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SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES∗

RALPH JOHN DE LA CRUZ† AND AGNES T. PARAS†

Abstract. An n-by-n matrix A is called symmetric, skew-symmetric, and orthogonal if AT = A, AT = −A, and AT = A−1,

respectively. We give necessary and sufficient conditions on a complex matrix A so that it is a sum of type “orthogonal +

symmetric” in terms of the Jordan form of A−AT . We also give necessary and sufficient conditions on a complex matrix A so

that it is a sum of type “orthogonal + skew-symmetric” in terms of the Jordan form of A+AT .
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1. Introduction. A matrix A is called

• symmetric if AT = A,

• skew-symmetric if AT = −A,

• orthogonal if A is nonsingular and AT = A−1.

Several mathematicians have studied matrix decompositions involving the above special matrices. Frobenius

showed that every matrix over F ∈ {R,C} is a product of two symmetric matrices [3] (see also the work of

Radjavi [12]). Gow and Laffey gave necessary and sufficient conditions for a matrix over an arbitrary field

to be a product of two skew-symmetric matrices [5]. Laffey later on proved that if n ≡ 0 mod 4 and A is

an n-by-n matrix over an algebraically closed field with characteristic not equal to 2, then A is a product of

five skew-symmetric matrices [10]. Horn and Merino showed that a complex matrix A may be written as a

product A = QR, where Q is orthogonal and R is symmetric if and only if AAT is similar to ATA [9]. De

la Cruz et al. gave necessary and sufficient conditions for a complex matrix A to be written as a product

A = QR, where Q is orthogonal and R is skew-symmetric [1]. If n > 1, Merino showed that any matrix over

F ∈ {R,C,H} is a sum of a finite number of orthogonal matrices [11]. Granario et al. gave necessary and

sufficient conditions for a complex matrix to be written as a sum of two orthogonal matrices [4].

The main result of this paper is the following theorem which gives necessary and sufficient conditions

for a complex matrix A to be written as A = Q + R, where Q is orthogonal and R is either symmetric or

skew-symmetric. For a complex number λ, we denote by Jk(λ) the k-by-k upper triangular Jordan block

with eigenvalue λ.

Theorem 1.1. Let A ∈ Cn×n be given. Then

(a) A = A1 +A2, for some orthogonal A1 and symmetric A2 if and only if the Jordan blocks of A−AT

with eigenvalue 2i of size greater than one come in pairs of Jk(2i)⊕ Jk(2i) or Jk(2i)⊕ Jk+1(2i).

(b) A = B1 + B2, for some orthogonal B1 and skew-symmetric B2, if and only if A+ AT is similar to

a direct sum of matrices of the form
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(1) Jk(λ)⊕ Jk(λ), where λ ̸= ±2,

(2) Jk(λ)⊕ Jk(λ)⊕ Jk(λ)⊕ Jk(λ), for any k > 1 and λ = ±2,

(3) Jk+1(λ)⊕ Jk(λ), where λ = ±2, or

(4) λIk, where λ = 2,−2.

The authors have a similar study on symplectic, skew-Hamiltonian, and Hamiltonian matrices in [2].

If A has a decomposition as in Theorem 1.1(a), then

(1.1) A−AT = A1 +A2 − (A1 +A2)
T = A1 +A2 −AT

1 −AT
2 = A1 −AT

1 .

Conversely, if A−AT = A1 −AT
1 for some orthogonal A1, then

(1.2) A−A1 = AT −AT
1 = (A−A1)

T ,

is symmetric and A = A1 + (A − A1) is a decomposition of A as in Theorem 1.1(a). Analogous arguments

show that A has a decomposition from Theorem 1.1(b) if and only if A+AT = B1+BT
1 for some orthogonal

B1. The following theorem implies statements (a) and (b) of Theorem 1.1.

Theorem 1.2. Let A ∈ Cn×n be given.

(a) If A is skew-symmetric, then A = X −XT for some orthogonal X if and only if the Jordan blocks

of A with eigenvalue 2i and size greater than one, if any, come in pairs of Jk(2i) ⊕ Jk(2i) or

Jk(2i)⊕ Jk+1(2i).

(b) If A is symmetric, then A = X +XT for some orthogonal X if and only if A is similar to a direct

sum of matrices of the form

(i) Jk(λ)⊕ Jk(λ), where λ ̸= ±2,

(ii) Jk(λ)⊕ Jk(λ)⊕ Jk(λ)⊕ Jk(λ), for any k > 1 and λ = ±2,

(iii) Jk+1(λ)⊕ Jk(λ), where λ = ±2, or

(iv) λIk, where λ = 2,−2.

