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APPLICATIONS TO QUANTUM RESOURCE THEORIES˚
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Abstract. Numerous results are presented that characterize when a complex Hermitian matrix is Birkhoff–James orthog-

onal, in the trace norm, to a (Hermitian) positive semidefinite matrix or set of positive semidefinite matrices. For example,

a simple-to-test criterion that determines which Hermitian matrices are Birkhoff–James orthogonal, in the trace norm, to the

set of all positive semidefinite diagonal matrices is developed. Applications in the theory of quantum resources are explored.

For example, the quantum states that have modified trace distance of coherence equal to 1 (the maximal possible value) are

characterized, and a connection between the modified trace distance of 2-entanglement and the NPPT bound entanglement

problem is established.
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1. Introduction. Birkhoff–James orthogonality was introduced in [20] to provide a definition of or-

thogonality in normed vector spaces that extends the usual one from inner product spaces. Necessary and

sufficient conditions for Birkhoff–James orthogonality of matrices in the operator norm were given in [5],

and a study of Birkhoff–James orthogonality of matrices in the Schatten p-norms as well as operator norm

was performed in [25]. Birkhoff–James orthogonality of a given Hermitian matrix to every member of the

subspace of real diagonal matrices, under the operator norm, was studied in [2].

In this work, we characterize when a given complex Hermitian matrix is Birkhoff–James orthogonal in

the trace norm to a given (Hermitian) positive semidefinite matrix. We then explore numerous consequences

of this main result, such as a simple-to-check characterization of when a given Hermitian matrix is Birkhoff–

James orthogonal in the trace norm to every positive semidefinite diagonal matrix.

Our result has several natural applications in quantum information theory, where (mixed) quantum

states, also known as density matrices, are positive semidefinite trace-one matrices. When working with a

quantum resource theory, it is natural to ask how far a given quantum state is from a particular convex set of

states of interest [29], and the natural norm to use to measure distance is the trace norm [36, Chapter 3]. For

example, in the resource theory of quantum coherence [3], which is of particular interest in quantum optics,

quantum biology, and quantum thermodynamics [11, 32], the aforementioned convex set of states is exactly

those that are diagonal. In this case, our results concerning Birkhoff–James orthogonality to all positive

semidefinite diagonal matrices provide a characterization of states that are a trace distance of 1 (the largest
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such distance possible) from that set, thus extending a result from [23] from pure states to mixed states.

We also extend our results to several other quantum resource theories, including those of entanglement

and k-coherence. In particular, when applying our result to the resource theory of 2-entanglement (i.e.,

Schmidt number 2 [33]), we show that the long-standing NPPT bound entanglement problem [18] has a

natural rephrasing in terms of Birkhoff–James orthogonality.

1.1. Notation and terminology. We now introduce the mathematical preliminaries that we need to

discuss and prove our results concerning Birkhoff–James orthogonality. We defer a brief introduction to

quantum information theory to Section 4, when we need it.

Let Mn be the set of all n ˆ n matrices with complex entries and let M`
n be the subset of them that

are (Hermitian) positive semidefinite. We use bold lower case letters such as v and w to denote vectors in

Cn, with the entries of v P Cn denoted by v1, v2, . . ., vn. We denote the standard basis vectors by teju
n
j“1,

and we use Ai,j to denote the pi, jq-entry of a matrix A P Mn. The eigenvalues of A are denoted by λj or by

µj , while the singular values of A—the non-negative square roots of the eigenvalues of AA˚—are denoted

by σ1 ě σ2 ě ¨ ¨ ¨ ě σn ě 0. If A and B are Hermitian matrices, we use the notation A ľ B (or B ĺ A) to

denote A ´ B being positive semidefinite.

The trace norm of A is }A}tr
def
“

řn
j“1 σj , and the operator norm of A is }A}

def
“ σ1. If A is Hermitian

(or even just normal) then its singular values are the absolute values of its eigenvalues, so }A}tr “
řn

j“1 |λj |.

When discussing norms in general, we use the notation ~ ¨ ~, to avoid confusion with the operator norm.

Given a Hermitian matrix A, we denote the eigenprojection matrices, projecting onto the direct sum of the

eigenspaces corresponding to the positive, zero, and negative eigenvalues, respectively, by P`, P0, and P´,

and we note that P` ` P0 ` P´ “ I. For simplicity of terminology, we refer to these as the orthogonal

projections onto the positive, zero, and negative eigenspaces of A from now on.

As a generalization of orthogonality of vectors in a Hilbert space, we have the following notion of

orthogonality in Banach spaces [20]:

Definition 1.1. Suppose pX ,~¨~q is a Banach space over R, and A,B P X . We say that A is Birkhoff–

James orthogonal to B if

~A~ ď ~A ` λB~ for all λ P R.

We note that this notion of orthogonality is homogeneous and additive, but not symmetric: if A is

Birkhoff–James orthogonal to B, then it is not necessarily the case that B is Birkhoff–James orthogonal to

A.

Here, we are interested in the case where a Hermitian matrix A is Birkhoff–James orthogonal under

the trace norm } ¨ }tr to a positive semidefinite matrix B. For this reason, from now on we simply use the

terminology Birkhoff–James orthogonal to signify Birkhoff–James orthogonal with respect to the trace norm,

and we note that A being Birkhoff–James orthogonal to B means exactly that

}A}tr ď }A ` λB}tr for all λ P R.

Definition 1.1 of Birkhoff–James orthogonality works just fine if the field R is replaced by C. For now

(and only now), we briefly consider Birkhoff–James orthogonality in this sense and recall the following result:
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Theorem 1.2. [25, Theorem 3.3] Let A,B P Mn. Then, the following are equivalent.

(a) A is Birkhoff–James orthogonal to B (in the trace norm).

(b) There exists a matrix M P Mn with }M} ď 1 such that TrpAM˚q “ }A}tr and TrpBM˚q “ 0.

While this result in this form is stated for the complex vector space Mn, it applies straightforwardly to

the real vector space of Hermitian matrices as well. Indeed, if A is Hermitian and TrpAM˚q is real, then

TrpAM˚q “ TrpAMq “ Tr

ˆ

A

ˆ

M ` M˚

2

˙˙

,

and henceM can be chosen to be Hermitian in this case. We thus only consider Birkhoff–James orthogonality

in the real vector space of Hermitian matrices from now on.

