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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS MATRIX

PRODUCTS∗
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Abstract. This article presents an attempt to extend the CSR decomposition, previously introduced for tropical matrix

powers, to tropical inhomogeneous matrix products. The CSR terms for inhomogeneous matrix products are introduced, and

then, a case is described where an inhomogeneous product admits such CSR decomposition after some length and a bound on

this length is given. In the last part of the paper, a number of counterexamples are presented to show that inhomogeneous

products do not admit CSR decomposition under more general conditions.
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1. Introduction. Tropical (max-plus) linear algebra is the linear algebra developed over the set

Rmax = R∪ {−∞} equipped with the additive operator ⊕ : a⊕ b = max(a, b) and the multiplicative operator

⊗ : a⊗ b = a+ b. For brevity, we denote ε = −∞: this element of the semiring is neutral with respect to

addition, thus playing the role of semiring zero. In turn, the usual zero 0 plays the role of semiring unity,

being neutral with respect to multiplication. Note that for any a ∈ R, there is a multiplicative inverse:

element a− = a such that a− ⊗ a = a⊗ a− = 0.

We will be working with the max-plus multiplication of matrices A⊗B defined by the operation

(A⊗B)i,j =
⊕

1≤k≤n

ai,k ⊗ bk,j = max
1≤k≤n

(ai,k + bk,j),

using two matrices A = (ai,j) and B = (bi,j) of appropriate sizes.

Consider the tropical dynamical system given by

x(0) = x0,

x(k) = x(k − 1)⊗Ak for k ≥ 1,

thus x(k) = x0 ⊗A1 ⊗ . . .⊗Ak = x0 ⊗ Γ(k).

Here, the matrices Ai are taken in some unspecified order from a possibly infinite set of matrices X . In

practical terms, this represents a dynamical system where some accidental changes may occur over time.

This has useful applications in modelling scheduling systems that are subject to change.

Much work has been done for the case where the matrix Ai is the same at each step. Cohen et al. [8, 7]

were the first to observe that, under some mild conditions, the tropical powers {At}t≥1 become periodic
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after a big enough time. A number of bounds on the transient of such periodicity were then obtained, in

particular, by Hartmann and Arguelles [9], Akian et al. [2], and Merlet et al. [17, 16]. In particular, Merlet et

al. [17] offer an approach based on the CSR decompositions and CSR expansions of tropical matrix powers

introduced by Sergeev and Schneider [20, 22]. Let us note that a preliminary version of such decompositions

was introduced and studied before by Nachtigall [19] and Molnárová [18], and that similar decompositions

appear in Akian et al. [2].

It is difficult to speak of ultimate periodicity in the case of inhomogeneous products. However, one can

observe that CSR decompositions are an algebraic expression of turnpike phenomena occurring in tropical

dynamical systems driven by one matrix. Namely, they express the fact that in such systems there are optimal

trajectories (or walks) with a special structure: after a finite number of steps, they arrive to a well-defined

group of nodes called critical nodes, then dwell within that group of nodes, and then use a finite number

of steps to reach the destination. The same phenomena will likely occur in inhomogeneous products as

well, but only under certain restrictive conditions. In particular, we can agree that all matrices constituting

these inhomogeneous products have the same sets of critical nodes, and for a starter, we can consider the

case where all these matrices have just one critical node. Under this and some other assumptions, Shue et

al. [24] found that products Γ(k) become tropical rank-1 matrices (i.e., tropical outer products) when k is

sufficiently big. Kennedy-Cochran-Patrick et al. [13] improved this result by giving a lower bound for k to

guarantee that Γ(k) becomes a rank-1 matrix (i.e., a tropical outer product). In the present paper, we show

that the above results of [13, 24] can be generalised further by introducing the factor rank transient: the

length of the product after which the product is guaranteed to have a tropical factor rank not exceeding

certain number. Rather than directly proving the factor rank property from an inhomogeneous product, a

CSR analogue is used, which changes the aim to develop bounds on CSR transients rather than factor rank

transients. Upon showing that the analogue definition of CSR exhibits similar properties to the original

CSR (see the paper by Sergeev and Schneider [22]), then we can use similar proof methods and results from

Merlet, Nowak, Schneider, and Sergeev [16] as well as Brualdi and Ryser [5] to develop the key result, which

is Theorem 5.8, together with Corollary 5.9, which gives an explicit bound on the length of the product after

which it becomes CSR. However, there are limitations to this approach, namely where it can be shown for

other cases that no bound exists for the CSR transient, and then, we cannot guarantee a factor rank property.

Three cases where CSR does not work are given along with the counterexamples that demonstrate this. In

all these counterexamples, we present families of words of infinite length, in which the product made using

such a word is not CSR.

Recall that tropical factor rank of a matrix A, studied together with many other concepts of rank in

Akian et al. [1], can be defined as follows: for a matrix A ∈ Rn×m
max , the tropical factor rank r of A is the

smallest r ∈ N such that A = U ⊗ L where U ∈ Rn×r
max and L ∈ Rr×m

max for some n,m ∈ N. Note that the

factor rank of A is also equal to the minimum number of factor rank-1 matrices whose sum is equal to A,

see [1][Definition 7.1].

For wider reading, Hook [11] shows that, by approximating the rank of the product in a min-plus setting,

one can find and express the predominant structure in the associated digraph of the matrices forming the

product. Hook has also looked at turnpike theory with respect to the max-plus linear systems in [12]. In this

paper, he studies infinite length products and then uses a turnpike property to develop a factorisation of

said matrix product. In terms of turnpikes, many results were obtained for them in the context of dynamic

programming, in both discrete and continuous settings. Specifically, Kontorer and Yakovenko [15] used

turnpike theory and Bellman equations to work with discrete optimal control problems. Following his work,

Kolokoltsov and Maslov [14] developed turnpike theory for discrete optimal control problems in the context

of idempotent analysis and tropical mathematics.
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The paper will proceed as follows. In Section 2, we will cover the necessary definitions and notation,

and in Section 3, we will introduce the CSR decomposition for tropical inhomogeneous matrix products.

In Section 4, we mostly generalise some important preliminary results obtained previously [13] for the

case where the critical graph consists of just one loop. In Section 5, we describe the case in which the

introduced CSR decomposition actually works and, for this case, obtain a bound on the factor rank threshold

of inhomogeneous tropical matrix products. For Section 6, we look at the counterexamples that show the

limitations of the proposed CSR approach.

2. Definitions and notation.

2.1. Weighted digraphs and tropical matrices. This subsection presents some concepts and notation

expressing the connection between tropical matrices and weighted digraphs. Monographs [6, 10] are our basic

references for such definitions.

Definition 2.1 (Weighted digraphs). A directed graph (digraph) is a pair (N,E) where N is a finite

set of nodes and E ⊆ N ×N = {(i, j) : i, j ∈ N} is the set of edges, where (i, j) is a directed edge from node

i to node j.

A weighted digraph is a digraph with associated weights wi,j ∈ Rmax for each edge (i, j) in the digraph.

A digraph associated with a square matrix A is a weighted digraph D(A) = (NA, EA) where the set NA

has the same number of elements as the number of rows or columns in the matrix A. The set EA ⊆ NA ×NA

is the set of edges in D(A), where (i, j) is an edge if and only if ai,j ≠ ε, and in this case, the weight of (i, j)

equals the corresponding entry in the matrix A, i. e. wi,j = ai,j ∈ Rmax.

Definition 2.2 (Walks, paths and weights). A sequence of nodes W = (i0, . . . , il) is called a walk on

a weighted digraph D = (N,E) if (is−1, is) ∈ E for each s : 1 ≤ s ≤ l. This walk is a cycle if the start node

i0 and the end node il are the same. It is a path if no two nodes in i0, . . . , il are the same. The length of W

is l(W ) = l.

The weight of W is defined as the max-plus product (i. e., the usual arithmetic sum) of the weights of each

edge (is−1, is) traversed throughout the walk, and it is denoted by pD(W ). Note that a sequence W = (i0) is

also a walk (without edges), and we assume that it has weight and length 0.

The mean weight of W is defined as the ratio pD(W )/l(W ).

For a digraph, being strongly connected is a particularly useful property.

Definition 2.3 (Strongly connected, irreducible, completely reducible). A digraph is strongly connected,

if for any two nodes i and j there exists a walk connecting i to j. A square matrix is irreducible if the graph

associated with it in the sense of Definition 2.1 is strongly connected.

A digraph is called completely reducible, if it consists of a number of strongly connected components,

such that no two nodes of any two different components can be connected to each other by a walk.

Note that, trivially, any strongly connected digraph is completely reducible.

The following more refined notions are crucial in the study of ultimate periodicity of tropical matrix

powers, and also for the present paper.

Definition 2.4 (Cyclicity and cyclic classes). Suppose that a digraph is completely reducible. Then,

the cyclicity of that digraph is the lowest common multiple of the greatest common divisors of the lengths of

cycles within each strongly connected component. It will be denoted by γ.
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Suppose now that a digraph with set of nodes N and cyclicity γ is strongly connected. For two nodes

i, j ∈ N we say that i and j are in the same cyclic class if there exists a walk of length modulo γ connecting i

to j or j to i. This splits the set of nodes into γ cyclic classes: C0, . . . , Cγ−1. The notation Cl →k Cm means

that some (and hence all) walks connecting nodes of Cl to nodes of Cm have lengths congruent to k modulo γ.

The cyclic class containing i will be also denoted by [i].

The correctness of the above definition of cyclic classes follows, for example, from [5, Lemma 3.4.1]: in

fact, every walk from i to j on D has the same length modulo γ.

In tropical algebra, we often have to deal with two digraphs: 1) the digraph associated with A and 2) the

critical digraph of A. The latter digraph (being a subdigraph of the first) is defined below.

Definition 2.5 (Maximum cycle mean and critical digraph). For a square matrix A, the maximum

cycle mean of D(A) denoted as λ(A) (equivalently, the maximum cycle mean of A) is the biggest mean weight

of all cycles of D(A).

A cycle in D(A) is called critical if its mean weight is equal to the maximum cycle mean (i.e., is maximal).

The critical digraph of A, denoted by C(A), is the subdigraph of D(A) whose node set Nc and edge set Ec
consist of all nodes and edges that belong to the critical cycles (i.e., that are critical).

Note that any critical digraph is completely reducible. As shown already in [8, 7], the cyclicity of critical

digraph of A is the ultimate period of the tropical matrix powers sequence {At}t≥1, provided that A is

irreducible and λ(A) = 0. See also Butkovič [6] and Sergeev [20] for more detailed analysis of the ultimate

periodicity of this sequence.

Below we will use notation for walk sets and their maximal weights that is similar to that of Mer-

let et al. [17].

Definition 2.6 (Sets of walks). Let D = (N,E) be a weighted digraph and let i, j ∈ N . The three sets

WD(i → j), Wk
D(i → j) and WD(i

N−→ j), where N ⊆ N is a subset of nodes, are defined as follows:

WD(i → j) is the set of walks over D connecting i to j;

Wk
D(i → j) is the set of walks over D of length k connecting i to j;

WD(i
N−→ j) is the set of walks over D connecting i to j that traverse at least one node of N .

The supremum of the weights of walks in these sets will be denoted by p(W).

2.2. Main assumptions. In this subsection, we set out the main assumptions about X and the matrices

Aα that are drawn from this set and give some relevant definitions.