We give some preliminary observations in Section 2 and prove Theorem 1.2 in Section 3.

2. Preliminaries. The conditions for the decompositions in Theorem 1.2 can be stated in terms of

the existence of symmetric or skew-symmetric square roots of a symmetric matrix. By C(A), we mean the

centralizer of the square matrix A, that is,

(2.3) C(A) := {X ∈ Cn×n |AX = XA}.

Lemma 2.1. Let A ∈ Cn×n be given.

(a) If A is skew-symmetric, then A = X − XT for some orthogonal X if and only if A2 + 4I has a

symmetric square root in C(A).

(b) If A is symmetric, then A = X + XT for some orthogonal X if and only if A2 − 4I has a skew-

symmetric square root in C(A).

Proof. Let A be skew-symmetric. Suppose A = X −XT for some matrix X. If X is orthogonal, then

XT = X−1, and so we consider orthogonal solutions to the matrix equation

(2.4) A = X −X−1.
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If X is a solution to (2.4), then X ∈ C(A). Now (2.4) is equivalent to

(2.5) I = (X −A)X = X2 −AX.

By completing the squares in (2.5), we get (X − 1
2A)2 = 1

4 (A
2 +4I). If, in addition, X is orthogonal and we

set Y := X − 1
2A, then Y ∈ C(A), Y 2 = 1

4 (A
2 + 4I), and

(2.6) Y T = XT − 1

2
AT = X−1 +

1

2
A = (X −A) +

1

2
A = Y.

Thus, Z := 2Y is a symmetric square root of A2 + 4I and Z ∈ C(A).

Conversely, suppose Z ∈ C(A) and Z is a symmetric square root of A2 + 4I. Set Y := 1
2Z and set

X := Y + 1
2A. Then Y ∈ C(A), Y is symmetric,

(2.7) XXT =

(
Y +

1

2
A

)(
Y − 1

2
A

)
= Y 2 − 1

4
A2 =

1

4
Z2 − 1

4
A2 = I,

and

(2.8) X −XT = Y +
1

2
A−

(
Y − 1

2
A

)
= A.

This proves (a). The proof of (b) is analogous.

Note that the existence of a decomposition in Theorem 1.2 is invariant under orthogonal similarity, and

so the following theorem is useful.

Lemma 2.2 ([8, Corollary 22]). Two complex matrices which are both symmetric, both skew-symmetric,

or both orthogonal are similar if and only if they are orthogonally similar.

A matrix A has a square root if and only if the nilpotent part of A, if any, is similar to a direct sum

of matrices of the form 0m, Jm(0) ⊕ Jm(0), or Jm(0) ⊕ Jm+1(0) for any m [7, Theorem 6.4.12]. To prove

Theorem 1.2 it helps to know the Jordan structure of a symmetric or skew-symmetric matrix. Any square

complex matrix is similar to a symmetric matrix and so there are no restrictions on the Jordan form of

a symmetric matrix [6, Theorem 4.4.9]. For a skew-symmetric matrix A, the Jordan form of A must be

expressible as a direct sum of matrices of the form Jk(λ) ⊕ Jk(−λ) for λ ̸= 0, Jk(0) ⊕ Jk(0) for even k, or

Jk(0) for odd k. Conversely, when A is similar to the direct sum of any of the preceding Jordan blocks, then

A is similar to a skew-symmetric matrix [9]. Thus, by Lemma 2.2, we have the following.

Lemma 2.3. Let A ∈ Cn×n be given. Then

(a) A is symmetric if and only if A is orthogonal similar to ⊕iAi, where each Ai is a symmetric matrix

that is similar to a Jordan block.

(b) A is skew-symmetric if and only if A is orthogonal similar to ⊕iAi, where each Ai is skew-symmetric

and similar to one of the following:

(1) Jk(λ)⊕ Jk(−λ) for any λ ̸= 0,

(2) Jk(0)⊕ Jk(0) for any even k, and

(3) Jk(0) for any odd k.

The following result reduces our problem to symmetric or skew-symmetric matrices having at most two

eigenvalues. Let σ(A) denote the spectrum of a matrix A.
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Lemma 2.4. Let A = ⊕m
i=1Ai for some square complex matrices Ai with pairwise disjoint spectra. Then

(a) A is symmetric such that A2 − 4I has a skew-symmetric square root that commutes with A if and

only if each Ai is symmetric and A2
i − 4I has a skew-symmetric square root that commutes with Ai.