It is perhaps worth noting that Theorem 1.2 can be proved in a different way than was done in [25]: via

the subgradient [37, Theorem 2], which is a useful tool in convex optimization. Indeed, the same is true of

many of our upcoming results, but we avoid using the subgradient in this paper, opting instead for more

elementary proofs.

1.2. Arrangement of the paper. In Section 2, we present and prove our main result, which charac-

terizes when a Hermitian matrix is Birkhoff–James orthogonal to a positive semidefinite one. In Section 3,

we apply our main result to the special case of Birkhoff–James orthogonality to diagonal matrices. In par-

ticular, we characterize which Hermitian matrices are Birkhoff–James orthogonal to all positive semidefinite

diagonal matrices, and we briefly consider the problem of Birkhoff–James orthogonality with the set of all

(not necessarily positive semidefinite) diagonal matrices.

In Section 4, we introduce quantum resource theories and show how our results characterize which

quantum states are “most resourceful” in the sense of the modified trace distance of that resource. Fur-

thermore, in Section 4.4 we show that Birkhoff–James orthogonality of certain matrices is equivalent to a

long-standing conjecture from quantum information theory, which states that a certain quantum state is

“bound entangled.” Finally, we close in Section 5 with some conclusions and open questions related to our

work.

2. Main result. We now explore the question of when a Hermitian matrix is Birkhoff–James orthogonal

to a given positive semidefinite matrix. First, however, we need the following well-known inequality that

bounds the trace of a product of Hermitian matrices (see [4, Problem III.6.14], for example).

Lemma 2.1. Suppose H,M P Mn are two Hermitian matrices with eigenvalues λ1 ě λ2 ě ¨ ¨ ¨ ě λn and

µ1 ě µ2 ě ¨ ¨ ¨ ě µn, respectively. Then,

TrpHMq ď

n
ÿ

j“1

λjµj ,

with equality if and only if there exists an orthonormal basis tvju
n
j“1 Ă Cn such that, for all j, vj is an

eigenvector of both H and M corresponding to λj and µj, respectively.

We also need one more lemma before we will be able to state and prove our main result. In this lemma,

and the rest of the paper, we use the term strictly positive eigenspace to mean the span of the eigenspaces

corresponding to strictly positive eigenvalues of a matrix (and similarly for strictly negative eigenspace).
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Lemma 2.2. Suppose H,M P Mn are two Hermitian matrices, and let P` and P´ denote the orthogonal

projections onto the strictly positive and strictly negative eigenspaces of H, respectively. Then, 2P` ´ I ĺ

M ĺ I ´ 2P´ if and only if }M} ď 1 and TrpHMq “ }H}tr.

Proof. Let λ1 ě λ2 ě ¨ ¨ ¨ ě λn and µ1 ě µ2 ě ¨ ¨ ¨ ě µn denote the eigenvalues of H and M , respectively.

Then, }M} ď 1 if and only if ´1 ď µj ď 1 for all j. If this condition holds then Lemma 2.1 tells us that

TrpHMq ď

n
ÿ

j“1

λjµj ď

n
ÿ

j“1

|λj | “ }H}tr.

We thus have TrpHMq “ }H}tr if and only if both of the previous two inequalities are equalities. The first

inequality is an equality if and only if there exists an orthonormal basis tvju
n
j“1 Ă Cn such that, for all j,

vj is an eigenvector of both H and M corresponding to λj and µj , respectively. The second inequality is an

equality if and only if µj “ 1 whenever λj ą 0 and µj “ ´1 whenever λj ă 0. These two conditions together

are equivalent to 2P` ´ I ĺ M ĺ I ´ 2P´, as claimed.

We now have enough machinery to state and prove our main result:

Theorem 2.3. Suppose H,B P Mn are Hermitian and B is positive semidefinite. Let P` and P´ denote

the orthogonal projections onto the strictly positive and strictly negative eigenspaces of H, respectively. Then,

H is Birkhoff–James orthogonal to B in the trace norm if and only if both

TrpBP`q ď
1

2
TrpBq and TrpBP´q ď

1

2
TrpBq.

Proof. Theorem 1.2 and Lemma 2.2 together imply that H is Birkhoff–James orthogonal to B in the

trace norm if and only if there exists a Hermitian matrix M with 2P` ´I ĺ M ĺ I ´2P´ and TrpBMq “ 0.

Since B is positive semidefinte, we have TrpBp2P` ´ Iqq ď TrpBMq ď TrpBpI ´ 2P´qq. These inequalities

can be rewritten as TrpBpI´2P`qq ě 0 and TrpBpI´2P´qq ě 0, which is equivalent to TrpBP`q ď 1
2 TrpBq

and TrpBP´q ď 1
2 TrpBq by the linearity of the trace.

Conversely, suppose we have both TrpBP`q ď 1
2 TrpBq and TrpBP´q ď 1

2 TrpBq. If either TrpBpI ´

2P`qq “ 0 or TrpBpI ´ 2P´qq “ 0, we choose M “ 2P` ´ I or M “ I ´ 2P´, respectively. On the other

hand, if we have α :“ TrpBpI ´ 2P`qq ą 0 and β :“ TrpBpI ´ 2P´qq ą 0, we choose

M “
1

α ` β

`

βp2P` ´ Iq ` αpI ´ 2P´q
˘

.

In either case, we then have 2P`´I ĺ M ĺ I´2P´ and TrpBMq “ 0, which means thatH is Birkhoff–James

orthogonal to B in the trace norm.

3. Birkhoff–James orthogonality to diagonal matrices. We now consider the problem of deter-

mining which Hermitian matrices are Birkhoff–James orthogonal to every diagonal matrix. This problem was

considered for the operator norm in [2] and was solved in small dimensions there, whereas we consider the

trace norm version of it. We start with a result that determines when a Hermitian matrix is Birkhoff–James

orthogonal in the trace norm to all positive semidefinite diagonal matrices:

Theorem 3.1. Suppose H P Mn is Hermitian, and let P` and P´ be the orthogonal projections onto

its strictly positive and negative eigenspaces, respectively. Then, the following are equivalent:
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(a) H is Birkhoff–James orthogonal in the trace norm to every positive semidefinite diagonal matrix.

(b) H is Birkhoff–James orthogonal in the trace norm to eje
˚
j for all 1 ď j ď n.

(c) P`
j,j ď 1{2 and P´

j,j ď 1{2 for all 1 ď j ď n.