Definition 2.7 (Geometrical equivalence). Let the matrices A and B have their respective digraphs

D(A) = (NA, EA) and D(B) = (NB , EB). We say that A and B are weakly geometrically equivalent if

NA = NB and EA = EB, and they are strongly geometrically equivalent if they are weakly geometrically

equivalent and C(A) = C(B).

We cannot assume that the maximum cycle mean of each Aα ∈ X is zero therefore we normalise each

matrix to give the new set of matrices Y, where

Y = {A′
α : A′

α = λ−(Aα)⊗Aα ∀Aα ∈ X}.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 820-851, December 2022.

A. Kennedy-Cochran-Patrick and S. Sergeev 824

Here, λ−(Aα) = −λ(Aα). From Assumption A stated below, it follows that λ(Aα) ∈ R; thus, the inverse

λ−(Aα) is well-defined.

Notation 2.8 (Asup and Ainf).

Asup: entrywise supremum of all matrices in Y. In formula, Asup =
⊕

α : Aα∈Y Aα.

Ainf : entrywise infimum of all matrices in Y.

Note that the concept of Asup has been used before for various purposes. In [4], Gursoy, Mason and

Sergeev use the same definition to develop a common subeigenvector for the entire semigroup of matrices used

to create Asup, which is a technique we will use later on. In [3], Gursoy and Mason use Asup, and λ(Asup) to

develop bounds for the max-eigenvalues over a set of matrices.

We now state the main assumptions to be used in the paper.

Assumption A. Any matrix Aα ∈ X is irreducible.

Assumption B. Any two matrices Aα, Aβ ∈ X are strongly geometrically equivalent to each other and

to Asup, which has all entries in Rmax.

The following notation is defined under assumptions A and B.
Notation 2.9. The common associated digraph of the matrices from X will be denoted by D(X ) = (N,E),

and the common critical digraph by C(X ) = (Nc, Ec). In general, this critical digraph has m ≥ 1 strongly

connected components, denoted by Cν , for ν = 1, . . . ,m.

Assumption C. Any matrix Aα ∈ X is weakly geometrically equivalent to Ainf . In other words, for each

(i, j) ∈ E, we have (Ainf)ij ̸= −∞.

Assumption D1. For the matrix Asup, we have λ(Asup) = 0.

The first three assumptions come from the previous works by Shue et al. [24] and Kennedy-Cochran-

Patrick et al. [13]; however, we will no longer assume that the critical graph consists just of one loop.

The final assumption below is inspired by the visualisation scaling studied in Sergeev et al [23], see

also [21] and references therein for more background on this scaling.

Definition 2.10 (Visualisation). Matrix B is called a visualisation of A if there exists a diagonal matrix

X = diag(x), with entries Xii = xi on the diagonal and Xij = ε off the diagonal (i.e., if i ̸= j), such that

B = X−1AX and B satisfies the following conditions: Bij = λ(B) for (i, j) ∈ Ec(B) and Bij ≤ λ(B) for

(i, j) /∈ Ec(B).

Once λ(A) ̸= ε, a visualisation of A always exists, and, moreover, vectors x providing a visualisation

by means of diagonal matrix scaling A 7→ X−1AX are precisely the tropical subeigenvectors of A, that is,

vectors satisfying Ax ≤ λ(A)x. Using this information, we have the following lemma.

Lemma 2.11. Suppose that the vector x satisfies Asupx ≤ x. Then, x provides a simultaneous visualisation

for all matrices of X (and Y).

Proof. Let x be the vector that satisfies Asupx ≤ x. By construction, Asup is the supremum matrix of

all the normalised generators in X . Therefore for these normalised generators Aα, Aα ≤ Asup. Hence, the

vector x also satisfies Aαx ≤ x, and it can be used to visualise Aα. As this applies for all α, then they can
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be simultaneously visualised. As Y is the set of normalised matrices from X , then the same applies to any

matrix from Y as well.

This is referred to as the set of matrices having a common visualisation, therefore, in what follows we

assume that we have performed this common visualisation on all of the matrices in X (and Y) to give the

final core assumption.

Assumption D2. For all Aα ∈ Y, we have (Aα)ij = 0 and (Asup)ij = 0 for (i, j) ∈ Ec, and (Aα)ij ≤ 0

and (Asup)ij ≤ 0 for (i, j) /∈ Ec.

From now on, we will use Assumption D2 instead of Assumption D1. Note however, if the theory

developed in this paper is applied to a set of matrices satisfying Assumption D1, then the parameters

appearing in the bounds are computed using the entries of their visualised counterparts.

2.3. Extension to inhomogeneous products. Recall now that we have a set of matrices Y, from
which we can select matrices in arbitrary sequence.

Definition 2.12. The word associated with the matrix product Γ(k) is the string of characters (subscript)

i from Ai ∈ Y that make up said Γ(k).

Let us also introduce the trellis digraph associated with a matrix product Γ(k) = A1 ⊗A2 ⊗ . . .⊗Ak (as

in [13], inspired by Viterbi algorithm).

Definition 2.13. The trellis digraph T (P ) = (N , E) associated with the product Γ(k) = A1⊗A2⊗. . .⊗Ak

made from the word P is the digraph with the set of nodes N and the set of edges E, where:

(1) N consists of k+1 copies of N which are denoted N0, . . . , Nk, and the nodes in Nl for each 0 ≤ l ≤ k

are denoted by 1 : l, . . . , n : l;

(2) E is defined by the following rules:

a) there are edges only between Nl and Nl+1 for each l,

b) we have (i : (l− 1), j : l) ∈ E if and only if (i, j) is an edge of D(Y), and the weight of that edge

is (Al)i,j.

The weight of a walk W on T (P ) is denoted by pT (W ).

Below we will need to use (1) walks that start at one side of the trellis and end at an intermediate node,

(2) walks that start at an intermediate node and end at the other side of the trellis, (3) walks that connect

one side of the trellis to the other. More formally, we give the following definition.

Definition 2.14. Consider a trellis digraph T (P ).

By an initial walk connecting i to j on T (P ), we mean a walk on T (P ) connecting node i : 0 to j : m,

where 0 ≤ m ≤ k.

By a final walk connecting i to j on T (P ), we mean a walk on T (P ) connecting node i : l to j : k, where

0 ≤ l ≤ k.

A full walk connecting i to j on T (P ) is a walk on T (P ) connecting node i : 0 to j : k.

We will mostly work with the following sets of walks on T .
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Notation 2.15 (Walk sets on T (P )).

Wk
T ,full(i → j), W l

T ,init(i → j) and W l
T ,final(i → j) : set of full walks (of length k), and sets of initial

and final walks of length l on T connecting i to j.

Wk
T ,full(i

Nc−−→ j), W l
T ,init(i

Nc−−→ j) and W l
T ,final(i

Nc−−→ j) : set of full walks (of length k), and sets of

initial and final walks of length l on T traversing a critical node and connecting i to j;

WT ,init(i → Nc∥): set of initial walks connecting i to a node in Nc so that this node of Nc is the

only node of Nc that is visited by the walk and it is visited only once;

WT ,final(∥Nc → j): set of final walks connecting a node in Nc to j so that this node of Nc is the only

node of Nc that is visited by the walk and it is visited only once.

i →T j : this denotes the situation where i : 0 can be connected to j : k on T by a full walk.

Recall that p(W) denotes the optimal weight of a walk in a set of walks W . The optimal walk interpretation

of entries of Γ(k) in terms of walks on T = T (P ) is now apparent:

(2.1) Γ(k)i,j = p
(
Wk

T ,full(i → j)
)
.

We will also need special notation for the optimal weights of walks in the sets WT ,init(i → Nc∥) and
WT ,final(∥Nc → j) introduced above.

Notation 2.16 (Optimal weights of walks on T (P )).

w∗
i,Nc

= p(WT ,init(i → Nc∥)) : the maximal weight of walks in WT ,init(i → Nc∥),
v∗Nc,j

= p(WT ,final(∥Nc → j)) : the maximal weight of walks in WT ,final(∥Nc → j).

The following notation is for optimal values of various optimisation problems involving paths and walks

on D(Asup), D(Ainf), which will be used in our factor rank bounds.

Notation 2.17 (Optimal weights of walks on D(Asup) and D(Ainf)).

αi,Nc : the weight of an optimal path on D(Asup) connecting node i to a node in Nc;

βNc,j : the weight of an optimal path on D(Asup) connecting a node in Nc to node j;

γi,j : the weight of an optimal path on D(Asup) connecting node i to node j without traversing any

node in Nc.

wi,Nc : the weight of an optimal path on D(Ainf) connecting node i to a node in Nc;

vNc,j : the weight of an optimal path on D(Ainf) connecting a node in Nc to node j;

uk
i,j : the weight of an optimal walk on D(Ainf) of length k connecting node i to node j.

We remark by saying that the Kleene star, which is explored in [6] and is defined as (A)∗ = I⊕A⊕A2⊕. . .,

of Asup can be used to find the values of αi,Nc
and βNc,j . Similarly, the Kleene star of Ainf can be used to

find wi,Nc
and vNc,j . Let us end this section with the following observation, which follows from the geometric

equivalence (Assumptions B and C)

Lemma 2.18. The following are equivalent: (i) i →T j; (ii) (Γ(k))i,j > ε; (iii) uk
i,j > ε.

3. CSR products. In this section, we introduce CSR decomposition of inhomogeneous products and

study its properties. It should be noted that in this section, we will use Assumptions A, B and D2 for

every proof presented. We will give the two definitions of the CSR decomposition of Γ(k) and prove their

equivalence. However in order to do that we require another definition.
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Definition 3.1. Let the matrix A have cyclicity γ. The threshold of ultimate periodicity of powers of

A is a bound T (A) such that ∀k ≥ T (A), Ak = Ak+γ .

This threshold is required to develop the CSR decomposition for Γ(k) as seen in the following definitions.

Definition 3.2 (CSR-1). Let Γ(k) = A1 ⊗ . . . ⊗ Ak be a matrix product of length k made using the

word P . Define C, S and R as follows:

S is the matrix associated with the critical graph, that is,

(3.1) S = (si,j) =

{
0 if (i, j) ∈ Ec
ε otherwise.

Let γ be the cyclicity of critical graph and t be a big enough number, such that tγ ≥ T (S), where

T (S) is the threshold of ultimate periodicity of (the powers of) S.

C and R are defined by the following formulae:

C = Γ(k)⊗ S(t+1)γ−k(mod γ), R = S(t+1)γ−k(mod γ) ⊗ Γ(k).

The product of C, Sk(mod γ) and R will be denoted by CSk(mod γ)R[Γ(k)]. We say that Γ(k) is CSR

if CSk(mod γ)R[Γ(k)] is equal to Γ(k).

For completeness, we must also state that for any matrix in A ∈ Rn×n
max , A

0 = I, where I is the tropical

identity matrix, that is, I = diag(0). In the next definition, we prefer to define CSR terms corresponding to

the components of the critical graph.

Definition 3.3 (CSR-2). Let Γ(k) = A1 ⊗ . . .⊗ Ak be a matrix product of length k, and let Cν , for

ν = 1, . . . ,m be the components of C(Y). For each ν = 1, . . . ,m define Cν , Sν and Rν as follows:

Sν ∈ Rn×n
max is the matrix associated with the s.c.c. Cν of the critical graph, that is,

(3.2) Sν = (si,j) =

{
0 if (i, j) ∈ Cν ,

ε otherwise.

