

SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES*

RALPH JOHN DE LA CRUZ[†] AND AGNES T. PARAS[†]

Abstract. An *n*-by-*n* matrix *A* is called symmetric, skew-symmetric, and orthogonal if $A^T = A$, $A^T = -A$, and $A^T = A^{-1}$, respectively. We give necessary and sufficient conditions on a complex matrix *A* so that it is a sum of type "orthogonal + symmetric" in terms of the Jordan form of $A - A^T$. We also give necessary and sufficient conditions on a complex matrix *A* so that it is a sum of type "orthogonal + skew-symmetric" in terms of the Jordan form of $A + A^T$.

Key words. Orthogonal, Symmetric, Skew-symmetric, Sums, Decompositions.

AMS subject classifications. 15A21, 15A23.

1. Introduction. A matrix A is called

- symmetric if $A^T = A$,
- skew-symmetric if $A^T = -A$,
- orthogonal if A is nonsingular and $A^T = A^{-1}$.

Several mathematicians have studied matrix decompositions involving the above special matrices. Frobenius showed that every matrix over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ is a product of two symmetric matrices [3] (see also the work of Radjavi [12]). Gow and Laffey gave necessary and sufficient conditions for a matrix over an arbitrary field to be a product of two skew-symmetric matrices [5]. Laffey later on proved that if $n \equiv 0 \mod 4$ and A is an n-by-n matrix over an algebraically closed field with characteristic not equal to 2, then A is a product of five skew-symmetric matrices [10]. Horn and Merino showed that a complex matrix A may be written as a product A = QR, where Q is orthogonal and R is symmetric if and only if AA^T is similar to A^TA [9]. De la Cruz et al. gave necessary and sufficient conditions for a complex matrix A to be written as a product A = QR, where Q is orthogonal and R is skew-symmetric [1]. If R > 1, Merino showed that any matrix over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ is a sum of a finite number of orthogonal matrices [11]. Granario et al. gave necessary and sufficient conditions for a complex matrix to be written as a sum of two orthogonal matrices [4].

The main result of this paper is the following theorem which gives necessary and sufficient conditions for a complex matrix A to be written as A = Q + R, where Q is orthogonal and R is either symmetric or skew-symmetric. For a complex number λ , we denote by $J_k(\lambda)$ the k-by-k upper triangular Jordan block with eigenvalue λ .

Theorem 1.1. Let $A \in \mathbb{C}^{n \times n}$ be given. Then

- (a) $A = A_1 + A_2$, for some orthogonal A_1 and symmetric A_2 if and only if the Jordan blocks of $A A^T$ with eigenvalue 2i of size greater than one come in pairs of $J_k(2i) \oplus J_k(2i)$ or $J_k(2i) \oplus J_{k+1}(2i)$.
- (b) $A = B_1 + B_2$, for some orthogonal B_1 and skew-symmetric B_2 , if and only if $A + A^T$ is similar to a direct sum of matrices of the form

^{*}Received by the editors on May 14, 2022. Accepted for publication on September 16, 2022. Handling Editor: Roger Horn. Corresponding Author: Ralph John de la Cruz.

[†]Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines (rjdelacruz@math.upd.edu.ph, agnes@math.upd.edu.ph).

- (1) $J_k(\lambda) \oplus J_k(\lambda)$, where $\lambda \neq \pm 2$,
- (2) $J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda)$, for any k > 1 and $\lambda = \pm 2$,
- (3) $J_{k+1}(\lambda) \oplus J_k(\lambda)$, where $\lambda = \pm 2$, or
- (4) λI_k , where $\lambda = 2, -2$.

The authors have a similar study on symplectic, skew-Hamiltonian, and Hamiltonian matrices in [2].

If A has a decomposition as in Theorem 1.1(a), then

$$(1.1) A - A^T = A_1 + A_2 - (A_1 + A_2)^T = A_1 + A_2 - A_1^T - A_2^T = A_1 - A_1^T.$$

Conversely, if $A - A^T = A_1 - A_1^T$ for some orthogonal A_1 , then

$$(1.2) A - A_1 = A^T - A_1^T = (A - A_1)^T,$$

is symmetric and $A = A_1 + (A - A_1)$ is a decomposition of A as in Theorem 1.1(a). Analogous arguments show that A has a decomposition from Theorem 1.1(b) if and only if $A + A^T = B_1 + B_1^T$ for some orthogonal B_1 . The following theorem implies statements (a) and (b) of Theorem 1.1.

