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INERTIA SETS FOR GRAPHS ON SIX OR FEWER VERTICES∗
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Abstract. Let G be an undirected graph on n vertices and let S(G) be the set of all real sym-

metric n×n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding

to the edges of G. The inverse inertia problem for G asks which inertias can be attained by a matrix

in S(G), a question which was previously answered when G is a tree. In this paper, a number of new

techniques are developed in order to be able to determine possible inertias of general graphs: covers

with cliques, covers with cliques and clique-stars, and the graph operations of edge subdivision, edge

deletion, joins, and unions. Because most of the associated theorems require additional hypotheses,

definitive criteria that apply to all graphs cannot be provided. Nevertheless, these results are strong

enough to be able to determine the inertia set of each graph on 6 or fewer vertices and can be applied

to many graphs with larger order as well. One consequence of the 1– 6 vertex results is the fact that

all of these graphs have balanced inertia. It is also mentioned which of these results guarantee or

preserve balanced inertia, and explain how to modify them to include Hermitian matrices.

Key words. Balanced inertia, Combinatorial matrix theory, Graph, Hermitian, Inertia, Inverse

inertia problem, Minimum rank, Symmetric.

AMS subject classifications. 05C05, 05C50, 15A03, 15A57.

1. Introduction. One area of combinatorial matrix theory asks the question:

what can be known about symmetric matrices with specific zero patterns? Because

every symmetric matrix with a particular zero pattern can be represented by a graph,

graphs provide a convenient and concise description of such matrices. The symbiotic

relationship between graphs and matrices aids particularly in the characterization of

eigenvalues of matrices with prescribed zero patterns. Combinatorial matrix theory

utilizes this interrelation as an approach to the widely studied inverse eigenvalue

problem.
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If G is a graph, then we call S(G) the set of all real symmetric n × n matrices

A = [aij ] for which aij 6= 0, i 6= j, if and only if ij is an edge of G. No restrictions are

placed on the diagonal entries. The inverse eigenvalue problem asks: given a graph

G on n vertices and numbers λ1, λ2, ..., λn, is there a matrix A ∈ S(G) such that the

eigenvalues of A are exactly these numbers? Each year many papers are published on

a wide variety of inverse eigenvalue problems. However, our combinatorial instance

of this problem is difficult to solve. A simplification of the inverse eigenvalue problem

is the inverse inertia problem.

The inverse inertia problem asks: given a graph G on n vertices and an ordered

triple (r, s, t) of nonnegative integers with r + s + t = n, is there a matrix A ∈ S(G)

such that A has r positive eigenvalues, s negative eigenvalues and t eigenvalues equal

to 0? This problem allows for the characterization of possible eigenvalues of matrices

in S(G) without knowing their exact values. Given a matrix A ∈ S(G) the ordered

triple (π(A), ν(A), δ(A)) is called the inertia of A, where π(A) is the number of positive

eigenvalues of A, ν(A) is the number of negative eigenvalues of A, and δ(A) is the

multiplicity of the eigenvalue 0 of A. The partial inertia of A, denoted pin(A), is the

pair (π(A), ν(A)). The inertia set of G is the set of all partial inertias of matrices in

S(G) and is denoted I(G).

The inverse inertia problem is a refinement of the minimum rank problem. The

minimum rank of a graph G, denoted mr(G), is the smallest rank over all matrices in

S(G). The minimum rank restricts possible inertias of matrices in S(G) as follows.

If G is a graph on n vertices and A ∈ S(G), then π(A) + ν(A) = rank(A). Because

rank(A) ≥ mr(G), it follows that π(A) + ν(A) ≥ mr(G).

Barrett, Hall, and Loewy [4] determined the inertia sets for trees and graphs with

cut vertices. In this paper we detail a sufficient number of new and constructive tech-

niques we have developed to determine the inertia sets of all graphs on six or fewer

vertices (see Table 9.1). The graph numbers correspond to those used in [10]. The var-

ious sections correspond to these techniques, and each graph whose inertia set is deter-

mined by a specific technique is also listed in that section. We consider the minimum

ranks and minimum positive semidefinite ranks of these graphs to be well known and

will seldom give reasons for these. The minimum ranks and minimum positive semidef-

inite ranks are catalogued at www.aimath.org/pastworkshops/matrixspectrum.html

and in [6]. Although we only consider connected graphs, the inertias of disconnected

graphs follow from Observation 4.1 in [4] which states that if G is a graph with com-

ponents G1, ..., Gk, then an ordered pair is in I(G) if and only if it is a sum of ordered

pairs belonging to I(G1), ..., I(Gk).

After completing our list we turn to the concept of balanced inertia introduced

in [2]. We observe that all graphs on six or fewer vertices have balanced inertia

and identify a few graph classes with balanced inertia. We next explain that for
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the Hermitian version of the inverse inertia problem one obtains the same results for

graphs on six or fewer vertices as for the real symmetric case. We conclude with a

few open problems.

2. Definitions.

2.1. Matrix theory.

Definition 2.1. Given an n×n real symmetric matrix A, the inertia of A is the

ordered triple (π(A), ν(A), δ(A)), where π(A) is the number of positive eigenvalues of

A, ν(A) is the number of negative eigenvalues of A, and δ(A) is the multiplicity of 0

as an eigenvalue of A.

Then π(A) + ν(A) + δ(A) = n and π(A) + ν(A) = rank(A).

If the order of A is known, then we lose no information by discarding the third

number of the triple.

Definition 2.2. Given a real symmetric matrix A, the partial inertia of A is

the ordered pair (π(A), ν(A)), written pin(A).

Definition 2.3. Given a graph G on n vertices, let S(G) be the set of all real

symmetric n × n matrices A = [aij ] such that aij 6= 0, i 6= j, if and only if ij is an

edge of G. Let S+(G) be the subset of S(G) consisting of all positive semidefinite

matrices in S(G). Then the minimum rank of G is

mr(G) = min
A∈S(G)

{rank(A)}.

The minimum positive semidefinite rank of G is

mr+(G) = min
A∈S+(G)

{rank(A)}.

The maximum nullity of G is

M(G) = max
A∈S(G)

{nullity(A)}.

The maximum positive semidefinite nullity of G is

M+(G) = max
A∈S+(G)

{nullity(A)}.

Note that mr(G) + M(G) = n and mr+(G) + M+(G) = n.

Definition 2.4. Given a graph G, the inertia set I(G) is the set of all possible

partial inertias of matrices in S(G). That is,

I(G) = {(r, s)|pin(A) = (r, s) for some A ∈ S(G)}.
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Note that if (r, s) ∈ I(G), then mr(G) ≤ r + s ≤ n. Also mr+(G) is the smallest

integer r such that (r, 0) is in I(G).

Definition 2.5. The minimum rank line of a graph G consists of all points

(r, s) ∈ I(G) such that r + s = mr(G).