Let γν be the cyclicity of critical component, and tν be a big enough number, such that tνγν ≥ T (Sν),

where T (Sν) is the threshold of ultimate periodicity of (the powers of) Sν .

Cν and Rν are defined by the following formulae:

Cν = Γ(k)⊗ S(tν+1)γν−k(mod γν)
ν , Rν = S(tν+1)γν−k(mod γν)

ν ⊗ Γ(k).

The product of Cν , S
k(mod γν)
ν and Rν will be denoted by CνS

k(mod γν)
ν Rν [Γ(k)]. We say that Γ(k) is

CSR if

Γ(k) =

m⊕
ν=1

CνS
k(mod γν)
ν Rν [Γ(k)].

Using the definitions given above, we can write out the CSR terms more explicitly:

CSk(mod γ)R[Γ(k)] = Γ(k)⊗ S(t+1)γ−k(mod γ) ⊗ Sk(mod γ) ⊗ S(t+1)γ−k(mod γ) ⊗ Γ(k)

= Γ(k)⊗ S2(t+1)γ−k(mod γ) ⊗ Γ(k),

CνS
k(mod γν)
ν Rν [Γ(k)] = Γ(k)⊗ S2(tν+1)γν−k(mod γν)

ν ⊗ Γ(k),
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Since the powers of S are ultimately periodic with period γ and the powers of Sν are ultimately periodic

with period γν , and since also we have tγ ≥ T (S) and tνγν ≥ T (Sν), we can reduce the exponents of S and

Sν to (t+ 1)γ − k(mod γ) and (tν + 1)γν − k(mod γν), respectively, and thus

CSk(mod γ)R[Γ(k)] = Γ(k)⊗ Sv ⊗ Γ(k), CνS
k(mod γν)
ν Rν [Γ(k)] = Γ(k)⊗ Svν

ν ⊗ Γ(k),

for v = (t+ 1)γ − k(mod γ), vν = (tν + 1)γν − k(mod γν), tγ ≥ T (S), tνγν ≥ T (Sν).
(3.3)

Below we will also need the following elementary observation.

Lemma 3.4. Let v = (t+ 1)γ − k(mod γ), where tγ ≥ T (S). Then, for any ν, we can find tν such that

v = (tν + 1)γν − k(mod γν) and tνγν ≥ T (Sν).

Proof. The existence of tν such that v = (tν + 1)γν − k(mod γν) follows since γ is a multiple of γν , and

then we also have tνγν ≥ tγ ≥ T (S) ≥ T (Sν).

This lemma allows us to also write

(3.4) CνS
k(mod γν)
ν Rν [Γ(k)] = Γ(k)⊗ Sv

ν ⊗ Γ(k),

with v as in (3.3).

Proposition 3.5. Γ(k) is CSR by Definition 3.2 if and only if it is CSR by Definition 3.3.

Proof. We need to show that

(3.5) CSk(mod γ)R[Γ(k)] =

m⊕
ν=1

CνS
k(mod γν)
ν Rν [Γ(k)],

for arbitrary k. Using (3.3) and (3.4), we can rewrite this equivalently as

(3.6) Γ(k)⊗ S(t+1)γ−k(mod γ) ⊗ Γ(k) = Γ(k)⊗

(
m⊕

ν=1

S(t+1)γ−k(mod γ)
ν

)
⊗ Γ(k),

with tγ ≥ T (S). To obtain this equality, observe that S =
⊕m

ν=1 Sν , and as Sν1
⊗ Sν2

= −∞ for any ν1 and

ν2 we can raise both sides to the same power to give us St =
⊕m

ν=1 S
t
ν for any t. This shows (3.6), and the

claim follows.

For a similar reason, we also have the following identities:

C =

m⊕
ν=1

Cν , R =

m⊕
ν=1

Rν ,

C ⊗ Sk(mod γ) =

m⊕
ν=1

Cν ⊗ Sk(mod γν)
ν , Sk(mod γ) ⊗R =

m⊕
ν=1

Sk(mod γν)
ν ⊗Rν .

(3.7)

To give an optimal walk interpretation of CSR, we will need to define the trellis graph corresponding to

these terms, by modifying Definition 2.13.

Definition 3.6 (Symmetric extension of the trellis graph). Let v = (t+ 1)γ − k(mod γ), where t is a

large enough number such that tγ ≥ T (S).

Define T ′(Γ(k)) as the digraph T ′ = (N ′, E ′) with the set of nodes N ′ and edges E ′, such that:
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(1) N ′ consists of 2k+ v+1 copies of N which are denoted N0, . . . , N2k+v and the nodes for Nl for each

0 ≤ l ≤ 2k + v are denoted by 1 : l, . . . , n : l;

(2) E ′ is defined by the following rules:

a) there are edges only between Nl and Nl+1,

b) for 1 ≤ l ≤ k, we have (i : l − 1, j : l) ∈ E ′ if and only if (i, j) ∈ E(Y), and the weight of the

edge is (Al)i,j,

c) for k + v + 1 ≤ l ≤ 2k + v, we have (i : l − 1, j : l) ∈ E ′ if and only if (i, j) ∈ E(Y), and the

weight of the edge is (Al−k−v)i,j,

d) for k < l < k + v + 1, we have (i : l − 1, j : l) ∈ E ′ if and only if (i, j) ∈ C(Y), and the weight

of the edge is 0.

The weight of a walk on T ′(Γ(k)) is denoted by pT ′(W ).

If we consider the walks in W2k+v
T ′,full(i → j) then, in the middle of the walk for l satisfying k < l < k + v + 1,

the walk is confined in one of the components of C(Y). The set of walks confined in the νth component

of C(Y) in the middle of the walk for l satisfying k < l < k + v + 1 is denoted by W2k+v
T ′,full(i

[Nν
c ]−−−→ j). The

following optimal walk interpretation of CSR terms on T ′ is now obvious.

Lemma 3.7 (CSR and optimal walks). The following identities hold for all i, j

(CSk(mod γ)R[Γ(k)])i,j = p
(
W2k+v

T ′,full(i → j)
)
,

(CνS
k(mod γν)
ν Rν [Γ(k)])i,j = p

(
W2k+v

T ′,full(i
[Nν

c ]−−−→ j)

)
,

(3.8)

where v = (t+ 1)γ − k(mod γ), with tγ ≥ T (S).

Proof. With (3.3), the first identity follows from the optimal walk interpretation of Γ(k)⊗ Sv ⊗ Γ(k),

and the second identity follows from (3.4) and the optimal walk interpretation of Γ(k)⊗ Sv
ν ⊗ Γ(k).

In what follows, we mostly work with Definition 3.3, but we can switch between the equivalent definitions

if we find it convenient.

We now present a useful lemma that shows equality for columns of Cν and rows of Rν with indices in

the same cyclic class.

Lemma 3.8. For any i and for any two nodes x and y in the same cyclic class of the critical component

Cν we have

(3.9) (Cν)i,x = (Cν)i,y and (Rν)x,i = (Rν)y,i.

Proof. We prove the lemma for columns, as the case of the rows is similar.

For any i, x, denote (Cν)i,x by ci,x. From the definition of Cν , it follows that ci,x is the weight of

an optimal walk in Wk+(tν+1)γν−k(mod γν)
T ′,init (i

Nν
c−−→ x) where tνγν ≥ T (Sν), and such walk consists of two

parts. The first part is a full walk on T connecting i to the critical subgraph at some node s. The second

part is a walk over the critical subgraph of length (tν + 1)γν − k(mod γν) connecting s to x with weight

zero. As the length of the second walk is greater than T (Sν), a walk connecting s to x exists if and only

if [s] →−k(mod γν) [x]. If a full walk connecting i to [s] on T exists then, for arbitrary x, y in the same

cyclic class, ci,x and ci,y are both equal to the optimal weight of all walks connecting i to [s] on T , where

[s] →−k(mod γν) [x], otherwise both ci,x and ci,y are equal to −∞. This shows that ci,x = ci,y.
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The case of rows of Rν is considered similarly, but instead of initial walks one has to use final walks on

T ′.

We can use this to prove the same property for C and R of Definition 3.2.

Corollary 3.9. For any i and for any two nodes x and y in the same critical component and the same

cyclic class of said critical component, we have

(3.10) Ci,x = Ci,y and Rx,i = Ry,i.

Proof. We will prove only the first identity, as the proof of the second identity is similar. Let x, y belong

to the same component Cµ of C(Y) and let them belong to the same cyclic class of that component. By

Lemma 3.8, we have (Cµ)i,x = (Cµ)i,y, and we also have (Cν)i,x = (Cν)i,y = ε for any ν ̸= µ. Using these

identities and (3.7), we have

Ci,x =

(
m⊕

ν=1

Cν

)
i,x

= (Cµ)i,x = (Cµ)i,y =

(
m⊕

ν=1

Cν

)
i,y

= Ci,y.

The next theorem explains why CSR is useful for inhomogeneous products. Note that in the proof of it

we use the CSR structure rather than the Γ(k)⊗ Sv ⊗ Γ(k) representation that was used above.

Theorem 3.10. The factor rank of each CνS
k(mod γν)
ν Rν [Γ(k)] is no more than γν , for ν = 1, . . . ,m,

and the factor rank of CSk(mod γ)R[Γ(k)] is no more than
∑m

ν=1 γν .

Proof. For each ν = 1, . . . ,m, take all the nodes from Gν and order them into cyclic classes Cν
0 , . . . , Cν

γν−1.

Take two columns with indices x, y ∈ Cν
i from the matrix Cν . As they are in the same cyclic class, by

Lemma 3.8 the columns are equal to each other. This means that we can take a column representing a single

node from each cyclic class, and since there are γν distinct classes, then there will be γν distinct columns of

Cν . The same also holds for any two rows of Rν : if the row indices are in the same cyclic class, then the

rows are equal, so that we have γν distinct rows.

Let us now check that the same holds for S
k(mod γν)
ν ⊗Rν . By the construction of S

k(mod γν),
ν we know

that if (S
k(mod γν)
ν )ij ̸= 0 then [i] →k(mod γν) [j]. Therefore,

(Sk(mod γν)
ν ⊗Rν)i,· =

⊕
j∈Nc

(Sk(mod γν)
ν )ij ⊗ (Rν)j,· =

⊕
j : [i]→k(mod γν )[j]

(Sk(mod γν)
ν )ij ⊗ (Rν)j,· = (Rν)j,·.

This means that for a row i such that [i] →k(mod γν) [j], we have (S
k(mod γν)
ν ⊗Rν)i,· = (Rν)j,· and all such

rows of S
k(mod γν)
ν ⊗Rν are equal to each other.

Our next aim is to define, for each ν, matrices C ′
ν and R′

ν with γν rows and γν columns, such that

CνS
k(mod γν)
ν Rν [Γ(k)] = C ′

ν ⊗ R′
ν . To form matrix C ′

ν , we select a node of Cν from each cyclic class

Cν
0 , . . . , Cν

γν−1 and define the column of C ′
ν whose index is the number of this node to be the column of Cν

with the same index. The rest of the columns of C ′
ν are set to −∞. To form matrix R′

ν , we use the same

selected nodes, but this time (instead of taking columns of Cν and making them columns of C ′
ν) we take the

rows from S
k(mod γν)
ν ⊗Rν whose indices are the numbers of selected nodes and make them rows of R′

ν . The

rest of the rows of R′
ν are set to −∞. Since the rows of Cν with indices in the same cyclic class are equal to

each other and the same is true about the rows of S
k(mod γν)
ν ⊗Rν , we have CνS

k(mod γν)
ν Rν [Γ(k)] = C ′

ν ⊗R′
ν ;

thus, the factor rank of any of these terms is no more than γν .
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We next form the matrices C ′ =
⊕m

ν=1 C
′
ν and R′ =

⊕m
ν=1 R

′
ν . Obviously, C ′

ν1
⊗R′

ν2
= −∞ for ν1 ̸= ν2

and therefore

C ′ ⊗R′ =

m⊕
ν=1

C ′
ν ⊗R′

ν =

m⊕
ν=1

CνS
k(mod γν)
ν Rν [Γ(k)] = CSk(mod γ)R[Γ(k)].