Theorem 1.2. Let $A \in \mathbb{C}^{n \times n}$ be given.

- (a) If A is skew-symmetric, then $A = X X^T$ for some orthogonal X if and only if the Jordan blocks of A with eigenvalue 2i and size greater than one, if any, come in pairs of $J_k(2i) \oplus J_k(2i)$ or $J_k(2i) \oplus J_{k+1}(2i)$.
- (b) If A is symmetric, then $A = X + X^T$ for some orthogonal X if and only if A is similar to a direct sum of matrices of the form
 - (i) $J_k(\lambda) \oplus J_k(\lambda)$, where $\lambda \neq \pm 2$,
 - (ii) $J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda)$, for any k > 1 and $\lambda = \pm 2$,
 - (iii) $J_{k+1}(\lambda) \oplus J_k(\lambda)$, where $\lambda = \pm 2$, or
 - (iv) λI_k , where $\lambda = 2, -2$.

We give some preliminary observations in Section 2 and prove Theorem 1.2 in Section 3.

2. Preliminaries. The conditions for the decompositions in Theorem 1.2 can be stated in terms of the existence of symmetric or skew-symmetric square roots of a symmetric matrix. By C(A), we mean the centralizer of the square matrix A, that is,

(2.3)
$$C(A) := \{ X \in \mathbb{C}^{n \times n} \mid AX = XA \}.$$

LEMMA 2.1. Let $A \in \mathbb{C}^{n \times n}$ be given.

- (a) If A is skew-symmetric, then $A = X X^T$ for some orthogonal X if and only if $A^2 + 4I$ has a symmetric square root in C(A).
- (b) If A is symmetric, then $A = X + X^T$ for some orthogonal X if and only if $A^2 4I$ has a skew-symmetric square root in C(A).

Proof. Let A be skew-symmetric. Suppose $A = X - X^T$ for some matrix X. If X is orthogonal, then $X^T = X^{-1}$, and so we consider orthogonal solutions to the matrix equation

$$(2.4) A = X - X^{-1}.$$

657 Sums of orthogonal, symmetric, and skew-symmetric matrices

If X is a solution to (2.4), then $X \in \mathcal{C}(A)$. Now (2.4) is equivalent to

$$(2.5) I = (X - A)X = X^2 - AX.$$

By completing the squares in (2.5), we get $(X - \frac{1}{2}A)^2 = \frac{1}{4}(A^2 + 4I)$. If, in addition, X is orthogonal and we set $Y := X - \frac{1}{2}A$, then $Y \in \mathcal{C}(A)$, $Y^2 = \frac{1}{4}(A^2 + 4I)$, and

(2.6)
$$Y^{T} = X^{T} - \frac{1}{2}A^{T} = X^{-1} + \frac{1}{2}A = (X - A) + \frac{1}{2}A = Y.$$

Thus, Z := 2Y is a symmetric square root of $A^2 + 4I$ and $Z \in \mathcal{C}(A)$.

Conversely, suppose $Z \in \mathcal{C}(A)$ and Z is a symmetric square root of $A^2 + 4I$. Set $Y := \frac{1}{2}Z$ and set $X := Y + \frac{1}{2}A$. Then $Y \in \mathcal{C}(A)$, Y is symmetric,

$$XX^T = \left(Y + \frac{1}{2}A\right)\left(Y - \frac{1}{2}A\right) = Y^2 - \frac{1}{4}A^2 = \frac{1}{4}Z^2 - \frac{1}{4}A^2 = I,$$

and

$$(2.8) X - X^T = Y + \frac{1}{2}A - \left(Y - \frac{1}{2}A\right) = A.$$

This proves (a). The proof of (b) is analogous.

Note that the existence of a decomposition in Theorem 1.2 is invariant under orthogonal similarity, and so the following theorem is useful.

LEMMA 2.2 ([8, Corollary 22]). Two complex matrices which are both symmetric, both skew-symmetric, or both orthogonal are similar if and only if they are orthogonally similar.