Observation 2.6. The minimum rank line is nonempty.

Definition 2.7. Let N be the set of nonnegative integers, and let N
2 = N × N.

The k-line is defined to be the set {(r, s) ∈ N
2|r + s = k}. We define the set

N
2
≤k = {(r, s) ∈ N

2 : r + s ≤ k}.

It is known from Proposition 2.3 in [4] that for a graph G on n vertices, I(G)

contains the (n − 1)-line and n-line.

Definition 2.8. Let m and n be non-negative integers with m ≤ n. When

plotted as points in R
2, the set

{(r, s) ∈ N
2 |m ≤ r + s ≤ n}

forms a trapezoid. We denote this set by T[m,n].

Observation 2.9. For any graph G on n vertices I(G) ⊆ T[mr(G), n].

Definition 2.10. Let G be a graph on n vertices. If I(G) = T[k, n] for some

nonnegative integer k, we say that I(G) is a trapezoid.

Observation 2.11. If I(G) is a trapezoid then I(G) = T[mr(G), n].

Definition 2.12. Let G be a graph. Then I(G)→ is the set that results from

adding (1, 0) to each element of I(G). Similarly, I(G)↑ is the set that results from

adding (0, 1) to each element of I(G).

Definition 2.13. If Q is a subset of N
2 and n is a positive integer, we let

[Q]n = Q ∩ N
2
≤n.

Definition 2.14. If Q is a subset of N
2, we define the northeast expansion of Q

as

Qր = Q + N
2.
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2.2. Graph theory.

Definition 2.15. A set of vertices in a graph G is an independent set if its

vertices are pairwise non-adjacent. The independence number of G, denoted α(G), is

the size of the largest independent set in G.

Definition 2.16. A clique in a graph is a set of vertices which are pairwise

adjacent. A complete graph is a graph whose vertex set forms a clique. The complete

graph on n vertices is notated Kn.

Definition 2.17. Given two graphs G and H, the union of G and H is the

graph (V (G)∪ V (H), E(G)∪E(H)) and is written G∪H. Note that the vertex sets

of G and H need not be disjoint.

Definition 2.18. Given two graphs G and H with V (G) ∩ V (H) = ∅, the join

of G and H, written G ∨ H, is the graph with vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}.

Definition 2.19. We abbreviate the disjoint union K1 ∪ . . . ∪ K1 (n times) to

nK1. So nK1 = Kc
n, the graph consisting of n isolated vertices.

Definition 2.20. A bipartite graph is a graph whose vertices can be partitioned

into two independent sets. Given m,n ∈ N, the graph mK1∨nK1 is called a complete

bipartite graph and is written Km,n. The graph Km ∨ nK1, m ≥ 1 and n ≥ 2, is

called a clique-star, and is written KSm,n.

Definition 2.21. A graph G is chordal if there are no induced cycles, Ck, where

k ≥ 4.

Definition 2.22. Let G be a graph. Then a cover of G is a set of subgraphs of

G such that the union of the edge sets is equal to E(G).

Definition 2.23. A clique cover of G is a cover of G consisting of only cliques.

The clique cover number of G, written cc(G), is the smallest number of cliques in a

clique cover of G.

Definition 2.24. Let G be a graph. Then a clique/clique-star cover of G is a

cover of G consisting of only cliques and clique-stars.

Definition 2.25. If G is a graph and vw ∈ E(G), subdividing vw is the action

of creating a new graph Ge from G by adding a new vertex u, and adjusting the edge

set as shown:

Ge = (V (G) ∪ {u}, (E(G)\{vw}) ∪ {uv, uw}).
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3. Previous results and lemmata. The following two results are Corollary

2.7 and Theorem 3.6 from [6].

Theorem 3.1. For a connected graph G, mr+(G) ≥ α(G).

Theorem 3.2. Let G be a connected chordal graph on n ≥ 2 vertices. Then

mr+(G) = cc(G).

The following is Lemma 2.11 from [7] (see the first definition in [7] for the signif-

icance of extra edges).

Lemma 3.3. Let G = (V,E) be a graph and v be a vertex with exactly two

neighbors r1 and r2. If v is connected to both neighbors by single edges, then

M+(G) = M+(H)

where H is the graph obtained from G − v by connecting r1 and r2 by an additional

edge.

Assuming H has n vertices, this is equivalent to n + 1 − mr+(G) = n − mr+(H)

or mr+(G) = mr+(H) + 1.

Note that if r1 and r2 are not adjacent in G, then e = r1r2 is an edge in H and

G = He. Consequently we have the following.

Corollary 3.4. If G is a graph with edge e then

mr+(Ge) = mr+(G) + 1.

The following lemma is a weaker result for the minimum rank of Ge and is labeled

as Lemma 2.1 in both [8] and [3].

Lemma 3.5. If G is a graph with edge e, then

mr(G) ≤ mr(Ge) ≤ mr(G) + 1.

We will also need Observation 1 and Theorem 11 from [5].

Observation 3.6. A connected graph G on 2 or more vertices has mr(G) = 1 if

and only if it is complete.

Theorem 3.7. Given a connected graph G, the following are equivalent.

1. mr+(G) ≤ 2.

2. Gc is the union of complete bipartite graphs.

3. G is (Kc
3, P4)-free. [G is P4-free with α(G) ≤ 2 ].

The following 4 results are Observation 2.7, Proposition 1.4, Lemma 1.1 and

Theorem 7.1 from [4].
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Observation 3.8. Let G be a graph. If (r, s) ∈ I(G), then (s, r) ∈ I(G) also.

Proposition 3.9. Let A,B, and C be real symmetric n×n matrices with A+B =

C and let A(i) be a principal submatrix of A of size (n − 1) × (n − 1) obtained by

deleting the ith row and column. Then we have the following properties:

Interlacing π(A) − 1 ≤ π(A(i)) ≤ π(A) and ν(A) − 1 ≤ ν(A(i)) ≤ ν(A).

Subadditivity π(C) ≤ π(A) + π(B) and ν(C) ≤ ν(A) + ν(B).

Lemma 3.10 (Northeast Lemma). Let G be a graph on n vertices and suppose

that A ∈ S(G) with pin(A) = (π, ν). Then for every pair of integers r ≥ π and s ≥ ν

satisfying r + s ≤ n, there exists a matrix B ∈ S(G) with pin(B) = (r, s).

Theorem 3.11. Let G be a graph and let M ∈ S(G) be a real symmetric matrix

with partial inertia (k, 0), k > 1. Then there exists a matrix M ′ ∈ S(G) with partial

inertia (r, s) satisfying r < k and s < k.

Corollary 3.12. Let G be a graph and suppose that (2, 0) ∈ I(G). Then

(1, 1) ∈ I(G).