Finally, as C ′ and, respectively, R′ have
∑m

ν=1 γν columns with finite entries and, respectively, rows with

finite entries with the same indices, CSk(mod γ)R[Γ(k)] = C ′ ⊗R′ has factor rank at most
∑m

ν=1 γν .

Corollary 3.11. If Γ(k) is CSR, then its rank is no more than
∑m

ν=1 γν .

Let us also prove the following results that are similar to [22, Corollary 3.7].

Proposition 3.12. For each ν = 1, . . . ,m

(Cν ⊗ Sk(mod γν)
ν ⊗Rν)·,j = (Cν ⊗ Sk(mod γν)

ν )·,j for j ∈ N ν
c

(Cν ⊗ Sk(mod γν)
ν ⊗Rν)i,· = (Sk(mod γν)

ν ⊗Rν)i,· for i ∈ N ν
c .

Proof. As the proofs are very similar for both statements, we will only prove the first and omit the proof

for the second statement. We begin by observing that

(Cν ⊗ Sk(mod γν)
ν )i,j = p

(
Wk+tνγν

T ′,init (i → j)
)
,

where we used the definitions of Cν and Sν and the identity S
(tν+1)γν
ν = Stνγν

ν (since tνγν ≥ T (Sν)). Here, it

is convenient to choose tν that satisfies (tν + 1)γν − k(mod γν) = (t + 1)γ − k(mod γ), with t used in the

definition of T ′. With this choice tνγν ≤ tγ.

Using (3.8), all we need to show is that p

(
W2k+v

T ′,full(i
[Nν

c ]−−−→ j)

)
= p

(
Wk+tνγν

T ′,init (i → j)
)
, where v =

(t+ 1)γ − k(mod γ). We will achieve this by proving these two inequalities:

p

(
W2k+v

T ′,full(i
[Nν

c ]−−−→ j)

)
≥ p

(
Wk+tνγν

T ′,init (i → j)
)
,

p

(
W2k+v

T ′,full(i
[Nν

c ]−−−→ j)

)
≤ p

(
Wk+tνγν

T ′,init (i → j)
)
.

(3.11)

To prove the first inequality of (3.11), we first consider Wk+tνγν

T ′,init (i → j′), where j′ ∈ [j]. Optimal walk in

any of these sets can be decomposed into 1) an optimal full walk on T connecting i to a node of [j], and 2)

a walk of weight 0 and length tνγν on Cν connecting that node of [j] to j′, whose existence follows since

tνγν ≥ T (Sν). This decomposition implies that the weights of all these optimal walks are equal. One of them,

denote it by W1 can be concatenated with a walk W2 on Cν of length k − k(mod γν) + γ and ending in j.

We see that p(W1W2) = p(W1) and W1W2 ∈ W2k+v
T ′,full(i

[Nν
c ]−−−→ j).

To prove the second inequality of (3.11), we take a walk in W2k+v
T ′,full(i

[Nν
c ]−−−→ j) and decompose it into (1) a

walk in Wk+tνγν

T ′,init (i → j′), where j′ ∈ [j], (2) a walk in Wk−k(mod γν)+γν

T ′,final (j′ → j). The weight of the first walk

is bounded by p
(
Wk+tνγν

T ′,init (i → j)
)
, and the weight of the second walk is bounded by 0; thus, the second

inequality also holds.
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Corollary 3.13. For CSR as defined in Definition 3.2, we have,

(C ⊗ Sk(mod γ) ⊗R)·,j = (C ⊗ Sk(mod γ))·,j for j ∈ Nc

(C ⊗ Sk(mod γ) ⊗R)i,· = (Sk(mod γ) ⊗R)i,· for i ∈ Nc.

Proof. The proofs for both statements are similar so we will only prove the first one.

Let j ∈ Nc. As all nodes from Nc can be sorted into N ν
c for some ν = 1, . . . ,m, assume without loss of

generality that j ∈ N µ
c .

Taking the right-hand side of the first statement and using (3.7), we have

(C ⊗ Sk(mod γ))·,j =

(
m⊕

ν=1

Cν ⊗ Sk(mod γν)
ν

)
·,j

.

By Definition 3.3, if j ∈ N µ
c then for all ν ̸= µ, (Cν ⊗ S

k(mod γν)
ν )·,j = −∞. Therefore, for every ν,

(Cν ⊗ S
k(mod γν)
ν )·,j will be dominated by (Cµ ⊗ S

k(mod γµ)
µ )·,j . Hence,

(3.12)

(
m⊕

ν=1

Cν ⊗ Sk(mod γν)
ν

)
·,j

= (Cµ ⊗ Sk(mod γµ)
µ )·,j .

Turning our attention to the left-hand side of the first statement, by (3.7) we get

(C ⊗ Sk(mod γ) ⊗R)·,j =

(
m⊕

ν=1

Cν ⊗ Sk(mod γν)
ν ⊗Rν

)
·,j

.

Now we must show that, for j ∈ N µ
c and for all ν, (Cν ⊗ S

k(mod γν)
ν ⊗ Rν)·,j ≤ (Cµ ⊗ S

k(mod γµ)
µ ⊗ Rµ)·,j .

By (3.8), this is the same as saying

p

(
W2k+v

T ′,full(i
[Nν

c ]−−−→ j)

)
≤ p

(
W2k+v

T ′,full(i
Nµ

c−−→ j)

)
,

for some arbitrary node i. Let W be the walk of length 2k + v connecting i to j that traverses N ν
c , such that

p(W ) = p

(
W2k+v

T ′,full(i
[Nν

c ]−−−→ j)

)
. As j ∈ N µ

c then W is also a walk of length 2k + v connecting i to j that

traverses N µ
c ; hence, W ∈ W2k+v

T ′,full(i
Nµ

c−−→ j) and the inequality holds.

Therefore, as with the right-hand side, we have

(3.13)

(
m⊕

ν=1

Cν ⊗ Sk(mod γν)
ν ⊗Rν

)
·,j

= (Cµ ⊗ Sk(mod γµ)
µ ⊗Rµ)·,j .

Finally, the first statement of Proposition 3.12 gives us equality between (3.12) and (3.13). As j was chosen

arbitrarily, this holds for any j ∈ Nc and the result follows.

4. General results. This section presents some results that hold for general inhomogeneous products

satisfying Assumptions A, B and D2. Before we proceed, let us introduce the following piece of notation,

inspired by the weak CSR expansion of Merlet et al. [17]:
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Notation 4.1 (Bsup and λ∗). Denote

(Bsup)i,j =

{
ε, if i ∈ Nc or j ∈ Nc,

(Asup)i,j , otherwise

and by λ∗ the maximum cycle mean of Bsup.

We remark that the metric matrix, given in [6] and defined as A+ = A⊕A2 ⊕ . . ., of Bsup is useful in

calculating all the entries of γi,j simultaneously.

Notation 4.2 (q). We will denote by q the number of critical nodes, that is, q = |Nc|.

The following results generalise [13, Lemmas 3.1 and 3.2] for initial and final walks to the case of a general

critical subgraph. Observe that, under Assumptions B and D2, we have λ∗ < 0, so that the bounds in the

following lemmas make sense. Recall the sets of walks WT ,init(i → Nc∥) and WT ,final(∥Nc → j) introduced

in Notation 2.15.

Lemma 4.3. Let Wi,Nc
be an optimal walk in WT ,init(i → Nc∥), so that p(Wi,Nc

) = w∗
i,Nc

. Then, we

have the following bound on the length of Wi,Nc
:

(4.1) l(Wi,Nc
) ≤

{
n− q, if λ∗ = ε,
w∗

i,Nc
−αi,Nc

λ∗
+ (n− q), if λ∗ > ε

Proof. If λ∗ = ε, then any walk in WT ,init(i → Nc∥) has to be a path, and its length is bounded by n− q.

Now let λ∗ > ε. As λ∗ < 0, the weight of the walk Wi,Nc connecting i to a node in Nc is less than or equal

to that of a path Pi,Nc
on D(Asup) connecting i to a node in Nc plus the remaining length multiplied by λ∗.

The remaining length is bounded from above by n− q, since all intermediate nodes in Wi,Nc
are non-critical.

Hence

pT (Wi,Nc
) ≤ psup(Pi,Nc

) + (l(Wi,Nc
)− (n− q))λ∗.

We can bound psup(Pi,Nc
) ≤ αi,Nc

, so

(4.2) pT (Wi,Nc) ≤ αi,Nc + (l(Wi,Nc)− (n− q))λ∗.

Now assuming for contradiction that l(Wi,Nc
) >

w∗
i,Nc

−αi,Nc

λ∗
+ (n− q) . This is equivalent to

(4.3) αi,Nc
+ (l(Wi,Nc

)− (n− q))λ∗ < w∗
i,Nc

.

In combining (4.2) and (4.3), we get pT (Wi,Nc) < w∗
i,Nc

meaning that Wi,Nc is not optimal, a contradiction.

So we know that for any l ∈ Nc

l(Wi,Nc
) ≤

w∗
i,Nc

− αi,Nc

λ∗
+ (n− q).

The proof is complete.

Lemma 4.4. Let WNc,j be an optimal walk in WT ,final(∥Nc → j), so that p(WNc,j) = v∗Nc,j
. Then, we

have the following bound on the length of WNc,j:

(4.4) l(WNc,j) ≤

{
n− q, if λ∗ = ε,
v∗
Nc,j

−βNc,j

λ∗
+ (n− q), if λ∗ > ε.
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As the proof of this lemma is analogous to the proof of Lemma 4.3 it is omitted. Also, we can observe

that n− q is the limit of the expressions on the right-hand side of (4.1) and (4.4) as λ∗ → ε; hence, we will

not consider this case separately in the rest of the paper.

The following result is a generalised form of [13, Lemma 3.4] which uses a nominal weight ω.

Lemma 4.5. If γi,j = ε, then any full walk connecting i to j on T (P ) traverses a node in Nc.

If γi,j > ε, let

(4.5) k >
ω − γi,j

λ∗
+ (n− q),

for some ω ∈ R. Then, any full walk W connecting i to j on T (P ) that does not go through any node l ∈ Nc

has weight smaller than ω.

Proof. In the case when γi,j = ε, the claim follows by the definition of γi,j and by the geometric

equivalence between Asup and the matrices from Y. So we assume that γi,j > ε. Any walk W that does not

traverse any node in Nc can be decomposed into a path P connecting i to j avoiding Nc and a number of

cycles. Hence we have the following bound:

pT (W ) ≤ psup(P ) + (k − (n− q))λ∗.

We can further bound psup(P ) ≤ γi,j so

(4.6) pT (W ) ≤ γi,j + (k − (n− q))λ∗.