Proof. The equivalence of (b) and (c) follows from choosing B “ eje
˚
j in Theorem 2.3. The equivalence

of (a) and (c) similarly follows from choosing B to be an arbitrary diagonal positive semidefinite matrix

scaled so that TrpBq “ 1 in Theorem 2.3.

We now start looking at the more difficult problem of characterizing which Hermitian matrices are

Birkhoff–James orthogonal to all (not necessarily positive semidefinite) diagonal matrices. Theorem 3.1

provides a necessary condition, but it is not a sufficient one when n ě 3, as demonstrated by the following

example:

Example 3.2. The Hermitian matrix

H “

»

–

´1 5 2

5 ´1 2

2 2 2

fi

fl

has projections onto its negative and positive eigenspaces

P´ “
1

2

»

–

1 ´1 0

´1 1 0

0 0 0

fi

fl and P` “
1

3

»

–

1 1 1

1 1 1

1 1 1

fi

fl ,

respectively. It follows that P´
j,j ď 1{2 and P`

j,j ď 1{2 for all 1 ď j ď 3, so Theorem 3.1 tells us that H is

Birkhoff–James orthogonal to every positive semidefinite diagonal matrix.

However, H is not Birkhoff–James orthogonal to every diagonal matrix. To see this, we can compute

}H}tr “ 12, but if D “ diagp6, 6,´6{5q then }H ` D}tr “ 54{5 ă 12 (and in fact, semidefinite programming

can be used to show that this D is optimal, so H`D is Birkhoff–James orthogonal to every diagonal matrix).

On the other hand, if n “ 2 then the condition of Theorem 3.1 is both necessary and sufficient for

Birkhoff–James orthogonality to every diagonal matrix, as we will see shortly. Our starting point towards

proving this fact is the following simple corollary, which solves this problem for invertible Hermitian matrices:

Corollary 3.3. Suppose H P Mn is Hermitian and invertible, and let P` and P´ be the orthogonal

projections onto its positive and negative eigenspaces, respectively. The following are equivalent:

(a) H is Birkhoff–James orthogonal in the trace norm to eje
˚
j for all 1 ď j ď n.

(b) H is Birkhoff–James orthogonal in the trace norm to every diagonal matrix.

(c) P` “ pI ` Uq{2 and P´ “ pI ´ Uq{2 for some Hermitian unitary U with zeros on its diagonal.

(d) P`
j,j “ P´

j,j “ 1{2 for all 1 ď j ď n.

Proof. To see that (a) and (d) are equivalent, recall from Theorem 3.1 that H is Birkhoff–James or-

thogonal to each eje
˚
j if and only if P`

j,j ď 1{2 and P´
j,j ď 1{2 for all 1 ď j ď n. Since H is invertible,

P` ` P´ “ I, so P`
j,j ` P´

j,j “ 1 for all j. It follows that P`
j,j ď 1{2 and P´

j,j ď 1{2 is equivalent to

P`
j,j “ P´

j,j “ 1{2, so (a) is equivalent to (d).

The fact that (c) implies (d) is trivial. To see that (d) implies (c), notice that (d) implies we can write

P` “ I{2 ` X for some matrix X with diagonal entries equal to 0. Since P` is Hermitian, so is X, and
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since P` is a projection, we have pI{2 ` Xq2 “ I{2 ` X, so X2 “ I{4, so U :“ X{2 is unitary. Then,

P` “ pI ` Uq{2, and since P` ` P´ “ I, we must have P´ “ pI ´ Uq{2.

The fact that (b) implies (a) is trivial. To complete the proof, we show that (d) implies (b) as follows.

If (d) holds and B is diagonal, then it must be the case that TrpBP`q “ p1{2qTrpBq and TrpBP´q “

p1{2qTrpBq. It follows from Theorem 2.3 that H is Birkhoff–James orthogonal to B in the trace norm,

completing the proof.

Theorem 3.4. A Hermitian matrix H P M2 is Birkhoff–James orthogonal to every diagonal matrix if

and only if it is Birkhoff–James orthogonal to e1e
˚
1 and e2e

˚
2.

Proof. The “only if” direction is trivial, and Corollary 3.3 gives the result when H is invertible, so we

only prove the “if” direction in the case when rankpHq “ 1.

In this case, H has the form H “ ˘vv˚ for some v P C2 (without loss of generality, we will assume that

H “ vv˚). Then, P` “ vv˚{}v}2, and we see that if P`
j,j ď 1{2 for j “ 1, 2, then in fact we must have

P`
j,j “ 1{2 for j “ 1, 2. It follows that

H “
}v}2

2

„

1 eiθ

e´iθ 1

ȷ

,

for some θ P R. We can then choose M “ eiθe1e
˚
2 `e´iθe2e

˚
1 in Theorem 1.2 to see that H is Birkhoff–James

orthogonal to every diagonal matrix.

We now present several corollaries of Theorem 3.1 that place restrictions on which Hermitian matrices

are Birkhoff–James orthogonal to the diagonal matrices eje
˚
j (1 ď j ď n). To start, we note that these

conditions bound the inertia of such matrices quite strongly.

Corollary 3.5. Suppose H P Mn is Hermitian and Birkhoff–James orthogonal to eje
˚
j for each 1 ď

j ď n, and let µ` and µ´ denote how many eigenvalues it has that are positive and negative, respectively.

Then,

µ´ ď n{2 and µ` ď n{2.

Proof. Theorem 3.1 tells us that the positive and negative eigenprojections P` and P´ satisfy P`
j,j ď 1{2

and P´
j,j ď 1{2 for all 1 ď j ď n. Taking the trace, we obtain

řn
j“1 P

`
j,j “ µ` ď n{2, and similarly for µ´.

Corollary 3.6. Suppose H P Mn is Hermitian and n is odd. If H is Birkhoff–James orthogonal to

eje
˚
j for each 1 ď j ď n, then it must have 0 as an eigenvalue.

Proof. Let µ`, µ´, and µ0 denote how many eigenvalues H has that are positive, negative, and 0,

respectively. Suppose (for the sake of establishing a contradiction) that µ0 “ 0. Then, µ` ` µ0 ` µ´ “ n

implies that µ` `µ´ “ n. However, Corollary 3.5 implies, since n is odd, that µ` ď pn´ 1q{2 and similarly

for µ´, which yields µ` ` µ´ ď n ´ 1 ă n, a contradiction.