Lemma 3.13. For any positive integer n, there exists an orthogonal n×n matrix

with all nonzero entries.

Proof. The case n = 1 is trivial. If n = 2, we can use the matrix

1√
2

[

1 1

1 −1

]

.

Thus we may assume n ≥ 3.

The matrix Q = In − 2
n
Jn, where Jn is the n × n all ones matrix, is symmetric,

and

QT Q = (In − 2

n
Jn)2

= In − 4

n
Jn +

4

n2
J2

n

= In − 4

n
Jn +

4

n2
nJn

= In.

So Q is orthogonal. Since n 6= 2, every entry of this matrix is nonzero.

4. Basic graphs and associated covers.

4.1. Complete graphs. For the case G = K1, it is clear that I(K1) = T[0, 1].

Proposition 4.1. If G = Kn, n ≥ 2, then I(G) = T[1, n].
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Proof. Since mr(G) = 1 by Observation 3.6, {(1, 0), (0, 1)} ∈ I(G) by Observa-

tions 2.6 and 3.8. By the Northeast Lemma, I(G) = T[1, n].

4.2. Complete bipartite graphs.

Theorem 4.2. If m,n ∈ N, with m ≤ n then

I(Km,n) = T[n,m + n] ∪ [{(1, 1)}ր]m+n.

Proof. By the Northeast Lemma, it suffices to show that (1, 1) ∈ I(Km,n) and

mr+(Km,n) = n. Let X and Y be the bipartite sets of Km,n with cardinalities m and

n respectively. Assume the vertices of Y precede all vertices of X. Let Jn,m be the

n × m all ones matrix and consider the matrix

[

0 Jn,m

Jm,n 0

]

∈ S(Km,n).

Note that the rank of this matrix is 2, and since the trace is 0, it must have one

positive and one negative eigenvalue. So, (1, 1) ∈ I(Km,n).

By Theorem 3.1, mr+(Km,n) ≥ α(Km,n). Since Y is an independent set of

cardinality n, we have mr+(Km,n) ≥ n. We now construct the required matrix. By

Lemma 3.13, let Q be an n×n orthogonal matrix with all non-zero entries. Let B be

the matrix obtained from taking the first m columns of Q. Then consider the matrix

[

In

BT

]

[

In B
]

=

[

In B

BT Im

]

∈ S(Km,n).

This matrix is positive semidefinite and its rank is n. So mr+(Km,n) ≤ n. Therefore,

mr+(Km,n) = n.

4.3. Clique-stars.

Lemma 4.3. Every clique-star KSm,n has minimum rank equal to 2 and (1, 1) ∈
I(KSm,n).

Proof. Note that every clique-star KSm,n can be written as a complete graph on

m + n vertices minus the edge set of a complete graph on n vertices. It follows that,

A =

[

Jm Jm,n

Jn,m 0n

]

∈ S(KSm,n).

Since KSm,n is not a complete graph, 2 ≤ mr(KSm,n) ≤ rank(A) = 2. Also

pin(A) = (1, 1) ∈ I(G).
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Theorem 4.4. If G = KSm,n then I(G) = T[n, n + m] ∪ [{(1, 1)}ր]n+m.

Proof. Since G is a clique-star, it is a chordal graph. So, by Theorem 3.2,

mr+(G) = cc(G) = n. By Lemma 4.3 and the Northeast Lemma, the point (1,1) and

all points northeast are included. Therefore, I(G) = T[n, n + m] ∪ [{(1, 1)}ր]n+m.

Example 4.5. Consider KS2,3 (G46).

Then I(KS2,3) = T[3, 5] ∪ [{(1, 1)}ր]5 and its inertia plot is the following figure.

Each of the following graphs fall into one of the preceding classes so their inertia

sets are determined: G1, G3, G7, G13, G18, G29, G44, G46, G52, G77, G146, G161,

G175, G201, G208. Note that there are additional graphs that can be categorized as

clique-stars, but for convenience they will be included in a following section.

4.4. Clique covers. Let K be a clique in a graph on n vertices. Define the

n × n matrix JK by

(JK)ij =

{

1 if i, j ∈ K

0 otherwise
.

Theorem 4.6. Let G be a graph on n vertices. If mr(G) = cc(G), then I(G) =

T[mr(G), n].

Proof. Let k = cc(G) = mr(G). Since I(G) ⊆ T[k, n] by Observation 2.9, it

suffices to show I(G) ⊇ T[k, n]. Let M1,M2, ...,Mk be the cliques in a minimum
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clique cover of G and let (m, k −m) be on the minimum rank line of G where m ∈ N

such that 0 ≤ m ≤ k.

Let Ai = JMi
for i = 1, ...,m and let Ai = −(m + 1)JMi

for i = m + 1, ..., k.

(k = 0 and k = m are allowed.) Let A = A1 + A2 + ... + Ak. Since an off-diagonal

entry in A1 + A2 + ... + Am is at most m and each non-zero off-diagonal entry in

Am+1 + ... + Ak is at most −(m + 1), every off-diagonal entry in A corresponding to

an edge in G is non-zero. Therefore, A ∈ S(G). By Subadditivity in Proposition 3.9,

π(A) ≤ m and ν(A) ≤ k − m. Because k = mr(G) ≤ rank(A) = π(A) + ν(A) ≤ k,

π(A) = m and ν(A) = k − m. Therefore, (m, k − m) ∈ I(G).

By the Northeast Lemma I(G) ⊇ T[k, n].

Example 4.7. Consider G40.

Because mr(G40) = cc(G40) = 3, we know I(G40) = T[3, 5].

Similarly, all of the inertia sets of the following graphs are determined by this

theorem: G6, G14, G15, G17, G34, G35, G36, G40, G41, G42, G45, G47, G49, G51,

G93, G94, G95, G97, G102, G111, G112, G113, G115, G117, G119, G120, G123,

G130, G133, G134, G136, G137, G139, G142, G144, G148, G150, G152, G156, G157,

G160, G163, G164, G165, G167, G177, G178, G179, G180, G181, G183, G191, G192,

G193, G195, G200, G202, G205, G207. All of the inertia sets for these graphs are

trapezoids.

4.5. Clique/Clique-star covers.

Theorem 4.8. Let G be a graph on n vertices. Assume that G has a cover with

p cliques and q clique-stars with p + 2q ≤ n. Then (p − k + q, k + q) ∈ I(G) for

k = 0, 1, 2, ..., p.

Proof. Let N = KSm,n0
= Km ∨ n0K1 be a clique-star in G. Define the n × n

matrix HN by

(HN )ij =

{

1 if ij is an edge in N or i = j ∈ V (Km)

0 otherwise
.
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Note that the rank of HN is 2, as in Lemma 4.3, and the partial inertia is (1, 1). Let

M1,M2, ...,Mp be the cliques in the cover of G. Let N1, N2, ..., Nq be the clique-stars

in the cover of G.