Now (4.5) can be rewritten as

(4.7) γi,j + (k − (n− q))λ∗ < ω.

By combining (4.6) with (4.7), we have pT (W ) < ω, which completes the proof.

Using this bound, we can obtain a condition under which the CSR term is (non-strictly) above Γ(k).

Theorem 4.6. If γi,j = ε then Γ(k) ≤ CSk(mod γ)R[Γ(k)].

If γi,j > ε, let

(4.8) k > max
i,j : i→T j,γi,j>ε

(
Γ(k)i,j − γi,j

λ∗
+ (n− q)

)
.

Then ,Γ(k) ≤ CSk(mod γ)R[Γ(k)].

Proof. If i ̸→T j, then (Γ(k))i,j = −∞. In this case, obviously, Γ(k)i,j ≤ (CSk(mod γ)R[Γ(k)])i,j .

If i →T j, then (Γ(k))i,j ̸= ε. Let W ∗ be the optimal walk of length k on T (P ) connecting i to j with

weight Γ(k)i,j . If k is greater than the bound (4.8) then, by Lemma 4.5, for the walk to have weight equal

to Γ(k)i,j , it must traverse at least one node in Nc, and the same is true when γi,j = ε. Hence, this walk

belongs to the set Wk
T (i

Nc−−→ j) and further Γ(k)i,j = p(W ∗) ≤ p
(
Wk

T (i
Nc−−→ j)

)
.

Let f ∈ Nc be the first critical node in the first critical s.c.c Cν , with cyclicity γν , that W
∗ traverses.

We can split the walk into W ∗ = W1W3 where W1 is a walk connecting i to f of length r and W3 is a walk

connecting f to j of length k − r. We have p(W ∗) = p(W1) + p(W3).
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Let T ′ be the trellis extension for the matrix product CSk(mod γ)R[Γ(k)] with length 2k + v where

v = (t+ 1)γ − k(mod γ) as described in Definition 3.6.

We now introduce the new walk W ′ = W1W2W3 on T ′. Here, W1 and W3 are the subwalks from W ∗

introduced before, where W1 is viewed as an initial walk on T ′ and W3 as a final walk on T ′, and W2 is a

closed walk of length k + v that starts and ends at f . Since k + v ≡ 0(mod γν) and k + v ≥ T (S) ≥ T (Sν),

this closed walk exists and can be entirely made up of edges from Cν . This means the walk W ′ is of length

2k + v, and it traverses the set of nodes N ν
c therefore W ′ ∈ W2k+v

T ′ (i
[Nν

c ]−−−→ j).

As W2 is made entirely from critical edges, we have p(W2) = 0 and p(W ∗) = p(W ′) ≤

p

(
W2k+v

T ′ (i
[Nν

c ]−−−→ j)

)
, and using (5.8) gives us

Γ(k)i,j = p(W ∗) ≤ (CνS
k(mod γν)
ν Rν [Γ(k)])i,j ≤ (CSk(mod γ)R[Γ(k)])i,j ,

where the last inequality is due to Proposition 3.5. The claim follows.

This condition looks like a bound for Γ(k) to become equal to the corresponding CSR product, but it is

implicit since it requires Γ(k) to be calculated in order to generate the bound. However, we can develop a

condition that does not depend on Γ(k). This following result requires Assumption C.

Corollary 4.7. Let

(4.9) k > max
i,j : i→T j,γi,j>ε

(
uk
i,j − γi,j

λ∗
+ (n− q)

)
.

Then, Γ(k) ≤ CSk(mod γ)R[Γ(k)].

Proof. By Lemma 2.18, i →T j is equivalent to uk
i,j > ε, so maximum in (4.9) is taken over i, j for which

uk
i,j and γi,j are finite. We also have uk

i,j ≤ (Γ(k))i,j by the definition of Ainf .

Further, as λ∗ < 0, then any k that satisfies (4.9) will also satisfy (4.8). The claim now follows from

Theorem 4.6.

5. The case where CSR works. In the case, when C(X ) is just one loop, Kennedy-Cochran-Patrick

et al. [13] established a bound on the lengths of inhomogeneous products, after which these products are of

tropical factor rank 1. In this section, we extend this result to the case when D(X ) and C(X ) satisfy the

following assumption, in addition to Assumptions A, B and D2.

Assumption P0. C(X ) is strongly connected and its cyclicity γ is equal to the cyclicity of D(X ).

The equality between cyclicities means that the associated digraph D(X ) has the same number of cyclic

classes γ as C(X ).

Notation 5.1. The cyclic classes of D(X ) are denoted by C′
0, . . . , C′

γ−1.

For a node i ∈ N, the cyclic class of this node with respect to D(X ) will be denoted by [i]′.

For a node i ∈ Nc, we will use both [i] (the cyclic class with respect to C(X )) and [i]′ (the cyclic class

with respect to D(X )), and an obvious inclusion relation between them: [i] ⊆ [i]′.
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One of the ideas is to combine Lemmas 4.3 and 4.4 together with Schwarz’s bound. To define this bound,

following [17], we first introduce Wielandt’s number

Wi(n) =

{
(n− 1)2 + 1 if n ≥ 1,

0 if n = 0,

and then Schwarz’s number

Sch(γ, n) = γWi

(⌊
n

γ

⌋)
+ n(mod γ).

Let us now prove the following lemma.

Lemma 5.2. Let

(5.1) k ≥
w∗

i,Nc
− αi,Nc

λq∗
+ (n− q) + Sch(γ, q) +

v∗Nc,j
− βNc,j

λq∗
+ (n− q).

Then

(i) If [i]′ ̸ →k[j]
′, then there are no full walks connecting i to j on T (P ) (i.e., i ̸→T j).

(ii) If [i]′ →k [j]′, then there is a full walk W connecting i to j on T (P ) and going through a critical

node, and we have pT (W ) = w∗
i,Nc

+ v∗Nc,j
if W is optimal.

Proof. The property [i]′ ̸→k [j]′ implies that there is no full walk W connecting i to j on T (P ).

In the case [i]′ →k [j]′, we construct a walk W ′ = Wi,Nc
WcWNc,j of length k, where Wi,Nc

be an optimal

walk in WT ,init(i → Nc∥) (see Lemma 4.3) , WNc,j be an optimal walk in WT ,final(∥Nc → j) (see Lemma 4.4),

and Wc is a walk that connects the end of Wi,Nc
to the beginning of WNc,j and such that all edges of Wc are

critical (the existence of such Wc is yet to be proved). Without loss of generality set [i]′ = C′
0 and [j]′ = C′

p3
:

the cyclic classes of D(X ) to which i and j belong. Let x be the final node of Wi,Nc
and let y be the first

node of WNc,j . Set [x]
′ = C′

p1
and [y]′ = C′

p2
.

By [5, Lemma 3.4.1.iv] l(Wi,Nc
) ≡ p1(mod γ), l(WNc,j) ≡ (p3 − p2)(mod γ). Hence, the congruence of

the walk Wc to be inserted is (p3 − p1 − (p3 − p2))(mod γ) ≡ (p2 − p1)(mod γ). As the cyclicity of the critical

subgraph is the same as that of the digraph, the cyclic classes of the critical subgraph are C0, . . . , Cγ−1, and we

can assume that the numbering is such that C0 ⊆ C′
0,. . . , Cγ−1 ⊆ C′

γ−1. Then, x ∈ Cp1 and y ∈ Cp2 and by [5,

Lemma 3.4.1.iv] there exists a walk on the critical subgraph of length congruent to (p2−p1)(mod γ). Moreover,

all walks connecting x to y have such length and by Schwarz’s bound if k − l(Wi,Nc
)− l(WNc,j) ≥ Sch(γ, q)

then there is a walk of length equal to l(W ′) − l(Wi,Nc
) − l(WNc,j). According to Lemmas 4.3 and 4.4

l(Wi,Nc
) ≤ w∗

i,Nc
−αi,Nc

λ∗
+ (n − q) , l(WNc,j) ≤ v∗

Nc,j
−βNc,j

λ∗
+ (n − q); therefore, k is a sufficient length for

k − l(Wi,Nc)− l(WNc,j) to satisfy Schwarz’s bound, so a walk of the form W ′ = Wi,NcWcWNc,j exists and

p(W ′) = w∗
i,Nc

+ v∗Nc,j
.

Let now W be an optimal full walk connecting i to j on T that passes through Nc at least once. As it

passes through the critical nodes, then the walk can be decomposed into W = W̃i,Nc
W̃cW̃Nc,j where W̃i,Nc

is

a walk in WT ,init(i → Nc∥), and W̃Nc,j is a walk in WT ,final(∥Nc → j), and W̃c connects the end of W̃i,Nc

to the beginning of W̃Nc,j on T (P ). We then have pT (W̃i,Nc
) ≤ pT (Wi,Nc

) and pT (W̃Nc,j) ≤ pT (WNc,j)

and also pT (W̃c) ≤ p(Wc) = 0. Since W is optimal, then all of these inequalities hold with equality, and

pT (W ) = w∗
i,Nc

+ v∗Nc,j
, as claimed.
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Remark 5.3. It follows from the proof that, under the conditions of this lemma and in the case [i] →k [j],

there is an optimal full walk connecting i to j on TΓ(k) and traversing a critical node that can be decomposed

as W = Wi,Nc
WcWNc,j, where Wi,Nc

is an optimal walk in WT ,init(i → Nc∥) and WNc,j is an optimal walk

in WT ,final(∥Nc → j), and Wc consists of edges solely in the critical subgraph. If the elements of Y are also

strictly visualised in the sense of [23], then any such optimal full walk has to be of this form.

Lemma 5.2 gives us the first part of the final bound for the case. In order to be able to use this lemma,

we must ensure that the walk must traverse Nc; hence, we can use Lemma 4.5 in conjunction with Lemma 5.2

to give us the following theorem.

Theorem 5.4. Denote u∗
i,Nc,j

= w∗
iNc

+ v∗Nc,j
. Let

k ≥ max

(
u∗
i,Nc,j

− αi,Nc − βNc,j

λ∗
+ 2(n− q) + Sch(γ, q),

u∗
i,Nc,j

− γi,j

λ∗
+ (n− q + 1)

)
,(5.2)

if γi,j > ε or just

k ≥
u∗
i,Nc,j

− αi,Nc − βNc,j

λ∗
+ 2(n− q) + Sch(γ, q),(5.3)

if γi,j = ε, for some i, j ∈ N . Then

(i) If [i]′ ̸→k [j]′ then Γ(k)i,j = −∞,

(ii) If [i]′ →k [j]′ then Γ(k)i,j = u∗
i,Nc,j

= w∗
i,Nc

+ v∗Nc,j
.

Proof. We only need to prove the second part. By Lemma 4.5 and taking ω = w∗
i,Nc

+ v∗Nc,j
, if

k >
w∗

i,Nc
+ v∗Nc,j

− γi,j

λq∗
+ (n− q),

then any walk on T (P ) that does not traverse the nodes in Nc will have weight smaller than w∗
i,Nc

+ v∗Nc,j
,

or such walk will not exist if γi,j = ε. Using Lemma 5.2, if

k ≥
w∗

i,Nc
− αi,Nc

λq∗
+ (n− q) + Sch(γ, q) +

v∗Nc,j
− βNc,j

λq∗
+ (n− q),

and [i]′ →k [j]′ then the weight of any optimal full walk on T (P ) connecting i to j and traversing a critical

node will be equal to w∗
i,Nc

+ v∗Nc,j
. If γi,j = ε, [i]′ →k [j]′ and the above inequality holds, or if γi,j > ε, k

satisfies both inequalities and [i] →k [j], then any optimal full walk traverses nodes in Nc and has weight

Γ(k)i,j = w∗
i,Nc

+ v∗Nc,j .