A matrix A has a square root if and only if the nilpotent part of A, if any, is similar to a direct sum of matrices of the form 0_m , $J_m(0) \oplus J_m(0)$, or $J_m(0) \oplus J_{m+1}(0)$ for any m [7, Theorem 6.4.12]. To prove Theorem 1.2 it helps to know the Jordan structure of a symmetric or skew-symmetric matrix. Any square complex matrix is similar to a symmetric matrix and so there are no restrictions on the Jordan form of a symmetric matrix [6, Theorem 4.4.9]. For a skew-symmetric matrix A, the Jordan form of A must be expressible as a direct sum of matrices of the form $J_k(\lambda) \oplus J_k(-\lambda)$ for $\lambda \neq 0$, $J_k(0) \oplus J_k(0)$ for even k, or $J_k(0)$ for odd k. Conversely, when A is similar to the direct sum of any of the preceding Jordan blocks, then A is similar to a skew-symmetric matrix [9]. Thus, by Lemma 2.2, we have the following.

Lemma 2.3. Let $A \in \mathbb{C}^{n \times n}$ be given. Then

- (a) A is symmetric if and only if A is orthogonal similar to $\bigoplus_i A_i$, where each A_i is a symmetric matrix that is similar to a Jordan block.
- (b) A is skew-symmetric if and only if A is orthogonal similar to $\bigoplus_i A_i$, where each A_i is skew-symmetric and similar to one of the following:
 - (1) $J_k(\lambda) \oplus J_k(-\lambda)$ for any $\lambda \neq 0$,
 - (2) $J_k(0) \oplus J_k(0)$ for any even k, and
 - (3) $J_k(0)$ for any odd k.

The following result reduces our problem to symmetric or skew-symmetric matrices having at most two eigenvalues. Let $\sigma(A)$ denote the spectrum of a matrix A.

Lemma 2.4. Let $A = \bigoplus_{i=1}^{m} A_i$ for some square complex matrices A_i with pairwise disjoint spectra. Then

- (a) A is symmetric such that $A^2 4I$ has a skew-symmetric square root that commutes with A if and only if each A_i is symmetric and $A_i^2 4I$ has a skew-symmetric square root that commutes with A_i .
- (b) A is skew-symmetric such that $A^2 + 4I$ has a symmetric square root that commutes with A if and only if each A_i is skew-symmetric and $A_i^2 + 4I$ has a symmetric square root.

Proof. We only do (a). Sufficiency follows from the fact that a direct sum of skew-symmetric matrices is skew-symmetric. For necessity, let B be a skew-symmetric square root of $A^2 - 4I$ that commutes with A. Since $\sigma(A_i) \cap \sigma(A_j) = \emptyset$ for $i \neq j$, Sylvester's theorem [6, Theorem 2.4.4.1] implies that $B = \bigoplus_{i=1}^m B_i$ and partitioned conformal to A. Hence each B_i is a skew-symmetric square root of $A_i^2 - 4I$ that commutes with A_i .

3. Proof of Theorem 1.2. For $A \in \mathbb{C}^{n \times n}$, we let $\mathbb{C}[A] := \{p(A) \mid p(x) \in \mathbb{C}[x]\}$ denote the set of all polynomials in A.

Proof of Theorem 1.2(a). Let A be skew-symmetric. Suppose that $A = Y - Y^T$ for some orthogonal Y. By Lemma 2.1, $A^2 + 4I$ has a symmetric square root B which commutes with A. Lemma 2.3(b) implies that there is a nonsingular matrix X such that

$$(3.9) XAX^{-1} = A_1 \oplus -A_1 \oplus A_2,$$

where each A_i is symmetric, $\sigma(A_1) = \{2i\}$, and $2i, -2i \notin \sigma(A_2)$. Since $XBX^{-1} \in \mathcal{C}(XAX^{-1})$, the eigenvalue conditions above and Sylvester's theorem imply that

$$(3.10) XBX^{-1} = B_1 \oplus B_2 \oplus B_3,$$

which is partitioned conformal to XAX^{-1} . It follows that $B_1^2 = A_1^2 + 4I$, that is, the nilpotent matrix $A_1^2 + 4I$ has a square root, and this gives the Jordan block restrictions stated in Theorem 1.2(a). This proves necessity.