Let Ai = −JMi
for i = 1, ..., k and Ai = (k + 1)JMi

for i = k + 1, ..., p. (k = 0

and k = p are allowed.) Let Bj = (k + 1)HNj
for j = 1, ..., q. Let A = A1 + A2 +

...+Ap +B1 +B2 + ...+Bq. Our construction ensures that if the i, j entry is nonzero

in any of A1, A2, ..., Ap, B1, B2, ..., Bq, it is nonzero in A. Therefore, A ∈ S(G). By

Subadditivity in Proposition 3.9, π(A) ≤ p − k + q and ν(A) ≤ k + q.

Since p− k + q + k + q ≤ n, by the Northeast Lemma, (p− k + q, k + q) ∈ I(G).

Example 4.9. Consider G80.

There is a cover of G80 with 2 cliques and one clique-star. Therefore, by Theo-

rem 4.8, (3, 1), (2, 2), (1, 3) ∈ I(G80). Further, mr(G80) = 4 and since G80 is

chordal, mr+(G80) = cc(G80) = 5 by Theorem 3.2. Therefore, I(G80) = T[5, 6] ∪
{(3, 1), (2, 2), (1, 3)}.

The previous theorem and method in the example may be applied to determine

the inertia sets of the graphs G79, G80, G81, G92, G100, G114, G135, G138, and

G162.

5. Graphs whose minimal positive semidefinite rank is 2.

Theorem 5.1. Let G 6= Kn be a connected graph on n ≥ 3 vertices for which Gc

is a disjoint union of complete bipartite graphs. Then

I(G) = T[2, n].

Proof. The graph G is not complete so 2 ≤ mr(G). By Theorem 3.7, mr+(G) ≤ 2.

Since mr(G) ≤ mr+(G) we have mr(G) = mr+(G) = 2. Therefore, (2, 0) ∈ I(G).

By Corollary 3.12 (1, 1) ∈ I(G). Therefore, T[2, n] ⊆ I(G). By Observation 2.9,

I(G) ⊆ T[mr(G), n] = T[2, n].

This theorem may be applied to determine the inertia sets of graphs G50, G190,

G199, G203, G204, and G206. None of these graphs is complete and their comple-

ments are 2K2 ∪ K1,K2,2 ∪ K2, 2P3,K1 ∪ K2 ∪ P3, 3K2, and 2K2 ∪ 2K1 respectively.
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Consequently, the inertia set of graph G50 (W5) is T[2, 5] and the inertia set of each

of graphs G190, G199, G203, G204, and G206 is T[2, 6].

6. Edge techniques.

6.1. Edge subdivision.

Theorem 6.1 (Edge Subdivision Theorem for Partial Inertias). Let G be a graph

and e be an edge of G. Let Ge be the graph obtained from G by subdividing the edge

e. If (r, s) ∈ I(G), then (r + 1, s) and (r, s + 1) are contained in I(Ge).

Proof. Let v, w be the vertices of e and let u be the new vertex in Ge that is

adjacent to v and w. Let

A =





d1 a bT

a d2 cT

b c B



 ∈ S(G)

with pin(A) = (r, s) and the first two rows and columns of A labeled by v and w

so that a 6= 0. If necessary perform a similarity by

[−1 0T

0 In−1

]

to ensure that a is

positive. Note that the inertia is a similarity invariant. Let

A1 =









−a −a −a 0

−a −a −a 0

−a −a −a 0

0 0 0 0









.

Note that pin(A1) = (0, 1). Let

Ae =









0 0 0 0T

0 d1 a bT

0 a d2 cT

0 b c B









+









−a −a −a 0

−a −a −a 0

−a −a −a 0

0 0 0 0









=









−a −a −a 0T

−a d1 − a 0 bT

−a 0 d2 − a cT

0 b c B









.

Then Ae ∈ S(Ge). Subtracting row 1 from rows 2 and 3 yields








−a −a −a 0T

0 d1 a bT

0 a d2 cT

0 b c B









and subtracting column 1 from columns 2 and 3 results in








−a 0 0 0T

0 d1 a bT

0 a d2 cT

0 b c B









=
[

−a
]

⊕ A.
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So, pin(Ae) = (r, s + 1) and (r, s + 1) ∈ I(Ge).

Since (r, s) ∈ I(G), we know (s, r) ∈ I(G) by Observation 3.8. Then by the proof

above, (s, r + 1) ∈ I(Ge), and by Observation 3.8 again, (r + 1, s) ∈ I(Ge).

Corollary 6.2. Let G be a graph such that I(G) is a trapezoid. If an edge e is

subdivided and the minimum rank of the resulting graph Ge increases, then I(Ge) is

also a trapezoid.

Proof. Let (r, s) be a point on the minimum rank line for Ge. Then either r or

s is positive. This implies that either (r, s − 1) or (r − 1, s) is on the minimum rank

line for G. Because I(G) is a trapezoid, (r, s− 1) ∈ I(G) or (r− 1, s) ∈ I(G). By the

Edge Subdivision Theorem for Partial Inertias, (r, s) ∈ I(Ge).

Corollary 6.3. Let G be a graph with edge e and let Ge be the graph that results

from the subdivision of e. Then I(G)↑ ∪ I(G)→ ⊆ I(Ge).

Proof. Let (r, s) ∈ I(G)↑ ∪ I(G)→. Then (r − 1, s) ∈ I(G) or (r, s − 1) ∈ I(G).

By the Edge Subdivision Theorem for Partial Inertias, if (r − 1, s) ∈ I(G), then

(r, s) ∈ I(Ge). Similarly if (r, s − 1) ∈ I(G), then (r, s) ∈ I(Ge).

Example 6.4. Consider G48.

This is K4 with one edge subdivision. By Lemma 3.5, mr((K4)e) is either mr(K4)

or mr(K4) + 1. Because G48 is not a complete graph, we know that mr(G48) =

mr(K4) + 1 = 2. Therefore, by Corollary 6.2, I(G48) = T [2, 5].

Graphs G151, G153, G154 are edge subdivisions of G48, each with minimum rank

of 3. Therefore, the inertia sets of each of these graphs is T[3, 6] by Corollary 6.2.

The inertia sets of the following graphs are determined by Corollary 6.2: G16,

G31, G37, G38, G43, G48, G83, G96, G98, G99, G103, G104, G105, G118, G122,

G124, G126, G127, G128, G140, G141, G147, G151, G153, G154, G166, G168, G169,

G170, G171, G173, G185, G186, G194. Note that the inertia set of each of these

graphs is a trapezoid.

Each of the graphs G30, G78, G129, G145 is an edge subdivision of a graph with

lower minimum rank. Their inertia sets are determined by Corollary 6.3 and Corollary

3.4. None of the inertia sets of these graphs is a trapezoid.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 53-78, January 2010



ELA

66 W. Barrett, C. Jepsen, R. Lang, E. McHenry, C. Nelson, and K. Owens

G121, G125, and G149 are edge subdivisions of G40, G41, and G47 respectively.

