SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES*

RALPH JOHN DE LA CRUZ ${ }^{\dagger}$ AND AGNES T. PARAS ${ }^{\dagger}$

Abstract

An n-by- n matrix A is called symmetric, skew-symmetric, and orthogonal if $A^{T}=A, A^{T}=-A$, and $A^{T}=A^{-1}$, respectively. We give necessary and sufficient conditions on a complex matrix A so that it is a sum of type "orthogonal + symmetric" in terms of the Jordan form of $A-A^{T}$. We also give necessary and sufficient conditions on a complex matrix A so that it is a sum of type "orthogonal + skew-symmetric" in terms of the Jordan form of $A+A^{T}$.

Key words. Orthogonal, Symmetric, Skew-symmetric, Sums, Decompositions.

AMS subject classifications. 15A21, 15A23.

1. Introduction. A matrix A is called

- symmetric if $A^{T}=A$,
- skew-symmetric if $A^{T}=-A$,
- orthogonal if A is nonsingular and $A^{T}=A^{-1}$.

Several mathematicians have studied matrix decompositions involving the above special matrices. Frobenius showed that every matrix over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ is a product of two symmetric matrices [3] (see also the work of Radjavi [12]). Gow and Laffey gave necessary and sufficient conditions for a matrix over an arbitrary field to be a product of two skew-symmetric matrices [5]. Laffey later on proved that if $n \equiv 0 \bmod 4$ and A is an n-by- n matrix over an algebraically closed field with characteristic not equal to 2 , then A is a product of five skew-symmetric matrices [10]. Horn and Merino showed that a complex matrix A may be written as a product $A=Q R$, where Q is orthogonal and R is symmetric if and only if $A A^{T}$ is similar to $A^{T} A$ [9]. De la Cruz et al. gave necessary and sufficient conditions for a complex matrix A to be written as a product $A=Q R$, where Q is orthogonal and R is skew-symmetric [1]. If $n>1$, Merino showed that any matrix over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ is a sum of a finite number of orthogonal matrices [11]. Granario et al. gave necessary and sufficient conditions for a complex matrix to be written as a sum of two orthogonal matrices [4].

The main result of this paper is the following theorem which gives necessary and sufficient conditions for a complex matrix A to be written as $A=Q+R$, where Q is orthogonal and R is either symmetric or skew-symmetric. For a complex number λ, we denote by $J_{k}(\lambda)$ the k-by- k upper triangular Jordan block with eigenvalue λ.

Theorem 1.1. Let $A \in \mathbb{C}^{n \times n}$ be given. Then
(a) $A=A_{1}+A_{2}$, for some orthogonal A_{1} and symmetric A_{2} if and only if the Jordan blocks of $A-A^{T}$ with eigenvalue $2 i$ of size greater than one come in pairs of $J_{k}(2 i) \oplus J_{k}(2 i)$ or $J_{k}(2 i) \oplus J_{k+1}(2 i)$.
(b) $A=B_{1}+B_{2}$, for some orthogonal B_{1} and skew-symmetric B_{2}, if and only if $A+A^{T}$ is similar to a direct sum of matrices of the form

[^0](1) $J_{k}(\lambda) \oplus J_{k}(\lambda)$, where $\lambda \neq \pm 2$,
(2) $J_{k}(\lambda) \oplus J_{k}(\lambda) \oplus J_{k}(\lambda) \oplus J_{k}(\lambda)$, for any $k>1$ and $\lambda= \pm 2$,
(3) $J_{k+1}(\lambda) \oplus J_{k}(\lambda)$, where $\lambda= \pm 2$, or
(4) λI_{k}, where $\lambda=2,-2$.