(b) A is skew-symmetric such that A2 + 4I has a symmetric square root that commutes with A if and

only if each Ai is skew-symmetric and A2
i + 4I has a symmetric square root .

Proof. We only do (a). Sufficiency follows from the fact that a direct sum of skew-symmetric matrices

is skew-symmetric. For necessity, let B be a skew-symmetric square root of A2 − 4I that commutes with A.

Since σ(Ai) ∩ σ(Aj) = ∅ for i ̸= j, Sylvester’s theorem [6, Theorem 2.4.4.1] implies that B = ⊕m
i=1Bi and

partitioned conformal to A. Hence each Bi is a skew-symmetric square root of A2
i − 4I that commutes with

Ai.

3. Proof of Theorem 1.2. For A ∈ Cn×n, we let C[A] := {p(A) | p(x) ∈ C[x]} denote the set of all

polynomials in A.

Proof of Theorem 1.2(a). Let A be skew-symmetric. Suppose that A = Y − Y T for some orthogonal Y .

By Lemma 2.1, A2+4I has a symmetric square root B which commutes with A. Lemma 2.3(b) implies that

there is a nonsingular matrix X such that

(3.9) XAX−1 = A1 ⊕−A1 ⊕A2,

where each Ai is symmetric, σ(A1) = {2i}, and 2i,−2i /∈ σ(A2). SinceXBX−1 ∈ C(XAX−1), the eigenvalue

conditions above and Sylvester’s theorem imply that

(3.10) XBX−1 = B1 ⊕B2 ⊕B3,

which is partitioned conformal to XAX−1. It follows that B2
1 = A2

1 + 4I, that is, the nilpotent matrix

A2
1+4I has a square root, and this gives the Jordan block restrictions stated in Theorem 1.2(a). This proves

necessity.

Conversely, suppose the Jordan blocks of A with eigenvalue 2i and size greater than 1, if any, come in

pairs Jk(2i)⊕ Jk(2i) or Jk(2i)⊕ Jk+1(2i). By Lemma 2.3(b) and Lemma 2.4(b), we may assume that

(1) σ(A) does not contain 2i and −2i, or

(2) A is similar to Jk(2i)⊕ Jk(2i)⊕ Jk(−2i)⊕ Jk(−2i) or Jk(2i)⊕ Jk+1(2i)⊕ Jk(−2i)⊕ Jk+1(−2i) for

k > 1, or

(3) A is similar to 2iIn ⊕−2iIn.

If σ(A) ∩ {2i,−2i} = ∅, then A2 + 4I is nonsingular, symmetric, and has a symmetric square root

B ∈ C[A] [7, Theorem 6.4.12 (a)]. Since B2 = A2 +4I, by Lemma 2.1(a), there exists an orthogonal X such

that A = X −XT .

We consider the second case. Let k > 1. Set a symmetric B similar to J2k(0) if A is similar to

Jk(2i) ⊕ Jk(2i) ⊕ Jk(−2i) ⊕ Jk(−2i); and set a symmetric B similar to J2k+1(0) if A is similar to Jk(2i) ⊕
Jk+1(2i)⊕ Jk(−2i)⊕ Jk+1(−2i). Note that B2 − 4I is symmetric, nonsingular, and has a symmetric square

root S ∈ C[B2 − 4I] similar to Jk(2i)⊕ Jk(2i) or Jk(2i)⊕ Jk+1(2i). Set D :=

[
0 iS

−iS 0

]
. Notice that D is

skew-symmetric, D2 = S2 ⊕S2, and D is orthogonally similar to A. We also have that D2 +4I = (B⊕B)2,

and B⊕B is symmetric and commutes with D, since S is a polynomial in B. By Lemma 2.1(a), D = Y −Y T
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for some orthogonal Y , and so, since A is orthogonally similar to D, we have that A = X − XT for some

orthogonal X. This takes care of the case when the Jordan blocks of A corresponding to 2i come in pairs of

Jk(2i)⊕ Jk(2i) or Jk(2i)⊕ Jk+1(2i), for k > 1.

For the last case, let A be similar to 2iIn ⊕ −2iIn. Set J =

[
0 In

−In 0

]
. Observe that 2J is skew-

symmetric and orthogonally similar to A. Since J is orthogonal and −JT = J , we have that 2J = J − JT .

It follows that A = X −XT for some orthogonal X.