The above Corollary 3.6 really is specific to matrices of odd size: in the even-dimensional case, matrices

that are Birkhoff–James orthogonal to every diagonal matrix do not necessarily have 0 as an eigenvalue. For

example, Theorem 3.4 tells us that the invertible matrix

A “

„

0 1

1 0

ȷ

,

is Birkhoff–James orthogonal to every diagonal matrix.
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We now present a necessary and sufficient condition for a Hermitian matrix to be Birkhoff–James

orthogonal to every diagonal matrix (in contrast with Theorem 3.1, which provides a necessary condition).

Corollary 3.7. Suppose H P Mn is Hermitian and let P`, P´, P0 denote the orthogonal projections

onto the strictly positive eigenspaces, strictly negative eigenspaces, and null space of H, respectively. Then, H

is Birkhoff–James orthogonal to every diagonal matrix if and only if there exists X P Mn with X Hermitian

and ´I ď X ď I such that the matrix M “ P` ´ P´ ` P0XP0 has all of its main diagonal entries equal to

zero.

Proof. We note that if ´I ď X ď I, then 2P` ´ I “ P` ´ P´ ´ P0 ď P` ´ P´ ` P0XP0 ď

P` ´ P´ ` P0 “ I ´ 2P´. Hence by Lemma 2.2, the existence of an X P Mn with X Hermitian and

´I ď X ď I and M “ P` ´ P´ ` P0XP0 has all of its main diagonal entries equal to zero is equivalent to

the existence of a Hermitian M having all of its main diagonal entries equal to zero and satisfying }M} “ 1

and TrpHMq “ }H}tr which by Theorem 1.2 is equivalent to H being Birkhoff–James orthogonal to every

diagonal matrix.

We note that any choice of Hermitian U in any polar decomposition of H corresponds to U “ P` ´

P´ ` P0XP0 where X is chosen to be Hermitian and unitary; further, if H is invertible then P0 “ 0 and

P` ´ P´ is the unitary in the unique polar decomposition of H. The following theorem is a consequence of

these observations together with Corollary 3.7.

Theorem 3.8. Suppose H P Mn is a Hermitian matrix. If there is a polar decomposition H “ UP in

which the unitary U is Hermitian and has all of its diagonal entries equal to 0, then H is Birkhoff–James

orthogonal to every diagonal matrix. If H is invertible then the converse also holds.

After some work, it can be seen that Theorem 3.8 is essentially equivalent to a special case of [12,

Theorem 1.1]. It is perhaps worth recalling that if H is invertible then its polar decomposition is unique, so

the necessary and sufficient condition of Theorem 3.8 is easy to check in this case.

3.1. When the given matrix is positive semidefinite. In addition to the 2-dimensional case that

we saw in Theorem 3.4, there are some other extra conditions that we can add to H that ensure that the

(easy-to-check) properties of Theorem 3.1 are equivalent to H being Birkhoff–James orthogonal to every

diagonal matrix. In particular, positive semidefiniteness of H lets us increase the dimension a bit:

Theorem 3.9. Suppose H P M`
n is positive semidefinite and at least one of the following conditions

hold: (a) n ď 4, (b) rankpHq P t1, n{2, nu, or (c) the orthogonal projection onto rangepHq has constant

diagonal. Then, H is Birkhoff–James orthogonal to every diagonal matrix if and only if it is Birkhoff–James

orthogonal to eje
˚
j for all 1 ď j ď n.

Proof. Since the “only if” implication of this theorem is trivial, we only prove the “if” direction.

We start with the rank-1 case of part (b). Notice that in this case, we can write H “ vv˚. By the same

argument used in the proof of [23, Theorem 2], there exists a matrix M “ pvv˚ ´ ww˚q{}v}2 with all of its

diagonal entries equal to 0, |wj | “ |vj | for all 1 ď j ď n, and v˚w “ 0 (this matrix M was called Y in the

proof of [23, Theorem 2]). For an arbitrary diagonal matrix D, we thus have TrpDM˚q “ 0, }M} ď 1, and

TrpHM˚q “ v˚Mv “ 1 “ }H}tr, so Theorem 1.2 tells us that H is Birkhoff–James orthogonal to D.

To see that part (c) of the theorem holds, let c be the constant diagonal value (i.e., if P is the or-

thogonal projection onto rangepHq then c “ Pj,j for all j). If we let M “ P {c ´ I, then by Lemma 2.2

we have }M} ď 1 and TrpHMq “ }H}tr. Since all diagonal entries of M are zero, TrpMDq “ 0 for all
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diagonal matrices. It then follows from Theorem 1.2 that H is Birkhoff–James orthogonal to every diagonal

matrix.

The rank n{2 case of part (b) then holds because, in this case we must have TrpP q “ rankpHq “ n{2.

When H is Birkhoff–James orthogonal to eje
˚
j for all 1 ď j ď n, we must have all diagonal entries of P

exactly equal to 1{2 to also satisfy both the trace condition and condition (c) of Theorem 3.1. Part (c) of

this theorem (which we already proved) then implies the result.

The rank n case of part (b) follows immediately from Corollary 3.3.

Finally, to see that part (a) of the theorem holds, notice that if n “ 2 then Theorem 3.4 gives the

result. If n “ 3, then Corollary 3.5 tells us that rankpHq “ µ` ď n{2 “ 3{2, so rankpHq “ 1, and

we already proved the rank-1 case. If n “ 4 then Corollary 3.5 tells us that rankpHq “ µ` ď n{2 “ 2.

Regardless of whether rankpHq “ 1 or rankpHq “ 2 “ n{2, case(b) of this theorem shows that we are already

done.

We note that Theorem 3.9 is in a sense tight: if all three of the conditions (a)–(c) fail, then the

conclusion of the theorem needs not hold, as demonstrated by the next example that has n “ 5 and

1 ă rankpHq “ 2 ă n{2.

Example 3.10. Let α “

b

p
?
10 ´ 1q{3 and let P P M`

5 be the orthogonal projection onto the subspace

span
`

p1, 1, 1, 0, 0q, p0, 0, 1, α, 1{αq
˘

.

Then the following claims are all straightforward to verify:

(1) P is positive semidefinite with rank 2;

(2) Pj,j ď 1{2 for all j (with P5,5 “ 1{2 exactly), so Theorem 3.1 tells us that it is Birkhoff–James

orthogonal to every positive semidefinite diagonal matrix. However;

(3) If D “ diagp0, 0, 3,´1, 3q then }P ´D{40}tr « 1.99441235 ă 2 “ }P }tr, so P is not Birkhoff–James

orthogonal to D.