Conversely, suppose the Jordan blocks of A with eigenvalue 2i and size greater than 1, if any, come in pairs $J_k(2i) \oplus J_k(2i)$ or $J_k(2i) \oplus J_{k+1}(2i)$. By Lemma 2.3(b) and Lemma 2.4(b), we may assume that

- (1) $\sigma(A)$ does not contain 2i and -2i, or
- (2) A is similar to $J_k(2i) \oplus J_k(2i) \oplus J_k(-2i) \oplus J_k(-2i)$ or $J_k(2i) \oplus J_{k+1}(2i) \oplus J_k(-2i) \oplus J_{k+1}(-2i)$ for k > 1, or
- (3) A is similar to $2iI_n \oplus -2iI_n$.

If $\sigma(A) \cap \{2i, -2i\} = \emptyset$, then $A^2 + 4I$ is nonsingular, symmetric, and has a symmetric square root $B \in \mathbb{C}[A]$ [7, Theorem 6.4.12 (a)]. Since $B^2 = A^2 + 4I$, by Lemma 2.1(a), there exists an orthogonal X such that $A = X - X^T$.

We consider the second case. Let k>1. Set a symmetric B similar to $J_{2k}(0)$ if A is similar to $J_k(2i) \oplus J_k(2i) \oplus J_k(-2i) \oplus J_k(-2i)$; and set a symmetric B similar to $J_{2k+1}(0)$ if A is similar to $J_k(2i) \oplus J_{k+1}(2i) \oplus J_k(-2i) \oplus J_{k+1}(-2i)$. Note that B^2-4I is symmetric, nonsingular, and has a symmetric square root $S \in \mathbb{C}[B^2-4I]$ similar to $J_k(2i) \oplus J_k(2i)$ or $J_k(2i) \oplus J_{k+1}(2i)$. Set $D:=\begin{bmatrix}0 & iS\\ -iS & 0\end{bmatrix}$. Notice that D is skew-symmetric, $D^2=S^2\oplus S^2$, and D is orthogonally similar to A. We also have that $D^2+4I=(B\oplus B)^2$, and $B\oplus B$ is symmetric and commutes with D, since S is a polynomial in B. By Lemma 2.1(a), $D=Y-Y^T$

Sums of orthogonal, symmetric, and skew-symmetric matrices

for some orthogonal Y, and so, since A is orthogonally similar to D, we have that $A = X - X^T$ for some orthogonal X. This takes care of the case when the Jordan blocks of A corresponding to 2i come in pairs of $J_k(2i) \oplus J_k(2i) \oplus J_k(2i) \oplus J_{k+1}(2i)$, for k > 1.

For the last case, let A be similar to $2iI_n \oplus -2iI_n$. Set $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$. Observe that 2J is skew-symmetric and orthogonally similar to A. Since J is orthogonal and $-J^T = J$, we have that $2J = J - J^T$. It follows that $A = X - X^T$ for some orthogonal X.

Proof of Theorem 1.2(b). Let A be symmetric. Suppose that $A^2 - 4I$ has a skew-symmetric root B in $\mathcal{C}(A)$. Lemma 2.3(a) implies that there is an orthogonal matrix X such that

$$(3.11) XAX^{-1} = A_{\lambda_1} \oplus \cdots \oplus A_{\lambda_k} \oplus A_2 \oplus A_{-2}.$$

where $\sigma(A_{\mu}) = \{\mu\}$ and $\lambda_1, \ldots, \lambda_k, 2, -2$ are the k+2 distinct eigenvalues of A. Since XBX^{-1} commutes with XAX^{-1} ,

$$(3.12) XBX^{-1} = B_{\lambda_1} \oplus \cdots \oplus B_{\lambda_k} \oplus B_2 \oplus B_{-2},$$

where each B_{μ} is skew-symmetric and $B_{\mu}^2 = A_{\mu}^2 - 4I$. If $\mu = \pm 2$, then B_{μ}^2 is nilpotent and the Jordan form of a nilpotent skew-symmetric B_{μ} given by Lemma 2.3(b) yields the Jordan block restrictions (ii), (iii), and (iv) for A_{μ} . If $\mu \neq \pm 2$, then B_{μ} is nonsingular. By Lemma 2.3(b)(i), $\sigma(B_{\mu}) = \{\sqrt{\mu^2 - 4}, -\sqrt{\mu^2 - 4}\}$ and the Jordan form of B_{μ} is a direct sum of matrices of the form $J_k(\sqrt{\mu^2 - 4}) \oplus J_k(-\sqrt{\mu^2 - 4})$. Hence, the Jordan form of A_{μ} is a direct sum of matrices of the form $J_k(\mu) \oplus J_k(\mu)$. This proves necessity. For the converse, we may assume, by Lemma 2.3(a) and Lemma 2.4(a), that A is similar to