Proof of Theorem 1.2(b). Let A be symmetric. Suppose that A2 − 4I has a skew-symmetric root B in

C(A). Lemma 2.3(a) implies that there is an orthogonal matrix X such that

(3.11) XAX−1 = Aλ1
⊕ · · · ⊕Aλk

⊕A2 ⊕A−2,

where σ(Aµ) = {µ} and λ1, . . . , λk, 2,−2 are the k + 2 distinct eigenvalues of A. Since XBX−1 commutes

with XAX−1,

(3.12) XBX−1 = Bλ1 ⊕ · · · ⊕Bλk
⊕B2 ⊕B−2,

where each Bµ is skew-symmetric and B2
µ = A2

µ − 4I. If µ = ±2, then B2
µ is nilpotent and the Jordan form

of a nilpotent skew-symmetric Bµ given by Lemma 2.3(b) yields the Jordan block restrictions (ii), (iii), and

(iv) for Aµ. If µ ̸= ±2, then Bµ is nonsingular. By Lemma 2.3(b)(i), σ(Bµ) = {
√
µ2 − 4,−

√
µ2 − 4} and

the Jordan form of Bµ is a direct sum of matrices of the form Jk(
√
µ2 − 4) ⊕ Jk(−

√
µ2 − 4). Hence, the

Jordan form of Aµ is a direct sum of matrices of the form Jk(µ) ⊕ Jk(µ). This proves necessity. For the

converse, we may assume, by Lemma 2.3(a) and Lemma 2.4(a), that A is similar to

(1) Jk(λ)⊕ Jk(λ), where λ ̸= ±2, 0,

(2) Jk(λ)⊕ Jk(λ)⊕ Jk(λ)⊕ Jk(λ), for any k > 1 and λ = ±2,

(3) Jk+1(λ)⊕ Jk(λ), where λ = ±2,

(4) λIk, where λ = ±2, or

(5) A0 := A1 ⊕A1, where A1 is symmetric and similar to Jk(0).

We show for each case that A = X + XT for some orthogonal X. For each of the cases (1) - (4), we

respectively set a skew-symmetric B similar to

(1) Jk(
√
λ2 − 4)⊕ Jk(−

√
λ2 − 4)

(2) J2k(0)⊕ J2k(0)

(3) J2k+1(0)

(4) 0k

Observe that B2 + 4I is nonsingular, symmetric, and has a symmetric square root R ∈ C[B] that is similar

to A. By Lemma 2.1, R = Y + Y T for some orthogonal matrix Y , and since R is orthogonally similar to A,

we have A = X +XT for some orthogonal X.

For the last case, we observe that A2
1 − 4I is nonsingular and symmetric, and thus has a symmetric

square root T ∈ C[A1]. Set B :=

[
0 iT

−iT 0

]
. Note that B is skew-symmetric, commutes with A0, and

B2 = A2
0 − 4I. By Lemmas 2.1 and 2.4, we have that A = X +XT for some orthogonal X.
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[3] G. Frobenius. Über die mit einer Matrix vertauschbaren Matrizen. Sitzungber. Preuss Akad. Wiss., 3–15, 1910.

[4] D. Granario, D.I. Merino, and A.T. Paras. The sum of two ϕS orthogonal matrices when S−TS is normal and −1 /∈
σ(S−TS). Linear Algebra Appl., 495:67–89, 2016.

[5] R. Gow and T.J. Laffey. Pairs of alternating forms and products of two skew-symmetric matrices. Linear Algebra Appl.,

63:119–132, 1984.

[6] R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press, New York, 2013.

[7] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.

[8] R.A. Horn and D.I. Merino. Contragradient equivalence: A canonical form and some applications. Linear Algebra Appl.,

214:43–92, 1995.

[9] R.A. Horn and D.I. Merino. The Jordan canonical forms of complex orthogonal and skew symmetric matrices. Linear

Algebra Appl., 302–303:411–421, 1999.

[10] T.J. Laffey. Products of skew-symmetric matrices. Linear Algebra Appl., 68:249–251, 1985.

[11] D.I. Merino. The sum of orthogonal matrices. Linear Algebra Appl., 436:1960–1968, 2012.

[12] H. Radjavi. Products of Hermitian matrices and symmetries. Proc. Amer. Math. Soc., 12:369–372, 1969; Errata, Proc.

Amer. Math. Soc. 26:701, 1970.


	Introduction
	Preliminaries
	Proof of Theorem 1.2
	References