4. Applications to quantum resource theories. In quantum information theory, a mixed quantum

state or density matrix is a positive semidefinite trace-one matrix, typically denoted by ρ P Mn or σ P Mn.

A pure quantum state is a unit vector in Cn, which we denote using “bra-ket” notation: |vy P Cn is a unit

column vector, while xv|
def
“ |vy˚ is the corresponding (dual) row vector. From now on, whenever we use

lowercase Greek letters like ρ, we are assuming that it is a quantum state normalized to have Trpρq “ 1, and

similarly if we use |vy, then we are assuming it is a unit vector. For un-normalized matrices and vectors, we

denote them like A P M`
n and v P Cn, just like in the earlier sections of this paper.

A quantum resource theory [8] consists of two things: (1) a closed convex cone of positive semidefinite

matrices C Ď M`
n , and (2) a set of linear maps that send C back to itself (for our purposes, only (1) is

relevant). The quantum states ρ P C (i.e., the members of C with trace 1) are called “free states” and are

thought of as the states that are “useless” for some given task in quantum information theory or quantum

computation.

The most well-known resource theory is that of entanglement, where C “ Cent is the set of separable

quantum states [13, 19, 38]:
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Cent
def
“

#

ÿ

j

Xj b Yj : Xj P M`
m, Yj P M`

n for all j

+

Ď pMm b Mnq`.

However, numerous other resource theories are studied as well [29]. For example, another widely used

resource theory is that of coherence [1, 3, 11, 32], in which the set of free states C “ Ccoh consists of exactly

those that are diagonal (in the standard basis):

Ccoh
def
“

#

ÿ

j

xjeje
˚
j : 0 ď xj P R for all j

+

Ď M`
n .

In this context, the members of Ccoh are called incoherent.

Given a closed convex cone C, we can define the following modified trace distance of C, which simply

measures the distance from a given quantum state to C:

DCpρq
def
“ min

␣

}ρ ´ X}tr : X P C
(

.(4.1)

This quantity is a “proper” (i.e., physically relevant) measure of the resource specified by C in the sense of

[29]. When C “ Ccoh, it is the modified trace distance of coherence [39], and when C “ Cent, it is the modified

trace distance of entanglement [30]. For notational convenience, we omit the central level of subscripting

when denoting this distance. For example, we denote the modified trace distance of coherence simply by

Dcoh, rather than DCcoh
.

As a bit of a historical note, we comment that an analogous (non-modified) trace distance of C was

originally defined in the C “ Ccoh case in [28] via the minimization

min
␣

}ρ ´ X}tr : X P C,TrpXq “ 1
(

.

However, this quantity was subsequently shown to not be a “proper” measure of coherence (i.e., it lacked

certain physically desirable properties that a quantification of a quantum resource should satisfy). The

“modified” trace distance of C was then introduced to fix this problem [39].

By applying our theorems concerning Birkhoff–James orthogonality (in particular, Theorem 2.3) in this

setting, we get the following characterization of which mixed quantum states have DCpρq “ 1. These states

are of interest because they are exactly those that are “most resourceful” or “most useful”: it is clear from

the definition of Equation (4.1) that it is always the case that DCpρq ď 1.

Theorem 4.1. Suppose C Ď M`
n is a closed convex cone, ρ P M`

n is a mixed quantum state, and P is

the orthogonal projection onto rangepρq. The following are equivalent:

(a) DCpρq “ 1.

(b) ρ is Birkhoff–James orthogonal in the trace norm to every member of C.

(c) TrpPσq ď 1{2 for every mixed quantum state σ P C.

Proof. To see that (a) is equivalent to (b), note (by definition) that ρ is Birkhoff–James orthogonal in

the trace norm to every member of C if and only if

1 “ }ρ}tr ď }ρ ` λX}tr

for all λ P R and X P C. However, we can safely ignore positive values of λ since adding the positive

semidefinite matrix λX to the positive semidefinite matrix ρ can only increase its eigenvalues (and thus its
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trace norm). We can also safely ignore all negative values of λ other than λ “ ´1, since C is a cone so we

can absorb |λ| into X.

It follows that (b) is equivalent to }ρ ´ X}tr ě 1 for all X P C, which (by Equation (4.1)) is equivalent

to DCpρq ě 1. Since DCpρq ď 1 always holds, this establishes the claim that (a) and (b) are equivalent.

To see that (b) and (c) are equivalent, we recall from Theorem 2.3 that ρ is Birkhoff–James orthogonal

to every X P C if and only if TrpXP q ď TrpXq{2. Since this inequality is scale-invariant, without loss of

generality we may set σ “ X{TrpXq to see that (b) holds if and only if TrpPσq ď 1{2 for every mixed

quantum state σ P C.

Since C is a convex cone, condition (c) of Theorem 4.1 can be weakened slightly to say that TrpPσq ď 1{2

for every mixed quantum state σ that lies on an extreme ray of C. For all of the cones C that we will explore

(i.e., the cones defining k-coherence or k-entanglement), these extreme quantum states are exactly the pure

states (i.e., the rank-1 matrices). So for our purposes, the conditions of Theorem 4.1 are furthermore

equivalent to xv|P |vy ď 1{2 for every pure quantum state |vyxv| P C.

4.1. The modified trace distance of coherence. The modified trace distance of coherence was

shown to be of limited use for pure states; in that it reaches its maximum value (i.e., Dcohp|vyxv|q “ 1) on

nearly all pure states (and therefore does not differentiate between these states) in [23]. We now provide the

natural generalization of this result to the case of arbitrary-rank (i.e., not necessarily pure) quantum states:

Theorem 4.2. Suppose ρ P M`
n is a mixed quantum state and P is the orthogonal projection onto

rangepρq. Then ,Dcohpρq “ 1 if and only if Pj,j ď 1{2 for all 1 ď j ď n.

Proof. This follows immediately from the equivalence of conditions (a) and (c) in Theorem 4.1: the only

pure quantum states |vyxv| P C come from choosing |vy “ ej for some 1 ď j ď n, so Dcohpρq “ 1 if and only

if Pj,j “ e˚
j Pej ď 1{2 for all 1 ď j ď n.

Indeed, the above theorem is a direct generalization of [23, Theorem 2] from the rank-1 case to the

general case (in the rank-1 case ρ “ |vyxv|, notice that Pj,j “ |vj |2).