Because mr(G121) = 3 = mr(G40) we cannot use Corollary 6.2 to obtain I(G121).

However, by Corollary 3.4 we know mr+(G121) = mr(G40) + 1 = 4. By Observation

2.6, the minimum rank line is nonempty so we must have (1, 2) or (2, 1) in I(G121).

However, by Observation 3.8 if one of these points is in I(G121), both points are in

I(G121). Therefore, I(G121) = T[4, 6] ∪ {(1, 2), (2, 1)}. By a similar argument, the

inertia set of both G125 and G149 is also T[4, 6] ∪ {(1, 2), (2, 1)}.

Corollary 6.2 can also be applied to determine the inertia sets of Pn and Cn for

all n.

Observation 6.5. For all positive integers n, I(Pn) = T[n − 1, n] and for all

positive integers n ≥ 3, I(Cn) = T[n − 2, n]. The inertia set of Pn was observed in

[4] using a different method.

6.2. Edge deletion.

Theorem 6.6 (Edge Deletion Theorem for Partial Inertias). Let G be a graph

and e be an edge of G. Let G\e be the graph obtained from G by removing the edge

e. If (r, s) ∈ I(G), with r + s ≤ n − 1, then (r + 1, s) and (r, s + 1) are contained in

I(G\e).

Proof. Let v, w be the vertices of e. Let

A =





d1 a bT

a d2 cT

b c B



 ∈ S(G)

with pin(A) = (r, s) and the first two rows and columns of A labeled by v and w

so that a 6= 0. If necessary perform a similarity by

[−1 0T

0 In−1

]

to ensure that a is

positive. Let

A1 =





−a −a 0

−a −a 0

0 0 0



 .

Note that pin(A1) = (0, 1). Let

A′ = A + A1 =





d1 − a 0 bT

0 d2 − a cT

b c B



 ∈ S(G\e).

Then rankA′ ≤ rankA + rankA1 = rankA + 1.
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Because rank(A) = r+s, it follows that rank(A′) ≤ r+s+1. By Proposition 3.9,

π(A′) ≤ π(A) + π(A1) = r and ν(A′) ≤ ν(A) + ν(A1) = s + 1. Since r + s ≤ n − 1,

we have that r + s + 1 ≤ n, so by the Northeast Lemma, (r, s + 1) ∈ I(G\e).

Since (r, s) ∈ I(G), we know (s, r) ∈ I(G) by Observation 3.8. Then by the proof

above, (s, r + 1) ∈ I(G\e), and by Observation 3.8 again, (r + 1, s) ∈ I(G\e).

Corollary 6.7. Let G be a graph such that I(G) is a trapezoid. If an edge e is

deleted and the minimum rank of the resulting graph G\e increases, then I(G\e) is

also a trapezoid.

Proof. Proposition 2.1 of [9] states that mr(G\e) ≤ mr(G) + 1. So we may say

that mr(G\e) = mr(G) + 1. Let (r, s) be a point on the minimum rank line for

G\e. Then either r or s is positive. This implies that either (r, s − 1) or (r − 1, s) is

on the minimum rank line for G. Because I(G) is a trapezoid, (r, s − 1) ∈ I(G) or

(r−1, s) ∈ I(G). By the Edge Deletion Theorem for Partial Inertias, (r, s) ∈ I(G\e).

Corollary 6.8. Let G be a graph with edge e and let G\e be the graph that

results from the deletion of e. Then I(G)↑ ∪ I(G)→ ⊆ I(G\e).

Proof. Let (r, s) ∈ I(G)↑ ∪ I(G)→. Then (r − 1, s) ∈ I(G) or (r, s − 1) ∈ I(G).

By the Edge Deletion Theorem for Partial Inertias if (r − 1, s) ∈ I(G), then (r, s) ∈
I(G\e). Similarly if (r, s − 1) ∈ I(G), then (r, s) ∈ I(G\e).

Two graphs whose inertia sets are determined by the preceding argument are

G188 and G189. Both graphs use G199 to determine their inertia sets.

We use the fact from Section 5 that mr(G199) = 2 and that I(G199) = T[2, 6].

First, consider the graph G188. This graph is obtained by deleting the top hor-

izontal edge of G199. An easy way to see this is the complement of G188 is a path

on 6 vertices and deleting this edge would make the complement of the new graph a

path on 6 vertices.

Since mr(G188) = 3 and I(G199) = T[2, 6], by Corollary 6.7 we have I(G188) =

T[3, 6].

Now, consider the graph G189. This graph is obtained by deleting the rightmost

vertical edge of G199. An easy way to see this is the complement of G189 is K3∪K1,2

and deleting this edge would make the complement of the new graph K3 ∪ K1,2.
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It is known that mr(G189) = 2 (see for example [5]). We have that the 2-line ⊆
I(G199) so by the Edge Deletion Theorem, the 3-line ⊆ I(G189). However, this is not

the entire inertia set for G189 as it was for G188. By Observation 2.6, we know there

is at least one point on the minimum rank line. Because mr+(G189) ≥ α(G189) = 3

and consequently the points (2,0) and (0,2) 6∈ I(G189), we must have (1,1) in the

inertia set. Thus, I(G189) = T[3, 6] ∪ {(1, 1)}.

7. Joins.

Theorem 7.1. Let G be a connected graph on n ≥ 2 vertices. Then

[I(G ∨ K1)]n = I(G).

Proof. Forward Containment: Let (r, s) ∈ [I(G ∨ K1)]n, let A ∈ S(G ∨ K1)

with pin(A) = (r, s), and let v be the vertex associated with K1 in G ∨ K1. Then

A(v) ∈ S(G). So by Proposition 3.9 π(A(v)) ≤ π(A) = r and ν(A(v)) ≤ ν(A) = s.

Since (π(A(v)), ν(A(v))) ∈ I(G) and r+s ≤ n, we have (r, s) ∈ I(G) by the Northeast

Lemma.

Reverse Containment: Let (r, s) ∈ I(G) and let A ∈ S(G) with pin(A) = (r, s).

Since A is connected, no row of A is zero. Let a1, a2, ..., an be the row vectors of A and

let x = (x1, x2, ..., xn)T be any vector in R
n. Then a1 · x = 0, a2 · x = 0, ..., an · x = 0

are the equations of n hyperplanes through the origin in R
n. Let y be a vector that

lies on none of these hyperplanes so ai ·y 6= 0 for i = 1, ..., n. Let B =

[

A Ay

yT A yT Ay

]

.