Our next aim is to rewrite Theorem 5.4 in a CSR form, and we first want to look at the optimal walk

representation of w∗
i,Nc

and v∗Nc,j
. This leads to the following lemma.

Lemma 5.5. We have

(5.4) w∗
i,Nc

= p(Wk
T ,full(i → Nc)), v∗Nc,j = p(Wk

T ,full(Nc → j)).

Proof. We will prove only the first of these two equalities, as the second one can be proved in a similar

way.
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Let Wi,Nc be an optimal walk in WT ,init(i → Nc∥), with weight w∗
i,Nc

. We are required to prove that

(5.5) p (WT ,init(i → Nc∥)) = p
(
Wk

T ,full(i → Nc)
)
,

where on the right we have the set of full walks connecting i to a critical node on T (P ). We split (5.5) into

two inequalities,

(5.6) p (WT ,init(i → Nc∥)) ≤ p
(
Wk

T ,full(i → Nc)
)
, p (WT ,init(i → Nc∥)) ≥ p

(
Wk

T ,full(i → Nc)
)
.

For the first inequality in (5.6), observe that we can concatenate Wi,Nc
with a walk V on the critical graph

which has length l(V ) = k− l(Wi,Nc). The resulting walk Wi,NcV belongs to Wk
T ,full(i → Nc) and has weight

w∗
i,Nc

, which proves the first inequality. For the second inequality, take an optimal walk W ∗ ∈ Wk
T ,full(i → Nc),

whose weight is p(Wk
T ,full(i → Nc)). By observing the first occurrence of a critical node in this walk, we

represent W ∗ = WV , where W ∈ WT ,init(i → Nc∥). We then have p(W ∗) = p(W ) + p(V ) ≤ p(W ) ≤ w∗
i,Nc

proving the second inequality. Combining both inequalities gives the equality (5.5) and finishes the proof of

w∗
i,Nc

= p(Wk
T ,full(i → Nc)). The second part of the claim is proved similarly.

Remark 5.6. In the previous lemma, the length of the walks on the right-hand side does not have to be

restricted to k. We can obtain the following results:

w∗
i,Nc

= p(W l
T ,init(i → Nc)) for any l ≥ min

(
w∗

i,Nc
− αi,Nc

λq∗
+ (n− q), k

)
v∗Nc,j = p(Wm

T ,final(Nc → j)) for any m ≥ min

(
v∗Nc,j

− βNc,j

λq∗
+ (n− q), k

)
.

(5.7)

We now establish the connection between the previous Lemma and CSR.

Lemma 5.7. We have one of the following cases:

(i) (CSk(mod γ)R[Γ(k)])i,j = ε if [i]′ ̸→k [j]′,

(ii) (CSk(mod γ)R[Γ(k)])i,j = w∗
i,Nc

+ v∗Nc,j
if [i]′ →k [j]′.

Proof. By Lemma 3.7, we have p
(
W2k+v

T ′,full(i → j)
)

= (CSk(mod γ)R[Γ(k)])i,j , where v = (t + 1)γ −
k(mod γ) and tγ ≥ T (S), and let W ∈ W2k+v

T ′,full(i → j) be optimal. W can be decomposed as W1W2W3 where

W1 is a full walk (of length k) connecting i to some l ∈ Nc on T , W3 is a (full) walk of length k connecting

some m ∈ Nc to j and W2 is a walk on the critical graph of length v connecting the end of W1 to the

beginning of W3. In formula,

(CSk(mod γ)R[Γ(k)])i,j = max{p(W1) + p(W2) + p(W3) :

W1 ∈ Wk
T ,full(i → l), W2 ∈ Wv

C(l → m), W3 ∈ Wk
T ,full(m → j), l,m ∈ Nc}.

(5.8)

If the weights of W1, W2, and W3 in (5.8) are finite then [i]′ →k [l]′, [l]′ →v [m]′ and [m]′ →k [j]′, hence

[i]′ →k [j]′. Thus, (CStR[Γ(k)]i,j) > ε implies [i]′ →k [j]′ proving (i).

As the cyclicity of the associated graph is the same as the cyclicity of the critical graph, Lemma 5.5

implies that
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(5.9) w∗
i,Nc

= p(Wk
T (i → Ci,k)), v∗Nc,j = p(Wk

T (Ck,j → j)),

where Ci,k = C′
i,k ∩Nc is the cyclic class of C(X ) that can be found by intersecting with critical nodes Nc the

cyclic class C′
i,k of D defined by [i]′ →k C′

i,k. Similarly, Ck,j = C′
k,j ∩Nc is the cyclic class of C(X ) that can

be found by intersecting with critical nodes Nc the cyclic class C′
k,j of D defined by C′

k,j →k [j]′.

Now note that in (5.8), we can similarly restrict l to Ci,k and m to Ck,j , which transforms it to

(CSk(mod γ)R[Γ(k)])i,j = max{p(W1) + p(W2) + p(W3) :

W1 ∈ Wk
T (i → l), W2 ∈ Wv

C(l → m), W3 ∈ Wk
T (m → j), l ∈ Ci,k, m ∈ Ck,j}.

(5.10)

Note that if a walk W2 exists between any l ∈ Ci,k and m ∈ Ck,j then using (5.9) we immediately obtain

(CSk(mod γ)R[Γ(k)])i,j = w∗
i,Nc

+ v∗Nc,j
. Thus, it remains to show existence of W2 ∈ Wv

C(l → m) between any

l ∈ Ci,k and m ∈ Ck,j . For this, note that since v = (t+1)γ− k(mod γ) ≥ T (S), either Ci,k →(γ−k(mod γ)) Ck,j
and a walk on C(X ) of length v exists between each pair of nodes in Ci,k and Ck,j , or Ci,k ̸→(γ−k(mod γ)) Ck,j
and then no such walk exists. We thus have to check that Ci,k →(γ−k(mod γ)) Ck,j on D. But this follows

since we have [i]′ →k [j]′, and since in the sequence [i]′ →k C′
i,k →l C′

k,j →k [j]′, we then must have

l ≡γ γ − k(mod γ).

Combining Theorem 5.4 and Lemma 5.7 we obtain the following result.

Theorem 5.8. Denote u∗
i,Nc,j

= w∗
iNc

+ v∗Nc,j
. Let k be greater than or equal to

max

(
max
i,j

u∗
i,Nc,j

− αi,Nc
− βNc,j

λ∗
+ 2(n− q) + Sch(γ, q), max

i,j : γi,j>ε

u∗
i,Nc,j

− γi,j

λ∗
+ n− q + 1

)
.

Then Γ(k) = CSk(mod γ)R[Γ(k)].

As with Theorem 4.6, this bound requires Γ(k) in order to calculate the bound, which makes it implicit,

but as with Corollary 4.7 we can use wi,Nc
≤ w∗

i,Nc
and vNc,j ≤ v∗Nc,j

to give us an explicit bound. The

following result requires Assumption C on Ainf .

Corollary 5.9. Denote ui,Nc,j = wiNc
+ vNc,j. Let k be greater than or equal to

max

(
max
i,j

ui,Nc,j − αi,Nc
− βNc,j

λ∗
+ 2(n− q) + Sch(γ, q), max

i,j : γi,j>ε

ui,Nc,j − γi,j
λ∗

+ n− q + 1

)
.

Then, Γ(k) = CSk(mod γ)R[Γ(k)].

We will now present an example of this bound in action.

Let D(G) be the eight node digraph with the following structure:
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a

(1)

a

(2)

a

(3)

a

(4)

a

(5)

a

(6)

a

(7)

a

(8)

along with the associated weight matrix.

A =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε A2,7 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε A4,6 ε ε

A5,1 ε ε ε ε ε A5,7 ε

ε ε ε ε A6,5 ε ε ε

ε ε ε ε ε ε ε A7,8

ε ε A8,3 ε ε A8,6 ε ε


.

There are three critical cycles in this digraph, one cycle of length 4 traversing 1 → 2 → 3 → 4, and two cycles

of length 2 traversing 1 → 4 → 1 and 2 → 3 → 2, respectively. There are also cycles of length 4, 6, and 8

which means that the cyclicity of the whole digraph is 2, which is the same cyclicity of the critical subgraph.

Therefore, Assumption P0 is satisfied, and we can continue.

The semigroup of matrices X used by this example will be generated by these five matrices:

A1 =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −16 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −6 ε ε

−11 ε ε ε ε ε −14 ε

ε ε ε ε −18 ε ε ε

ε ε ε ε ε ε ε −20

ε ε −11 ε ε −3 ε ε


, A2 =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −3 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −6 ε ε

−17 ε ε ε ε ε −6 ε

ε ε ε ε −17 ε ε ε

ε ε ε ε ε ε ε −5

ε ε −19 ε ε −7 ε ε


,

A3 =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −4 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −6 ε ε

−13 ε ε ε ε ε −10 ε

ε ε ε ε −8 ε ε ε

ε ε ε ε ε ε ε −17

ε ε −12 ε ε −11 ε ε


, A4 =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −19 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −6 ε ε

−16 ε ε ε ε ε −16 ε

ε ε ε ε −8 ε ε ε

ε ε ε ε ε ε ε −12

ε ε −2 ε ε −2 ε ε


,
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A5 =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −11 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −16 ε ε

−19 ε ε ε ε ε −3 ε

ε ε ε ε −12 ε ε ε

ε ε ε ε ε ε ε −10

ε ε −1 ε ε −7 ε ε


.

Using these matrices, we can calculate Asup and Ainf ,

Asup =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −3 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −6 ε ε

−11 ε ε ε ε ε −3 ε

ε ε ε ε −8 ε ε ε

ε ε ε ε ε ε ε −5

ε ε −1 ε ε −2 ε ε


, Ainf =



ε 0 ε 0 ε ε ε ε

ε ε 0 ε ε ε −19 ε

ε 0 ε 0 ε ε ε ε

0 ε ε ε ε −16 ε ε

−19 ε ε ε ε ε −16 ε

ε ε ε ε −18 ε ε ε

ε ε ε ε ε ε ε −20

ε ε −19 ε ε −11 ε ε


,

as well as αi,Nc
, βNc,j , γi,j , wi,Nc

and vNc,j :

αi,Nc =



0

0

0

0

−9

−17

−6

−1


, βT

Nc,j =



0

0

0

0

−14

−6

−3

−8


, γi,j =



ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε −18 −10 −3 −8

ε ε ε ε −18 −10 −3 −8

ε ε ε ε −15 −7 −18 −5

ε ε ε ε −10 −2 −13 −18


wT

i,Nc
=
(
0 0 0 0 −19 −37 −39 −19

)
, vNc,j =

(
0 0 0 0 −34 −16 −19 −39

)
.

With all the pieces ready, we can now form the bound of Corollary 5.9,

k ≥max





12 12 12 12 16.4 14.2 15.6 18.9

12 12 12 12 16.4 14.2 15.6 18.9

12 12 12 12 16.4 14.2 15.6 18.9

12 12 12 12 16.4 14.2 15.6 18.9

14.2 14.2 14.2 14.2 18.7 16.4 17.8 21.1

16.4 16.4 16.4 16.4 20.9 18.7 20 23.3

19.3 19.3 19.3 19.3 23.8 21.6 22.9 26.2

16 16 16 16 20.4 18.22 19.6 22.9


,



ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε 12.8 10.6 12.8 16.1

ε ε ε ε 19 12.8 15 18.3

ε ε ε ε 17.9 15.7 13.9 21.2

ε ε ε ε 14.6 12.3 10.6 13.9




⇒ k ≥ 23.8.

