P1(H) be fixed. In a similar way as in the proof of Theorem 1.1,
we infer that there is a projection P̃ ∈ P1(H) such that for any numbers λ, µ > 0, we
have positive scalars λ̃, µ̃ for which

Φ(λP + µP⊥) = λ̃P̃ + µ̃P̃⊥.

Consequently, there exist functions f, g :]0,∞[→]0,∞[ such that

(2.15) Φ(λP + P⊥) = f(λ)P̃ + g(λ)P̃⊥ (λ > 0).

Let λ, µ > 0. Using the isometric property of Φ for A = λP +P⊥ and B = µP +P⊥,
and applying (2.13), (2.15) we obtain

∣∣∣log µ
λ

∣∣∣ = ∣∣∣∣log f(µ)f(λ)
− log g(µ)

g(λ)

∣∣∣∣ .
Define h = f/g. We infer that

| logµ− logλ| = | log h(µ)− log h(λ)| (λ, µ > 0).

Since h(1) = 1, just as in the proof of Theorem 1.1 we can infer that either

h(λ) = λ (λ > 0)

or

h(λ) =
1
λ

(λ > 0).

In the first case we compute

Φ(λP + µP⊥) = Φ(λP + µP⊥) = Φ((λ/µ)P + P⊥) =

Φ((λ/µ)P + P⊥) = (λ/µ)P̃ + P̃⊥ = λP̃ + µP̃⊥
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while in the second case we have

Φ(λP + µP⊥) = Φ(λP + µP⊥) = Φ((λ/µ)P + P⊥) =

Φ((λ/µ)P + P⊥) = (µ/λ)P̃ + P̃⊥ = µP̃ + λP̃⊥

for any scalars λ, µ > 0. Therefore, in either case there is a projection P̂ ∈ P1(H)
such that

(2.16) Φ(λP + µP⊥) = λP̂ + µP̂⊥

holds for all λ, µ > 0. It now easily follows that

(2.17)
maxσ(Φ(A))
min σ(Φ(A))

=
maxσ(A)
minσ(A)

holds for every A ∈ B(H)+−1. We also infer that to the given rank-one projection P
there corresponds a projection ψ(P ) ∈ P1(H) such that

Φ(I + P ) = I + ψ(P ).

It is clear that ψ(P ) is uniquely determined by this equality.

Now pick two arbitrary rank-one projections P,Q ∈ P1(H). Define

S = (I + P )(I +Q)(I + P ), T = (I + ψ(P ))(I + ψ(Q))(I + ψ(P )).

It follows from (2.14) that Φ(S) = T . By (2.17) this implies that

(2.18)
maxσ(S)
min σ(S)

=
maxσ(T )
minσ(T )

.

It is apparent that

(2.19) trS = 6 + 3 trPQ, trT = 6 + 3 trψ(P )ψ(Q)

and

(2.20) detS = detT = 8.

By (2.20) we have

maxσ(S)
min σ(S)

=
(maxσ(S))2

8
,
maxσ(T )
min σ(T )

=
(maxσ(T ))2

8

and these together with (2.18) yield that maxσ(S) = maxσ(T ). We next obtain that
minσ(S) = minσ(T ), thus trS = trT . By (2.19) this implies that

trψ(P )ψ(Q) = trPQ.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 79-89, February 2010



ELA

Thompson Isometries on Positive Operators 89

Since P and Q were arbitrary, this means that the map ψ : P1(H)→ P1(H) preserves
the transition probability. It can easily be seen that ψ is in fact a bijection of P1(H),
and by Wigner’s theorem, we obtain that there is either a unitary or an antiunitary
operator U on H such that

ψ(P ) = UPU∗ (P ∈ P1(H)).

We then infer

Φ(2P + P⊥) = I + ψ(P ) = 2UPU∗ + (UPU∗)⊥ (P ∈ P1(H)).

Taking (2.16) into consideration, it is easy to verify that P̂ = UPU∗ and hence

Φ(λP + µP⊥) = λUPU∗ + µ(UPU∗)⊥

holds for all scalars λ, µ > 0 and projection P ∈ P1(H). This clearly yields

Φ(A) = UAU∗ (A ∈ B(H)+−1).

Having in mind the definition of the classesA (A ∈ B(H)+−1) and the reduction Φ(I) =
I which we have employed in the proof, we obtain the statement of Theorem 1.2.
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