Then B ∈ S(G ∨ K1). Since Ay is a linear combination of the columns of A and
[

yT A yT Ay
]

is a linear combination of the rows of
[

A Ay
]

, we have rank(A) =

rank(B). By Proposition 3.9, π(A) ≤ π(B) and ν(A) ≤ ν(B). This implies rank(A) =

π(A) + ν(A) ≤ π(B) + ν(B) = rank(B) = rank(A). Therefore, π(B) = π(A) = r and

ν(B) = ν(A) = s. Since r + s ≤ n, (r, s) = (π(B), ν(B)) ∈ [I(G ∨ K1)]n.

We thank Raphael Loewy for the essential idea in the proof of the reverse con-

tainment.

Corollary 7.2. Let G be a connected graph on n vertices. Then mr(G) =

mr(G ∨ K1) and mr+(G) = mr+(G ∨ K1).

Example 7.3. Consider W6 (G187)
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which is the join of C5 (G38) and K1. The inertia set of C5 was determined in Section

6. Then by Theorem 7.1, [I(W6)]5 = I(C5) = T[3, 5]. It follows that I(W6) = T[3, 6].

The inertia sets of G187 and G197 are determined by Theorem 7.1. We could

have also used Theorem 7.1 to determine the inertia sets of 28 other connected graphs

on 6 or fewer vertices including all clique-stars that are not trees.

8. Unions.

Theorem 8.1. Let G and H be connected graphs with I(G) = T[mr(G), |G|] and

I(H) = T[mr(H), |H|]. If mr(G ∪ H) = mr(G) + mr(H), then

I(G ∪ H) = T[mr(G) + mr(H), |G ∪ H|].

Proof. By Observation 2.9 and the hypothesis,

I(G ∪ H) ⊆ T[mr(G ∪ H), |G ∪ H|] = T[mr(G) + mr(H), |G ∪ H|].

To prove I(G∪H) ⊇ T[mr(G)+mr(H), |G∪H|], let (r, s) ∈ T[mr(G)+mr(H), |G∪H|]
such that r + s = mr(G) + mr(H). Then either r ≥ mr(G) or s ≥ mr(H).

Without loss of generality assume r ≥ mr(G). By hypothesis (mr(G), 0) ∈ I(G).

Since r + s−mr(G) = mr(H) then (r−mr(G), s) ∈ I(H) as a point on the minimum

rank line.

Let A ∈ S(G) such that pin(A) = (mr(G), 0) and let B ∈ S(H) such that

pin(B) = (r − mr(G), s).

Let n = |G ∪ H|. Define symmetric n × n matrices Â = [âi,j ] and B̂ = [b̂i,j ] by

âi,j =

{

ai,j if i, j ∈ V (G)

0 otherwise
,

b̂i,j =

{

bi,j if i, j ∈ V (H)

0 otherwise
.

Then aÂ + bB̂ ∈ S(G ∪ H) for some a, b ∈ R
+. Now

π(aÂ + bB̂) ≤ π(aÂ) + π(bB̂) = π(Â) + π(B̂) = π(A) + π(B) = r.

Similarly, ν(aÂ + bB̂) ≤ s. But,

r + s = mr(G) + mr(H) = mr(G ∪ H) ≤ rank(aÂ + bB̂)

= π(aÂ + bB̂) + ν(aÂ + bB̂) ≤ r + s.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 53-78, January 2010



ELA

70 W. Barrett, C. Jepsen, R. Lang, E. McHenry, C. Nelson, and K. Owens

Therefore, r = π(aÂ + bB̂) and s = ν(aÂ + bB̂) which implies that (r, s) ∈
I(G∪H). Since I(G∪H) contains the line r + s = mr(G)+mr(H) by the Northeast

Lemma, it contains T[mr(G) + mr(H), |G ∪ H|].

Example 8.2. Consider G158.

Since G158 = W5 ∪ K2, I(W5) = T[2, 5], I(K2) = T[1, 2], and mr(W5 ∪ K2) =

mr(W5) + mr(K2), then by Theorem 8.1, I(G158) = T[3, 6].

This theorem may be applied to determine the inertia sets of graphs G143, G158,

G159, G172, G182, G184, G196, and G198. We list the decompositions for each

below:

G143 = G48 ∪ K2, G158 = W5 ∪ K2, G159 = W5 ∪ K2, G172 = G48 ∪ K3, G182 =

W5 ∪ K3, G184 = W5 ∪ K3, G196 = W5 ∪ K4, and G198 = G190 ∪ K2.

9. Inertia sets for all connected graphs on 6 or fewer vertices. We have

now found the inertia sets for all connected graphs on 6 or fewer vertices but one.

This graph is G174, also known as the 3-prism.

We note that mr(3-prism)=3.

To find the inertia set of the 3-prism we construct the following 6 × 6 matrix B,

creating a matrix A such that each off-diagonal entry of A is nonzero.

B =

[

A I

I A−1

]

Since
[

I A−1
]

= A−1
[

A I
]

we have rank(B) = 3. We use two different matrices,

A, and Observation 3.8 to obtain the possible points on the minimum rank line for

I(3-prism).
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The following matrix yields the axis points on the minimum rank line.

A =





2 1 1

1 2 1

1 1 2



 , A−1 =
1

4





3 −1 −1

−1 3 −1

−1 −1 3



 .

Because A is a positive definite matrix we know that A has all positive eigenvalues.

Then pin(A) = (3, 0) and pin(−A) = (0, 3).

To obtain the points (2, 1) and (1, 2) we use the following matrix A.

A =





0 1 1

1 0 1

1 1 0



 , A−1 =
1

2





−1 1 1

1 −1 1

1 1 −1





Because det A = 2 and trace A = 0, pin(A) = (1, 2). Then by Observation 3.8 we

also obtain the point (2, 1).

Consequently, for the principal submatrix A of B, pin(A) can take on the values

(3, 0), (2, 1), (1, 2), (0, 3). Since rank(B) = 3, it follows that the partial inertia of B

can be any of (3, 0), (2, 1), (1, 2), (0, 3). Then by the Northeast Lemma, I(3-prism) =

T[3, 6].