In addition to the condition of Theorem 4.2 being easy to check, it has the interesting consequence of

bounding the possible rank of any state with Dcohpρq “ 1. Not only are low-rank states usually maximally

coherent (in the sense of Dcoh), but high-rank states are never maximally coherent:

Corollary 4.3. Suppose ρ P M`
n is a mixed quantum state with Dcohpρq “ 1. Then, rankpρq ď n{2.

Proof. If Dcohpρq “ 1, then Theorem 4.2 tells us that the projection P onto rangepρq satisfies Pj,j ď 1{2

for all j, so TrpP q ď n{2. Since TrpP q “ rankpP q “ rankpρq, the result follows.

In particular, the above corollary tells us that all quantum states with maximal modified trace distance

of coherence in the n “ 2 and n “ 3 cases are necessarily pure (i.e., rank-1). This is no longer true when

n ě 4, however.

4.2. k-Coherence. As a generalization of coherence, for an integer 1 ď k ď n, the resource theory of

k-coherence [31] makes use of the following set C “ Ck-coh as its free states:

Ck-coh
def
“

#

ÿ

j

vjv
˚
j : each vj P Cn has at most k non-zero entries

+

Ď M`
n .
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In the k “ 1 case, this reduces down to exactly the set of incoherent states (i.e., C1-coh “ Ccoh), whereas

the k “ n case simply reduces to the set of all mixed states (i.e., Cn-coh “ M`
n ). For intermediate values of

k, these sets satisfy the obvious chain of inclusions

Ccoh “ C1-coh Ĺ C2-coh Ĺ C3-coh Ĺ ¨ ¨ ¨ Ĺ C(n-1)-coh Ĺ Cn-coh “ M`
n .

By using the fact that the pure states in Ck-coh are the unit vectors with at most k non-zero entries,

we immediately get a characterization of the mixed states that maximize the modified trace distance of

k-coherence:

Theorem 4.4. Suppose ρ P M`
n is a mixed quantum state and P is the orthogonal projection onto

rangepρq. Then, Dk-cohpρq “ 1 if and only if the operator norm of every k ˆ k principal submatrix of P is at

most 1{2.

Proof. This follows immediately from the equivalence of conditions (a) and (c) in Theorem 4.1: the

pure quantum states |vyxv| P C come from choosing the unit vectors |vy P Cn with at most k non-zero

entries, so Dcohpρq “ 1 if and only if xv|P |vy ď 1{2 for all such vectors. By focusing on all the |vy that have

their non-zero entries in particular locations, we see that this is equivalent to the principal submatrix of P

corresponding to those locations having operator norm at most 1{2.

Indeed, the above theorem reduces to Theorem 4.2 in the special case when k “ 1, since the 1 ˆ 1

principal submatrices of P are exactly its diagonal entries.

The following concept will be useful in what follows. Let }A}pkq denote the maximal operator norm of a

k ˆ k principal submatrix of A (for example, if k “ 1 then }A}pkq is the maximal diagonal entry of A). For

k ą 1, this is a norm (but that fact won’t be important for the coming argument). We will present a useful

characterization of }P }pkq when P is a projection. First, we need the following lemma.

Lemma 4.5. If P,Q P M`
n are orthogonal projections then }PQP } “ }QPQ}.

Proof. Since PQP and QPQ are both positive semidefinite matrices, their operator norms are equal to

the their largest eigenvalues. We note that it is well-known that if A and B are two square matrices, then AB

and BA have the same eigenvalues. Our result now follows from the fact that PQP “ PQ2P “ pPQqpQP q

and QPQ “ QP 2Q “ pQP qpPQq.

While this fact will not be used in the paper, we note that }PQP } has geometric significance being the

square of the cosine of the first canonical angle between the range subspaces of P and Q (see [26, 24] for

applications of canonical angles to quantum information).

Lemma 4.6. Let P P Mn be a projection and let 1 ď k ď n. Then, we have the equality

}P }pkq “ max

#

k
ÿ

j“1

`

|vj |Ó
˘2

: |vy P rangepP q

+

,

where |vj |Ó is the j-th largest modulus of an entry of |vy.

Proof. Let i1, i2, ..., ik be the rows of the k ˆ k principal submatrix of P with the largest operator norm.

Let Q be the projection onto spantei1 , ei2 , . . . , eiku. Then ,}P }pkq “ }QPQ} “ }PQP }. It is well-known that

the operator norm of a Hermitian matrix is equal to its numerical radius (i.e., }H} “ max}x}“1 |xx|H|xy|),

and we apply this fact to PQP . Let |vy be the unit vector which maximizes xx|PQP |xy. If |vy R rangepP q,
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we can replace |xy “ |vy with |xy “ P |vy{}P |vy} giving us an even larger value for xx|PQP |xy; hence,

|vy P rangepP q. Therefore }P }pkq “ xv|PQP |vy “ xv|Q|vy “
řk

j“1

ˇ

ˇvij
ˇ

ˇ

2
“

řk
j“1

`

|vj |Ó
˘2
. The final equality

follows from the fact that if tvij ukj“1 were not the k largest entries of |vy in modulus, this would contradict

our assumption that i1, i2, . . ., ik are the rows of the kˆk principal submatrix of P with the largest operator

norm.

We use the above lemmas to get a rank bound that generalizes Corollary 4.3 to this setting of k-coherence:

Corollary 4.7. Suppose ρ P M`
n is a mixed quantum state with Dk-cohpρq “ 1. Then

rankpρq ď
npn ` 1 ´ 2kq

2pn ´ kq
.

Proof. Theorem 4.4 tells us that if Dk-cohpρq “ 1 then }P }pkq ď 1{2. On the other hand, we also have

some lower bounds on }P }pkq: it must be the case that }P }p1q ě TrpP q{n, since otherwise the sum of the

diagonal entries of P would be strictly less than npTrpP q{nq “ TrpP q, which is a contradiction.

For larger values of k, we claim that }P }pkq ě }P }p1q ` p1 ´ }P }p1qqpk ´ 1q{pn ´ 1q. If we let |wy be a

particular |vy attaining the supremum for }P }p1q given in Lemma 4.6, then we have

n
ÿ

j“2

`

|wj |Ó
˘2

“

n
ÿ

j“1

`

|wj |Ó
˘2

´ }P }p1q “ 1 ´ }P }p1q.