Therefore, by Corollary 5.9 if the length of a product using the matrices from X is greater than or equal to

24 then the resulting product will be CSR. We will show such a product. Let Γ(24) be the inhomogeneous

matrix product made using the word P = 551541235515535135454155 which gives us:
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Γ(24) =



0 ε 0 ε ε −16 −11 ε

ε 0 ε 0 −28 ε ε −21

0 ε 0 ε ε −16 −11 ε

ε 0 ε 0 −28 ε ε −21

ε −19 ε −19 −47 ε ε −40

−31 ε −31 ε ε −47 −42 ε

−11 ε −11 ε ε −27 −22 ε

ε −1 ε −1 −29 ε ε −22


.

This matrix product is indeed CSR, and by Definition 3.2 we have,

Γ(24) =



0 ε 0 ε

ε 0 ε 0

0 ε 0 ε

ε 0 ε 0

ε −19 ε −19

−31 ε −31 ε

−11 ε −11 ε

ε −1 ε −1


⊗


0 ε ε ε

ε 0 ε ε

ε ε 0 ε

ε ε ε 0

⊗


0 ε 0 ε ε −16 −11 ε

ε 0 ε 0 −28 ε ε −21

0 ε 0 ε ε −16 −11 ε

ε 0 ε 0 −28 ε ε −21



Γ(24) =



0 ε

ε 0

0 ε

ε 0

ε −19

−31 ε

−11 ε

ε −1


⊗

(
0 ε

ε 0

)
⊗

(
0 ε 0 ε ε −16 −11 ε

ε 0 ε 0 −28 ε ε −21

)
.

We can see that, for the C matrix, columns 3 and 4 are copies of columns 1 and 2, respectively. The same is

also true for the rows of the R matrix so they can be deleted. As 24(mod 2) = 0, we replace the S matrix

with the tropical identity matrix which shows us that the matrix product Γ(24) using the word P is indeed

CSR, and it has factor rank-2.

6. Counterexamples. Here we present a number of counterexamples for the different cases of digraph

structure. These counterexamples present families of products which are not CSR, and we construct them in

such a way that they have no upper bound on their length.

6.1. The ambient graph is primitive but the critical graph is not. We will now look at two

cases where we are unable to create a bound for matrix products to become CSR. For the first case, we will

be looking at digraphs that are primitive but have a critical subgraph with a non-trivial cyclicity. Therefore,

we have the following assumption:

Assumption P1. D(X ) is primitive (i.e., γ(D(X )) = 1) and the critical subgraph C(X ), which is a

single strongly connected component, has cyclicity γ(C(X )) = γ > 1.

We now present a counterexample which shows that under this assumption, in general, no bound for k in

terms of Asup and Ainf can exist that ensures that Γ(k) is equal to the corresponding CSR product.

Let D(G) be the five node digraph with the following structure:
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a

(1)

a

(2)

a

(3)

a

(4)

a

(5)

a

(6)

This digraph will have the following associated weight matrix.

A =



ε 0 A1,3 ε ε ε

0 ε ε ε A2,5 ε

ε ε ε A3,4 ε A3,6

A4,1 ε ε ε ε ε

ε ε ε ε ε A5,6

ε A6,2 A6,3 ε ε ε


.

There is a critical subgraph consisting of the cycle between nodes 1 and 2. There also exist two cycles,

1 → 3 → 4 → 1 and 2 → 5 → 6 → 2, both of length 3 which makes D(A) primitive. We aim to present a

family of words with infinite length such that the products made up using these words are not CSR. Since

the cyclicity of the critical subgraph is 2, then we will have to create two classes of words, one of even length

and one of odd length to define the family.

The semigroup of matrices we will use is generated by the two matrices:

A1 =



ε 0 −100 ε ε ε

0 ε ε ε −100 ε

ε ε ε −100 ε ε

−100 ε ε ε ε ε

ε ε ε ε ε −100

ε −100 ε ε ε ε


, A2 =



ε 0 −100 ε ε ε

0 ε ε ε −1 ε

ε ε ε −100 ε ε

−1 ε ε ε ε ε

ε ε ε ε ε −100

ε −100 ε ε ε ε


.

Let us first consider the class of words (1)2t2 where t ≥ 2, and let U = (A1)
2tA2 for arbitrary such t. We

will first examine entries U6,1, U2,5, U6,2 and U1,5.

The entry U6,1 can be obtained as the weight of the walk 6 (21)(21) . . . (21)︸ ︷︷ ︸
t−1

341, which is −301. For this

observe that the walk 621 has an even length and therefore we need to use one of the three-cycles to make it

odd, and using the southern three-cycle in the end of the walk is the most profitable way to do so. The entry

U25 is equal to −1, as there is a walk that mostly rests on the critical cycle and only in the end jumps to

node 5. We also have U6,2 = −100 (go to node 2 and remain on the critical cycle) and U1,5 = −301 (use the
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southern triangle once and then dwell on the critical cycle and in the end jump to node 5). Note that in the

case of U1,5 we again need to use one of the triangles to create a walk of an odd length.

We then compute

(CSR)[U ]6,5 = (US3U)6,5 = max(U6,1 + U2,5, U6,2 + U1,5) = −301− 1 = −302.

However, U6,5 results from the walk 6 (21)(21) . . . (21)︸ ︷︷ ︸
t−1

2562, with weight −401, needing to use the northern

triangle to make a walk of odd length.

The following an example of U and CS2t+1R[U ] for t = 10:

U =



−201 0 −100 −500 −301 −200

0 −300 −400 −200 −1 −500

−401 −200 −300 −700 −501 −400

−100 −400 −500 −300 −101 −600

−200 −500 −600 −400 −201 −700

−301 −100 −200 −600 −401 −300



CS21(mod 2)R[U ] =



−201 0 −100 −401 −202 −200

0 −300 −400 −200 −1 −500

−401 −200 −300 −601 −402 −400

−100 −400 −500 −300 −101 −600

−200 −500 −600 −400 −201 −700

−301 −100 −200 −501 −302 −300


.

We now consider the class of words (1)2t+12 where t ≥ 1, and let V = (A1)
2t+1A2 for arbitrary such t.

We will first examine entries V2,1, V1,5, V2,2 and V2,5.

The entry V2,1 = −201 is obtained as the weight of the walk 2 (12)(12) . . . (12)︸ ︷︷ ︸
t−1

341: it is necessary to use

one of the triangles to create a walk of even length, and using the southern triangle once in the end of the

walk is the most profitable way to do so. The walk 125 already has an even length, and we only have to

augment it with enough copies of the critical cycle and use the arc 2 → 5 in the end of the walk, thus getting

V1,5 = −1. Obviously, V2,2 = 0 : we just stay on the critical cycle. The entry V2,5 = −301 is obtained as the

weight of the walk (21)(21) . . . (21)︸ ︷︷ ︸
t−1

5625, where we have to use the northern triangle in the end of the walk to

create a walk of even walk and minimise the loss.

We then find

(CS2R[V ])2,5 = (V S2V )2,5 = max(V2,1 + V1,5, V2,2 + V2,5) = V2,1 + V1,5 = −202,

which is bigger than V2,5 = −301.

The case for V2,5 is one for connecting a critical node to a non-critical node. For completeness, we should

also look at a walk connecting two non-critical nodes, namely the walk representing V4,5. To do this, we will

need to also look at the entries V4,1 and V4,2. For V4,1 = −301, the entry is obtained as the weight of the walk
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4 (12)(12) . . . (12)︸ ︷︷ ︸
t−1

341. As the walk 41 has odd length, one of the triangles is required to make the walk even

so choosing the southern triangle is the most profitable way to achieve an even length walk. The walk 412

already has an even length so we can augment it with enough copies of the critical cycle to give us the desired

length for the walk representing the entry V4,2 = −100. Using V1,5 and V2,5 discussed earlier we calculate

(CS2R[V ])4,5 = (V S2V )4,5 = max(V4,1 + V1,5, V4,2 + V2,5) = V4,1 + V1,5 = −302,

which is bigger than V4,5 = −401.

We now show an example of V for t = 10:

V =



0 −300 −400 −200 −1 −500

−201 0 −100 −500 −301 −200

−200 −500 −600 −400 −201 −700

−301 −100 −200 −600 −401 −300

−401 −200 −300 −700 −501 −400

−100 −400 −500 −300 −101 −600



CS22(mod 2)R[V ] =



0 −300 −400 −200 −1 −500

−201 0 −100 −401 −202 −200

−200 −500 −600 −400 −201 −700

−301 −100 −200 −501 −302 −300

−401 −200 −300 −601 −402 −400

−100 −400 −500 −300 −101 −600


.

Combining both classes, we have a family of words covering all lengths greater than 29 such that any

product made using these words will not be equal to the corresponding CSR product. Therefore, there cannot

be a transient for this case as there is no upper limit to the lengths of these words.

We now also construct a counterexample where all nodes of D(G) are critical. Let D(G) be the three

node digraph with the following structure:

a

(1)

a

(2)

a

(3)
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The digraph has the following associated weight matrix.

A =

ε 0 ε

ε A2,2 0

0 A3,2 A3,3

 .

For this example, there is a single critical cycle of length 3 traversing all of the nodes. There also exists

two loops 2 → 2 and 3 → 3 and a cycle 2 → 3 → 2 of length 2. Like the previous example, this digraph is

primitive but the critical subgraph has cyclicity 3. As the cyclicity is greater than one we need to present

three different classes of words making up a family of words such that any product Γ(k) made using these

words will not be CSR.

The semigroup of matrices that we will use is again generated only by two matrices:

A1 =

ε 0 ε

ε −100 0

0 −100 −100

 A2 =

ε 0 ε

ε −1 0

0 −100 −1

 .

Let the first class of words be (1)3t+22 for t ≥ 0, and let M = (A1)
3t+2A2 for any arbitrary t. We will

now examine the entries M1,1, M1,2, M2,2 M1,3 and M3,2.

Since all the walks are of length 0 modulo 3, then any walk connecting i to i will have weight zero as

we can simply use the critical cycle. This gives M1,1 = M2,2 = 0. The entry M1,2 can be obtained as the

weight of the walk (123)t+12 which is −100. In this entry, observe that the walk 12 is of length 1 modulo 3;

therefore, we need to use the two cycle 2 → 3 → 2 to give us a walk of the desired length. The entry M1,3 is

equal to the weight of the walk (123)t+13 and the entry M3,2 is equal to the weight of the walk (312)t+12.

For these entries, observe that the walks 123 and 312 are both of length 2 modulo 3; therefore, we require a

loop for both walks to give us the required length. The most profitable time to use these loops are right at

the end of the walk.

We then compute

(CSR)[M ]1,2 = (MS3M)1,2 = max(M1,1 +M1,2,M1,2 +M2,2,M1,3 +M3,2) = −1− 1 = −2.

However, as seen earlier the entry M12 has weight −100 which is less than the CSR suggestion.