The following table displays the inertia sets of all connected graphs with 6 or

fewer vertices. Note that n denotes the number of vertices in the graph.
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Table 9.1

I(G) Graph

T[0, 1] G1 (K1)

T[1, n] G3, G7, G18, G52, G208, (Kn, n > 1)

T[n − 1, n] G6, G14, G31, G83, (Pn, n > 2)

T[n − 2, n] G16, G38, G105, (Cn, n > 3)

T[2, 4] G15, G17

T[2, 5] G42, G45, G48–G51

T[3, 5] G34–G37, G40, G41, G43, G47

T[2, 6] G165, G190, G191, G194, G195, G199, G200, G203–

G207

T[3, 6] G117, G119, G126, G130, G133, G134, G140–G144,

G150, G151 , G153, G154, G156–G160, G163, G166,

G168–G174, G177–G188, G192, G193, G196, G198,

G202

T[4, 6] G93–G99, G102–G104, G111–113, G115, G118, G120,

G122–124, G127, G128, G136, G137, G139, G147, G148,

G152, G164, G167

T[3, n] ∪ {(1, 1)} G13, G44, G46, G175, G189, G197, G201

T[4, n] ∪ {(2, 1), (1, 2)} G30, G92, G100, G114, G121, G125, G129, G135, G138,

G145, G149, G162

T[4, n] ∪ [{(1, 1)}ր]n G29, G146, G161

T[5, 6] ∪ [{(1, 1)}ր]6 G77

T[5, 6] ∪ [{(2, 1), (1, 2)}ր]6 G78

T[5, 6] ∪ {(3, 1), (2, 2), (1, 3)} G79–G81

10. Balanced inertia. The concept of balanced inertia was introduced by Bar-

ioli and Fallat [2].

Definition 10.1. A graph G is said to have balanced inertia if there is a point

(r, s) ∈ I(G) such that |r − s| ≤ 1 and r + s = mr(G).

Observation 10.2. If I(G) is a trapezoid, then G has balanced inertia.

By examining Table 9.1 we have the following theorem.

Theorem 10.3. All graphs on 6 or fewer vertices have balanced inertia.

Not all graphs are inertia balanced. See Theorem 7.3 in [4].

Proposition 10.4. If G is a complete graph, a complete bipartite graph, or a

clique-star, then G has balanced inertia.

Proof. First, (0,0) is in I(K1). By Proposition 4.1, all complete graphs on 2 or
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more vertices have (1,0) ∈ I(Kn) and mr(Kn) = 1. By Theorem 4.2, all complete

bipartite graphs have (1,1) ∈ I(Km,n) and mr(Km,n) = 2. By Lemma 4.3, all clique-

stars have (1,1) ∈ I(KSm,n) and mr(KSm,n) = 2. Thus complete graphs, complete

bipartite graphs, and clique-stars have balanced inertia.

Theorem 10.5. Let G be a graph on n vertices. If mr(G) = cc(G), then G has

balanced inertia.

Proof. By Theorem 4.6, I(G) = T[mr(G), n]. By Observation 10.2, G has bal-

anced inertia.

Theorem 10.6. Let G be a graph with edge e and suppose mr(Ge) = mr(G) + 1.

If G has balanced inertia, then so does Ge.

Proof. Let (r, s) ∈ I(G) with r + s = mr(G) and |r − s| ≤ 1. By Theorem 6.1,

(r + 1, s) and (r, s + 1) are contained in I(Ge). Further, r + s + 1 = mr(Ge). If r ≥ s

then |r − (s + 1)| ≤ 1. If r < s then |r + 1 − s| = 0. Therefore, Ge has balanced

inertia.

Theorem 10.7. Let G be a graph with edge e and suppose mr(G\e) = mr(G)+1.

If G has balanced inertia, then so does G\e.

Proof. Let (r, s) ∈ I(G) with r + s = mr(G) and |r − s| ≤ 1. By Theorem 6.6,

(r + 1, s) and (r, s + 1) are contained in I(G\e). Further, r + s + 1 = mr(G\e). If

r ≥ s then |r − s + 1| ≤ 1. If r < s then |r + 1− s| = 0. Therefore, G\e has balanced

inertia.

Theorem 10.8. If G has balanced inertia, then so does G ∨ K1.

Proof. Let (r, s) be in I(G) with |r − s| ≤ 1 and r + s = mr(G). By Corollary

7.2, mr(G) = mr(G ∨ K1) and by Theorem 7.1, I(G) = [I(G ∨ K1)]n. Since (r, s) ∈
I(G ∨ K1), G ∨ K1 has balanced inertia.

Theorem 10.9. If I(G) = T[mr(G), |G|], I(H) = T[mr(H), |H|], and

mr(G ∪ H) = mr(G) + mr(H), then G ∪ H has balanced inertia.

Proof. By Theorem 8.1, I(G∪H) = T[mr(G)+mr(H), |G∪H|]. By Observation

10.2, G ∪ H has balanced inertia.

11. The Hermitian case. We now explain how to extend our results to the

Hermitian case. We have elected to postpone this discussion to the penultimate

section in order to avoid the awkwardness of including qualifying statements for the

real symmetric and complex Hermitian case in the statements of every theorem. We

recall the following definitions from [4] and [5].
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Definition 11.1. Given a graph G on n vertices, let H(G) be the set of all

complex Hermitian n × n matrices A = [aij ] such that aij 6= 0, i 6= j, if and only

if ij is an edge of G. Let H+(G) be the subset of H(G) consisting of all positive

semidefinite matrices in H(G). Then the Hermitian minimum rank of G is

hmr(G) = min
A∈H(G)

{rank(A)}.

and the positive semidefinite Hermitian minimum rank is

hmr+(G) = min
A∈H+(G)

{rank(A)}.

The Hermitian inertia set of G is

hI(G) = {(r, s)|pin(A) = (r, s) for some A ∈ H(G)}.

We will let n be the number of vertices of G throughout this section. We also

recall Observations 2.1 and 2.2 from [4].

Observation 11.2. For any graph G, hI(G) ⊆ T[hmr(G), n].

Observation 11.3. For any graph G, I(G) ⊆ hI(G) and hmr(G) ≤ mr(G). It

is known that I(G) can be a strict subset of hI(G) (see page 1184 of [4]).

We must now briefly refer to some results on zero forcing from [1]. (The definition

of the zero forcing number will not be needed.) Proposition 2.4 and Proposition 4.3

are

Proposition 11.4. For any graph G, M(G) ≤ Z(G).

Proposition 11.5. For any graph G with |G| ≤ 6, M(G) = Z(G).

Reformulating these two statements in terms of minimum rank we have

mr(G) ≥ n − Z(G) for any graph G,

mr(G) = n − Z(G) for any graph G with |G| ≤ 6.

From the discussion in Section 5 of [1], we also have

hmr(G) ≥ n − Z(G) for any graph G.

Consequently, if G is a graph with |G| ≤ 6,

n − Z(G) = mr(G) ≥ hmr(G) ≥ n − Z(G).
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So mr(G) = hmr(G) for all graphs G with |G| ≤ 6. It follows that if I(G) is a

trapezoid, we have

I(G) = T[mr(G), n] = T[hmr(G), n] ⊇ hI(G) ⊇ I(G)

and I(G) = hI(G).

We next consider graphs in Table 9.1 whose inertia sets are not trapezoids. First

note that we can read off mr+(G) from Table 9.1 from its “trapezoidal part” T[k, n].