Since the |wj |Ó’s are sorted in non-increasing order, this implies

k
ÿ

j“2

`

|wj |Ó
˘2

ě
k ´ 1

n ´ 1
p1 ´ }P }p1qq.

Finally, this gives us

}P }pkq ě

k
ÿ

j“1

`

|wj |Ó
˘2

“ }P }p1q `

k
ÿ

j“2

`

|wj |Ó
˘2

ě }P }p1q `
k ´ 1

n ´ 1
p1 ´ }P }p1qq.(4.2)

If we substitute the inequality }P }p1q ě TrpP q{n “ rankpρq{n into Inequality (4.2), and then use the fact

that 1{2 ě }P }pkq and solve for rankpρq, we get exactly the inequality given in the statement of the corollary.

In the special case when k “ 1, Corollary 4.7 says that Dcohpρq “ 1 implies rankpρq ď n{2, agreeing

with Corollary 4.3. At the other extreme, if k ą n{2 then Corollary 4.7 says that Dk-cohpρq “ 1 implies

rankpρq ď 0, which of course is impossible. It follows that if Dk-cohpρq “ 1 then k ď n{2. Furthermore, in

the k “ n{2 case if Dk-cohpρq “ 1 then rankpρq ď 1, so ρ must be pure.

We end this subsection by making a (somewhat tangential) note that in the numerical linear algebra

literature, there is a concept called the factor width of a matrix first defined in [6]. That paper deals entirely

with real matrices, so we give the natural extension of the definition to complex matrices.

Definition 4.8. [6, Definition 1] The factor width of a complex positive semidefinite matrix A is the

smallest integer k for which there exists a complex (rectangular) matrix V where A “ V V ˚ and each column

of V contains at most k non-zero entries.

It is easy to see that a density matrix is k-coherent if and only if it has factor width at most k. In

[6], there is a characterization of matrices which have factor rank at most two. We first need the following

definitions:
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Definition 4.9. [34] Let A P Mn, then its comparison matrix (denoted MpAq) is an n by n matrix with

MpAqi,i “ |Ai,i| for all i and MpAqi,j “ ´|Ai,j | whenever i ‰ j.

Definition 4.10. A square matrix is said to be an H-matrix if its comparison matrix is positive semidef-

inite.

We can now restate the main result of [6] in terms of 2-coherent states.

Theorem 4.11. [6, Theorem 9] A density matrix is 2-coherent if and only if it is an H-matrix.

4.3. Entanglement and k-Entanglement. When we apply Theorem 4.1 to the resource theory of

entanglement (i.e., when we take C “ Cent), we see that the modified trace distance of entanglement satisfies

Dentpρq “ 1 if and only if xv|P |vy ď 1{2 for every pure product state |vy “ |xy b |yy P Cm b Cn, where P is

the orthogonal projection onto rangepρq. In the terminology of [21, 22], this is equivalent to the statement

that }P }Sp1q ď 1{2, where } ¨ }Sp1q is the norm defined by

}X}Sp1q
def
“ max

␣

pxx| b xy|qXp|xy b |yyq : |xy P Cm, |yy P Cn
(

.(4.3)

A natural generalization of entanglement is the resource theory of k-entanglement, in which the set

C “ Ck-ent of free states consists of states with Schmidt number [33] at most k (where 1 ď k ď mintm,nu

is an integer):

Ck-ent
def
“

#

ÿ

j

vjv
˚
j : there exist txi,ju Ă Cm, tyi,ju Ă Cn such that vj “

k
ÿ

i“1

xi,j b yi,j for all j

+

.

By the spectral decomposition theorem, if k “ 1 then we have C1-ent “ Cent, whereas if k “ mintm,nu then

we have Cmin{m,n}-ent “ pMm b Mnq`. For intermediate values of k, these sets satisfy a chain of inclusions

that is analogous to that of k-coherence:

Cent “ C1-ent Ĺ C2-ent Ĺ C3-ent Ĺ ¨ ¨ ¨ Ĺ C(min{m,n}-1)-ent Ĺ Cmin{m,n}-ent “ pMm b Mnq`.

In this setting, the natural generalization of the norm defined in Equation (4.3) is

}X}Spkq
def
“ max

#

xv|X|vy : there exist txiu Ă Cm, tyiu Ă Cn such that |vy “

k
ÿ

i“1

xi b yi

+

.

This quantity is also a norm, and an almost identical argument to the one from the start of this section

demonstrates the following theorem:

Theorem 4.12. Suppose ρ P pMm bMnq` is a mixed quantum state and P is the orthogonal projection

onto rangepρq. Then Dk-entpρq “ 1 if and only if }P }Spkq ď 1{2.

Unlike the case of coherence, the condition of Theorem 4.12 is difficult to check even in the k “ 1 case.

Indeed, computation of } ¨ }Sp1q is NP-hard [10, 14] (which is expected, since computation of Dent is also

NP-hard). Despite this, numerous bounds on }P }Spkq are known, which let us derive rank bounds like the

following:
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Corollary 4.13. Suppose ρ P pMm b Mnq` is a mixed quantum state with Dk-entpρq “ 1. Then

rankpρq ď
mnpmintm,nu ´ 2k ` 1q

2pmintm,nu ´ kq
and

rankpρq ď
pn ` m ` 2 ´ 4kq2 ´ pn ´ mq2

4
.

Proof. We use [21, Theorem 4.15], which says that every orthogonal projection P satisfies the pair of

inequalities

}P }Spkq ě
pk ´ 1qmn ` pmintm,nu ´ kqrankpP q

mnpmintm,nu ´ 1q
and

}P }Spkq ě min
!

1,
k

P

1
2

`

n ` m ´
a

pn ´ mq2 ` 4rankpP q ´ 4
˘T

)

.

If Dk-entpρq “ 1, then Theorem 4.12 tells us that 1{2 ě }P }Spkq, which gives the claimed result after a

bit of routine (but somewhat ugly) algebra.

In particular, the first inequality of Corollary 4.13 tells us that if k ą mintm,nu{2 then rankpρq ď 0,

which is impossible. It follows that there only exist quantum states ρ with Dk-entpρq “ 1 when k ď

mintm,nu{2. Furthermore, in the extreme case when k “ mintm,nu{2, the second inequality of Corol-

lary 4.13 says that any state with Dk-entpρq “ 1 must have rankpρq ď |n ´ m ` 1| (so if we also have m “ n

then ρ must be pure). At the other extreme, if k “ 1 then the first inequality of Corollary 4.13 is the stronger

one, and it says that if Dentpρq “ 1 then rankpρq ď mn{2.