The following is an example of M and CS3t+3R[M ] for t = 10:

M =

 0 −100 −1

−100 0 −100

−100 −1 0

 CS33(mod 3)R[M ] =

 0 −2 −1

−100 0 −100

−100 −1 0

 .

For efficiency, we will simply present the final two classes and omit the in-depth analysis of them:

For walks of length 1 modulo 3, we have the class of words (1)3t+32 for t ≥ 0.

For walks of length 2 modulo 3, we have the class of words (1)3t+42 for t ≥ 0.

We will also present examples of products and their CSR counterparts made using these words for t = 10

where N = (A1)
3t+3A2 and P = (A1)

3t+4A2.
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N =

−100 0 −100

−100 −1 0

0 −100 −1

 CS34(mod 3)R[N ] =

−100 0 −100

−100 −1 0

0 −2 −1


P =

−100 −1 0

0 −100 −1

−100 0 −100

 CS35(mod 3)R[P ] =

−100 −1 0

0 −2 −1

−100 0 −100

 .

The combination of these three classes create a family of words such that any product Γ(k) made using these

words is not equal to the corresponding CSR product.

We now extend these counterexamples to a more general form where we consider digraphs with non-trivial

cyclicity r along with critical subgraphs with cyclicity γ which is greater than r. This leads to the following

assumptions.

6.2. More general case.

Assumption P2. D(X ) has cyclicity r and the critical subgraph C(X ), which is strongly connected, has

cyclicity γ > r.

In a similar method to the primitive example above, using the new assumptions, we can now describe

a counterexample that shows that no bound for k in terms of Asup and Ainf can exist that ensures Γ(k) is

equal to the corresponding CSR product.

Let D(X ) be a six node digraph with the following structure:

a

(1)

a

(2)

a

(3)

a

(4)

a

(5)

a

(6)

along with the following associated weight matrix,

A =



ε 0 ε ε ε ε

ε ε 0 ε ε ε

ε ε ε 0 A3,5 ε

0 ε ε ε ε ε

ε ε ε ε ε A5,6

ε ε ε A6,4 ε ε


.

Here, the critical cycle traverses nodes 1 → 2 → 3 → 4 → 1; however, there also exists another non-critical

cycle of length six traversing 1 → 2 → 3 → 5 → 6 → 4 → 1. This means that while the cyclicity of the critical
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subgraph is 4 the cyclicity of D(G) is 2. Therefore, the digraph structure satisfies the assumptions, and we

can develop a family of words with infinite length such that any Γ(k) made using these words will not be

equal to the corresponding CSR product. As the cyclicity of the critical subgraph is 4, then we will require

four classes of words to fully define the family.

The semigroup of matrices that will be used is generated by two matrices:

A1 =



ε 0 ε ε ε ε

ε ε 0 ε ε ε

ε ε ε 0 −100 ε

0 ε ε ε ε ε

ε ε ε ε ε −100

ε ε ε −100 ε ε


A2 =



ε 0 ε ε ε ε

ε ε 0 ε ε ε

ε ε ε 0 −1 ε

0 ε ε ε ε ε

ε ε ε ε ε −100

ε ε ε −1 ε ε


.

Let us begin with the first class of words (1)4t2 where t ≥ 2, and let L = (A1)
4tA2 for arbitrary such t. We

will begin by examining the entries L1,2, L1,5, L1,4 and L3,5.

The entry L1,2 can be obtained as the weight of the walk (1234)︸ ︷︷ ︸
t

12, which is 0. As the walk 12 has

length congruent to 1(mod 4), then a walk exists on the critical cycle connecting these nodes. The entry

L1,5 is obtained from the weight of the walk (1234)︸ ︷︷ ︸
t−2

1235641235, which is −301. As the walk 1235 has length

congruent to 3(mod 4), then we need to add on the six cycle with weight −300 to give us a walk of length

congruent to 1(mod 4) and finally the last step of the walk is to go from 3 to 5 with weight −1. For the entry,

L1,4 = −201 which is the weight of the walk (1234)︸ ︷︷ ︸
t−1

123564 and the entry L35 = −1 comes from the weight of

the walk (3412)︸ ︷︷ ︸
t

35. Note that in the case of L1,4, we used the six cycle to give us the desired length of walk.

We then compute

(CSR)[L]1,5 = (L⊗ S3 ⊗ L)1,5 = max(L1,2 + L1,5, L1,4 + L3,5) = −201− 1 = −202.

However L15, as explained earlier, results from a walk with weight −301.

The following is an example of L and CS4t+1R[L] for t = 10

L =



ε 0 ε −201 −301 ε

−300 ε 0 ε ε −401

ε −300 ε 0 −1 ε

0 ε −300 ε ε −101

−500 ε −200 ε ε −601

ε −400 ε −100 −101 ε



CS41(mod 4)R[L] =



ε 0 ε −201 −202 ε

−300 ε 0 ε ε −401

ε −300 ε 0 −1 ε

0 ε −300 ε ε −101

−500 ε −200 ε ε −601

ε −400 ε −100 −101 ε


.
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The other classes behave in a similar way so we omit the in-depth explanation of them. We present the

words used for each class:

For walks of length congruent to 2(mod 4), we have the words (1)4t+12 for t ≥ 2;

For walks of length congruent to 3(mod 4), we have the words (1)4t+22 for t ≥ 2;

For walks of length congruent to 0(mod 4), we have the words (1)4t+32 for t ≥ 2.

For example, if t = 10 then for the first of these classes

F = (A1)
41 ⊗A2 =



−300 ε 0 ε ε −401

ε −300 ε 0 −1 ε

0 ε −300 ε ε −101

ε 0 ε −201 −301 ε

ε −500 ε −200 −201 ε

−100 ε −400 ε ε −201


,

CS42(mod 4)R[F ] =



−300 ε 0 ε ε −401

ε −300 ε 0 −1 ε

0 ε −300 ε ε −101

ε 0 ε −201 −202 ε

ε −500 ε −200 −201 ε

−100 ε −400 ε ε −201


.

Combining all classes gives us a family of words covering all lengths greater than 9 such that any product

made using these words will not be equal to the corresponding CSR product.

6.3. Critical graph is not connected. For this counterexample, we now consider a digraph with

multiple critical components C1, . . . ,Cm which are each strongly connected components with respective

cyclicities γ1, . . . , γm.

Assumption P3. C(X ) is composed of multiple strongly connected components C1, . . . ,Cm where the

component Ci has cyclicity γi. The cyclicity of D(X ) is lcmi(γi), which is the same as the cyclicity of C(X ).

Let us now show a counterexample, which demonstrates that, for the case of several critical components,

we cannot have any bounds after which the product becomes CSR in terms of Asup and Ainf . The reason is

that the non-critical parts of optimal walks whose weights are the entries of C and R cannot be separated in

time: in general, they will use the same letters, and such walks on the symmetric extension of T (P ) cannot

be transformed back to the walks on T (P ).

Let D(X ) be the four node digraph with the following structure:

a

(1)

a

(2)

a

(3)

a (4)
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along with the following associated weight matrix

A =


0 A12 ε ε

ε 0 A23 ε

ε ε 0 A34

A41 ε ε ε

 .

For this digraph, we have a the critical subgraph comprised of three separate loops at nodes 1,2 and 3.

There is also a cycle of length 4 which means the cyclicity of the digraph is 1. We are going to present a class

of words of infinite length such that the matrix generated by this class of words is not CSR.

We introduce a semigroup of tropical matrices with two generators X = {A1, A2} where A1 to A2 are

A1 =


0 −100 ε ε

ε 0 −100 ε

ε ε 0 −100

−100 ε ε ε

 , A2 =


0 −1 ε ε

ε 0 −1 ε

ε ε 0 −100

−100 ε ε ε

 ,

and the class of the words that we will consider is (1)t2, where t ≥ 2. In other words, we will consider a set

of matrices of the form U = (A1)
tA2 (the actual value of t ≥ 2 will not matter to us).

We have: U1,2 = −1 (as the weight of the walk 11 . . . 1︸ ︷︷ ︸
t+1

2), U2,3 = −1 (as the weight of the walk

22 . . . 2︸ ︷︷ ︸
t+1

3),and therefore (CSt+1R[U ])1,3 = U2
1,3 = U1,2 ⊗ U2,3 = −2, but U1,3 = −101 (as the weight of the

walk 1 22 . . . 2︸ ︷︷ ︸
t

3).

Similarly, we can also look at the entry U4,3. Then, we have U4,2 = −101 (as the weight of the walk

4 11 . . . 1︸ ︷︷ ︸
t

2), U2,3 = −1 and hence (CSt+1R)4,3 = (USU)4,3 = U4,2 ⊗ U2,3 = −102, but U4,3 = −201 (as the

weight of the walk 41 22 . . . 2︸ ︷︷ ︸
t−1

3).

Here is an example of the word from the class for t = 10 and the corresponding CSR

W =


0 −1 −101 −300

−300 0 −1 −200

−200 −201 0 −100

−100 −101 −201 −400

 , CS11(mod 1)R[W ] =


0 −1 −2 −201

−201 0 −1 −101

−200 −201 0 −100

−100 −101 −102 −301

 .

Therefore, any matrix product of length greater than 3 which has been made following this word will not

be CSR. Hence, there can be no upper bound to guarantee the CSR decomposition in this case.

Acknowledgments. The authors are grateful to Oliver Mason, Glenn Merlet, Thomas Nowak and

Stephane Gaubert with whom the ideas of this paper were discussed. The authors are also grateful to the

anonymous referee, who supported our work and suggested many useful corrections.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 820-851, December 2022.

851 Extending CSR decomposition to tropical inhomogeneous matrix products

REFERENCES

[1] M. Akian, S. Gaubert, and A. Guterman. Linear independence over tropical semirings and beyond. In: G. Litvinov and

S. Sergeev (editors), Tropical and Idempotent Mathematics, vol. 495. American Mathematical Society, Providence, RI,

1–38, 2009.

[2] M. Akian, S. Gaubert, and C. Walsh. Discrete max-plus spectral theory. In: G. Litvinov and V. Maslov (editors), Idempotent

Mathematics and Mathematical Physics, vol. 377. American Mathematical Society, Providence, RI, 53–77, 2005.

[3] B. Benek Gursoy and O. Mason. Spectral properties of matrix polynomials in the max algebra. Linear Algebra Appl.,

435:1626–1636, 2011.

[4] B. Benek Gursoy, O. Mason, and S. Sergeev. The analytic hierarchy process, max algebra and multi-objective optimisation.

Linear Algebra Appl., 438:2911–2928, 2013.

[5] R. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, Cambridge, 1991.
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[23] S. Sergeev, H. Schneider, and P. Butkovič. On visualization scaling, subeigenvectors and Kleene stars in max algebra.

Linear Alg. Appl., 431:2395–2406, 2009.

[24] L. Shue, B.D. Anderson, and S. Dey. On steady-state properties of certain max-plus products. In: Proceedings of the 1998

American Control Conference, Philadelphia, PA, USA, 1909–1913, 1998.

https://arxiv.org/abs/1708.06552
https://arxiv.org/abs/1708.06552
https://doi.org/10.1239/jap/1378401228
https://doi.org/10.1016/j.laa.2009.04.027

	Introduction
	Definitions and notation
	Weighted digraphs and tropical matrices
	Main assumptions
	Extension to inhomogeneous products

	CSR products
	General results
	The case where CSR works
	Counterexamples
	The ambient graph is primitive but the critical graph is not
	More general case
	Critical graph is not connected

	References