We have mr+(G) = k. By comparing these values against the values of hmr+(G) in

Table 4.1 of [6], it is straightforward to check that mr+(G) = hmr+(G) for all graphs

G on 6 or fewer vertices. This is sufficient to guarantee that hI(G) = I(G) for all

graphs in Table 9.1 except possibly the last line. But graphs G79, G80, and G81

are trees. As noted on page 2 of [4], I(G) = hI(G) whenever T is a tree. Thus we

establish the following result.

Theorem 11.6. If G is a graph on 6 or fewer vertices, then I(G) = hI(G).

The Northeast Lemma and Observation 3.6 hold for hI(G) as well as I(G) while

Theorems 3.1 and 3.2 are true if we replace mr+(G) by hmr+(G). It follows that

I(G) = hI(G) for complete graphs, complete bipartite graphs, and clique-stars.

A Hermitian form of Theorem 4.6 is obtained by replacing mr(G) by hmr(G)

and I(G) by hI(G). However, we do not know any graph for which hmr(G) <

mr(G) = cc(G). Theorem 4.8 is trivially true with I(G) replaced by hI(G) because

I(G) ⊆ hI(G).

If G 6= Kn and Gc is a disjoint union of complete bipartite graphs, we have

1 < hmr(G) ≤ mr(G) = 2 so that by Theorem 5.1,

hI(G) ⊆ T [ hmr(G), n ] = T [ 2, n ] = I(G) ⊆ hI(G).

It follows that Theorem 5.1 holds with I(G) replaced by hI(G).

By examining the proof of Theorem 6.1, we see that if A ∈ H(G), Ae ∈ H(Ge).

It follows that Theorem 6.1 and its corollaries hold with each I replaced by hI. By

similar reasoning, the same holds for Theorem 6.6 and its corollaries.

Theorem 7.1 and its corollary remain true if each I is replaced by hI and mr

and mr+ are replaced by hmr and hmr+, respectively. In the proof of the reverse

containment of Theorem 7.1, the argument takes place in C
n instead of R

n.

Theorem 8.1 is also valid for hI(G) provided each I is replaced by hI and each

mr is replaced by hmr .

The definition of balanced Hermitian inertia is the same as that for balanced

inertia with I(G) replaced by hI(G). Of course, Observation 10.2 remains true for
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hI(G). Because of Theorems 11.6 and 10.3, all graphs on 6 or fewer vertices have

balanced Hermitian inertia. The Hermitian analogues of Proposition 10.4 and the

remaining five theorems in Section 10 are valid as well.

We conclude that within the scope of this paper there is no material difference

between I(G) in the real symmetric case and hI(G) in the complex Hermitian case.

One simply has to make the obvious notational changes and all preceding theorems

remain valid.

12. Conclusion. We have successfully determined the inertia sets for all graphs

on six or fewer vertices using the techniques mentioned in the paper. However, we

note that there are multiple ways to calculate some of the inertias, both with our

own and with previously known methods. For example, almost half of the connected

graphs on 6 or fewer vertices have a cut vertex so we could have used the reduction

formula, Theorem 4.2 in [4], to calculate the inertia set of each of these in terms of

the inertia sets of smaller graphs. However, this method is somewhat cumbersome to

use by hand. We could have also used Theorem 6.1 in [4] to determine the inertia sets

of all trees, but there were so few that this was not needed. By introducing several

new techniques, we were able to determine the inertia sets for all connected graphs

on six and fewer vertices by more efficient methods. These new techniques can be

applied to a large number of graphs with more than six vertices. However, despite

the extensive possibilities of these techniques, they do have their limitations.

The Edge Subdivision Theorem for Partial Inertias has an important limitation.

We know what happens to the inertia set if we subdivide an edge and the minimum

rank increases. However, when the minimum rank remains the same, the theorem no

longer applies and we must rely on other methods. Graphs G121, G125, G149 are

examples of graphs whose minimum rank did not change when an edge was subdivided.

Fortunately, these graphs are sufficiently small that we could compute their inertia

sets in spite of being unable to use the Edge Subdivision Theorem. For larger graphs

the problems may become more frequent and difficult to handle. For example, consider

the graph K4 and subdivide every edge of it once. The minimum rank of this fully

subdivided graph is the same as the minimum rank of the graph with exactly five

edges subdivided. It follows that the inertia set for the fully subdivided graph cannot

be determined by any of our existing techniques and new methods must be developed.

We summarize this as the following question.

Question 12.1. If mr(Ge) = mr(G), how is I(Ge) related to I(G)?

A related question is

Question 12.2. If mr(Ge) = mr(G) and G has balanced inertia, does Ge have

balanced inertia?
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The edge deletion technique works well when the minimum rank of a graph in-

creases but it also has its limitations. This method fails to be useful when the min-

imum rank goes down or remains the same after an edge has been deleted. In this

instance, little can be said about the inertia of the new graph. An analogue to Ques-

tion 12.2 for edge deletion is

Question 12.3. If mr(G\e) = mr(G) and G has balanced inertia, does G\e have

balanced inertia?

The clique cover technique works well in the case that the minimum rank equals

the clique cover number, but is no longer effective when the minimum rank is less

than the clique cover number. For example, consider W6. The clique cover number is

5 but the minimum rank is 3. Using only the clique cover number to determine the

inertia set, we find that we miss both the 4-line and the 3-line. When the clique cover

number is an overestimate of the minimum rank of a graph, we must again rely on

other methods to compute its inertia set. On six vertices, this task was not difficult

because the graphs were frequently trees and it is known how to compute the inertia

sets for these. For graphs of larger order, it is difficult to calculate the inertia sets

using only the clique cover number.

The clique/clique-star cover was a useful asset to our set of techniques. In in-

stances that the clique cover number broke down, we found a combination of cliques

and clique-stars that yielded the minimum rank as well as the entire inertia set by

applying Theorem 4.8. However, we do not know how effective this cover will be for

larger graphs. For example, consider the following graph:

There are several ways we can cover this graph. We can use 2 clique-stars, a clique-

star and 3 cliques, or 6 cliques. By applying Theorem 4.8, we can determine points

in the graph’s inertia set. Doing so gives us that T[6, 8] ∪ [{(2, 2), (4, 1), (1, 4)}ր]8 is

contained in the inertia set. However, we do not know whether the theorem gives us

all the points in that set. The points (3,1) and (1,3) are not given by the theorem

but we do not have a method to say that those points cannot be in the inertia set.

This example motivates our penultimate question:

Question 12.4. For what class of graphs can we determine the entire inertia set

by Theorem 4.8?

In addition to exploring the limitations of our methods, we have developed further

questions by examining Table 9.1. We notice that in the table every graph for which

I(G) is not a trapezoid contains KS1,3 (K1,3) as an induced subgraph. In graph

theory literature, this graph is frequently referred to as a claw, and the properties of
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claw-free graphs have been intensely investigated. Our final question is

Question 12.5. If G is a claw-free graph, is I(G) a trapezoid?
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