4.4. An application to the NPPT bound entanglement problem. Given a quantum state

ρ P pMm b Mnq`, one often wants to know if it can be distilled : transformed into (an arbitrarily good

approximation of) the pure maximally entangled state

|ϕ`y
def
“

1
a

mintm,nu

¨

˝

mintm,nu
ÿ

j“1

ej b ej

˛

‚,

via local operations [16]. In some cases where ρ is undistillable, multiple tensor copies of it are distillable

[35], so we say that ρ is r-copy (un)distillable if ρbr P pMbr
m b Mbr

n q` is (un)distillable.

It is straightforward to show that if ρ is separable (i.e., if ρ P Cent) then it is r-copy undistillable for all

r ě 1. More surprisingly, it has also been shown that there is a class of entangled (i.e., not separable) states

called PPT states that are r-copy undistillable for all r ě 1 [17]. Entangled states with this undistillability

property are called bound entangled.

The NPPT bound entanglement problem asks whether or not there are any other (i.e., non-PPT) states

that are r-copy undistillable for all r ě 1, and it is one of the central open questions in the theory of quantum

entanglement [18]. It has been shown that it suffices to answer this problem for a single-parameter family

of states called Werner states [15], and it has furthermore been conjectured that the specific Werner state

ρ2{n
def
“

ˆ

1

n2 ´ 2

˙

I ´
2

npn2 ´ 2q

˜

n
ÿ

i,j“1

eie
˚
j b eje

˚
i

¸

P pMn b Mnq`,(4.4)
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is bound entangled for all n ě 4 [9]. Indeed, it is straightforward to check that ρ2{n is not PPT and that

it is (1-copy) undistillable. However, even proving the simplest case of 2-copy undistillability of this state

when n “ 4 remains elusive, despite significant effort [7, 27].

It was shown in [21] that ρ2{n is r-copy undistillable if and only if the orthogonal projections defined

recursively by

P1
def
“ |ϕ`yxϕ`| P pMn b Mnq` and

Pr
def
“ pI ´ P1q b Pr´1 ` P1 b pI ´ Pr´1q P pMbr

n b Mbr
n q` @ r ě 2,

(4.5)

satisfy }Pr}Sp2q ď 1{2. Here, it is understood that the partitioning of the 2r tensor factors used to compute

}Pr}Sp2q is the one in which the first factors of P1 always “stay together,” as do the second factors of P1.

That is, if we label the two tensor factors of P1 as P1 P A b B then we have Pr P pAbrq b pBbrq, with the

Sp2q-norm being computed across the central tensor cut, not Pr P pA b Bq b ¨ ¨ ¨ b pA b Bq.

This connection with the Sp2q-norm leads to the following characterization of the bound entanglement

problem in terms of Birkhoff–James orthogonality and the modified trace distance of 2-entanglement:

Theorem 4.14. Let ρ2{n P pMn bMnq` be the Werner state defined in Equation (4.4) and let Pr be the

orthogonal projection defined in Equation (4.5). The following are equivalent:

(a) ρ2{n is r-copy undistillable.

(b) Pr is Birkhoff–James orthogonal to every member of C2-ent.

(c) There exists a quantum state σ P pMbr
n b Mbr

n q` with rangepσq “ rangepPrq and D2-entpσq “ 1.

Proof. By Theorem 4.12, we know that condition (c) happens if and only if }Pr}Sp2q ď 1{2, and we

already discussed the fact that }Pr}Sp2q ď 1{2 is equivalent to ρ2{n being r-copy undistillable [21]. This

shows that (c) is equivalent to (a).

The fact that }Pr}Sp2q ď 1{2 is also equivalent to (b) (and thus (a) and (c) are equivalent to (b)) follows

from the equivalence of conditions (b) and (c) of Theorem 4.1 when C “ C2-ent.

5. Conclusions and outlook. The notion of Birkhoff–James orthogonality is an extension of the usual

notion of orthogonality. We considered Birkhoff–James orthogonality in the setting of nˆn complex-valued

matrices together with the trace norm. Our main result (Theorem 2.3) characterized when a Hermitian

matrix H is Birkhoff–James orthogonal in the trace norm to a given positive semidefinite matrix B, via

trace conditions involving the product of B and the positive and negative eigenprojection matrices of H.

These eigenprojection matrices are key to our study, and we used them to further characterize when H is

Birkhoff–James orthogonal in the trace norm to the set of all positive semidefinite diagonal matrices and

when H is Birkhoff–James orthogonal in the trace norm to the set of all (not just positive semidefinite)

diagonal matrices in certain special cases (e.g., when H has a certain rank, when H is positive semidefinite,

and/or the dimension is small).

Our results have direct applications to quantum resource theories; we showed that the modified trace

distance between any quantum state (positive semidefinite, trace-one matrix) ρ and a given closed convex

cone C of positive nˆn matrices equals 1 (the maximum possible value) precisely when ρ is Birkhoff–James

orthogonal in the trace norm to every member of C. This allowed us to generalize a result from [23], which

characterized when the modified trace distance of coherence of a given pure quantum state is maximal, in

numerous ways: we now have a version of that result for non-pure states (i.e., matrices of higher rank), we
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now have a version of that result that applies to resource theories other than just quantum coherence, and

we now have a bound on how large the rank of such states can be.

Our results, when applied to the resource theory of 2-entanglement (i.e., Schmidt number 2), provide an

intriguing connection to the NPPT bound entanglement problem. While we do not solve that problem (it

has been open for over a decade and is notoriously difficult), we showed that it can be phrased in terms of

Birkhoff–James orthogonality, thus opening up a wide variety of new tools that can be used to explore it.

Our results highlight the clear utility of Birkhoff–James orthogonality. In terms of linear algebraic

considerations, one open problem would be to extend the work from Hermitian to normal matrices, which

we believe is possible but we avoided the added complexity of the problem as we were interested in the

applications to quantum resource theory, which involves positive semidefinite matrices. It would also be

interesting to exactly characterize when a given Hermitian matrix H is Birkhoff–James orthogonal to every

diagonal matrix, but our Examples 3.2 and 3.10 suggest that such a characterization might be quite delicate

and difficult to pin down.
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