- (1) $J_k(\lambda) \oplus J_k(\lambda)$, where $\lambda \neq \pm 2, 0$,
- (2) $J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda)$, for any k > 1 and $\lambda = \pm 2$,
- (3) $J_{k+1}(\lambda) \oplus J_k(\lambda)$, where $\lambda = \pm 2$,
- (4) λI_k , where $\lambda = \pm 2$, or
- (5) $A_0 := A_1 \oplus A_1$, where A_1 is symmetric and similar to $J_k(0)$.

We show for each case that $A = X + X^T$ for some orthogonal X. For each of the cases (1) - (4), we respectively set a skew-symmetric B similar to

- (1) $J_k(\sqrt{\lambda^2-4}) \oplus J_k(-\sqrt{\lambda^2-4})$
- (2) $J_{2k}(0) \oplus J_{2k}(0)$
- $(3) J_{2k+1}(0)$
- $(4) 0_k$

Observe that $B^2 + 4I$ is nonsingular, symmetric, and has a symmetric square root $R \in \mathbb{C}[B]$ that is similar to A. By Lemma 2.1, $R = Y + Y^T$ for some orthogonal matrix Y, and since R is orthogonally similar to A, we have $A = X + X^T$ for some orthogonal X.

For the last case, we observe that $A_1^2 - 4I$ is nonsingular and symmetric, and thus has a symmetric square root $T \in \mathbb{C}[A_1]$. Set $B := \begin{bmatrix} 0 & iT \\ -iT & 0 \end{bmatrix}$. Note that B is skew-symmetric, commutes with A_0 , and $B^2 = A_0^2 - 4I$. By Lemmas 2.1 and 2.4, we have that $A = X + X^T$ for some orthogonal X.

R.J. De La Cruz and A.T. Paras

Acknowledgement. This work was funded by the UP System Enhanced Creative Work and Research Grant (ECWRG-2021-1-4R).

REFERENCES

- R.J. de la Cruz, D.I. Merino, and A.T. Paras. Skew φ polar decompositions. Linear Algebra Appl., 531:129–140, 2017.
- [2] R.J. de la Cruz, A.T. Paras. The sums of symplectic, Hamiltonian, and skew-Hamiltonian matrices. Linear Algebra Appl., 603:84-90, 2020.
- [3] G. Frobenius. Über die mit einer Matrix vertauschbaren Matrizen. Sitzungber. Preuss Akad. Wiss., 3-15, 1910.
- [4] D. Granario, D.I. Merino, and A.T. Paras. The sum of two ϕ_S orthogonal matrices when $S^{-T}S$ is normal and $-1 \notin \sigma(S^{-T}S)$. Linear Algebra Appl., 495:67–89, 2016.
- [5] R. Gow and T.J. Laffey. Pairs of alternating forms and products of two skew-symmetric matrices. Linear Algebra Appl., 63:119-132, 1984.
- [6] R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press, New York, 2013.
- [7] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
- [8] R.A. Horn and D.I. Merino. Contragradient equivalence: A canonical form and some applications. Linear Algebra Appl., 214:43-92, 1995.
- [9] R.A. Horn and D.I. Merino. The Jordan canonical forms of complex orthogonal and skew symmetric matrices. *Linear Algebra Appl.*, 302–303:411–421, 1999.
- [10] T.J. Laffey. Products of skew-symmetric matrices. Linear Algebra Appl., 68:249–251, 1985.
- [11] D.I. Merino. The sum of orthogonal matrices. Linear Algebra Appl., 436:1960–1968, 2012.
- [12] H. Radjavi. Products of Hermitian matrices and symmetries. Proc. Amer. Math. Soc., 12:369–372, 1969; Errata, Proc. Amer. Math. Soc. 26:701, 1970.

660