The authors have a similar study on symplectic, skew-Hamiltonian, and Hamiltonian matrices in [2].
If A has a decomposition as in Theorem 1.1(a), then

$$
\begin{equation*}
A-A^{T}=A_{1}+A_{2}-\left(A_{1}+A_{2}\right)^{T}=A_{1}+A_{2}-A_{1}^{T}-A_{2}^{T}=A_{1}-A_{1}^{T} \tag{1.1}
\end{equation*}
$$

Conversely, if $A-A^{T}=A_{1}-A_{1}^{T}$ for some orthogonal A_{1}, then

$$
\begin{equation*}
A-A_{1}=A^{T}-A_{1}^{T}=\left(A-A_{1}\right)^{T} \tag{1.2}
\end{equation*}
$$

is symmetric and $A=A_{1}+\left(A-A_{1}\right)$ is a decomposition of A as in Theorem 1.1(a). Analogous arguments show that A has a decomposition from Theorem 1.1(b) if and only if $A+A^{T}=B_{1}+B_{1}^{T}$ for some orthogonal B_{1}. The following theorem implies statements (a) and (b) of Theorem 1.1.

Theorem 1.2. Let $A \in \mathbb{C}^{n \times n}$ be given.
(a) If A is skew-symmetric, then $A=X-X^{T}$ for some orthogonal X if and only if the Jordan blocks of A with eigenvalue $2 i$ and size greater than one, if any, come in pairs of $J_{k}(2 i) \oplus J_{k}(2 i)$ or $J_{k}(2 i) \oplus J_{k+1}(2 i)$.
(b) If A is symmetric, then $A=X+X^{T}$ for some orthogonal X if and only if A is similar to a direct sum of matrices of the form
(i) $J_{k}(\lambda) \oplus J_{k}(\lambda)$, where $\lambda \neq \pm 2$,
(ii) $J_{k}(\lambda) \oplus J_{k}(\lambda) \oplus J_{k}(\lambda) \oplus J_{k}(\lambda)$, for any $k>1$ and $\lambda= \pm 2$,
(iii) $J_{k+1}(\lambda) \oplus J_{k}(\lambda)$, where $\lambda= \pm 2$, or
(iv) λI_{k}, where $\lambda=2,-2$.

We give some preliminary observations in Section 2 and prove Theorem 1.2 in Section 3.
2. Preliminaries. The conditions for the decompositions in Theorem 1.2 can be stated in terms of the existence of symmetric or skew-symmetric square roots of a symmetric matrix. By $\mathcal{C}(A)$, we mean the centralizer of the square matrix A, that is,

$$
\begin{equation*}
\mathcal{C}(A):=\left\{X \in \mathbb{C}^{n \times n} \mid A X=X A\right\} \tag{2.3}
\end{equation*}
$$

Lemma 2.1. Let $A \in \mathbb{C}^{n \times n}$ be given.
(a) If A is skew-symmetric, then $A=X-X^{T}$ for some orthogonal X if and only if $A^{2}+4 I$ has a symmetric square root in $\mathcal{C}(A)$.
(b) If A is symmetric, then $A=X+X^{T}$ for some orthogonal X if and only if $A^{2}-4 I$ has a skewsymmetric square root in $\mathcal{C}(A)$.
Proof. Let A be skew-symmetric. Suppose $A=X-X^{T}$ for some matrix X. If X is orthogonal, then $X^{T}=X^{-1}$, and so we consider orthogonal solutions to the matrix equation

$$
\begin{equation*}
A=X-X^{-1} \tag{2.4}
\end{equation*}
$$

If X is a solution to (2.4), then $X \in \mathcal{C}(A)$. Now (2.4) is equivalent to

$$
\begin{equation*}
I=(X-A) X=X^{2}-A X \tag{2.5}
\end{equation*}
$$

By completing the squares in (2.5), we get $\left(X-\frac{1}{2} A\right)^{2}=\frac{1}{4}\left(A^{2}+4 I\right)$. If, in addition, X is orthogonal and we set $Y:=X-\frac{1}{2} A$, then $Y \in \mathcal{C}(A), Y^{2}=\frac{1}{4}\left(A^{2}+4 I\right)$, and

$$
\begin{equation*}
Y^{T}=X^{T}-\frac{1}{2} A^{T}=X^{-1}+\frac{1}{2} A=(X-A)+\frac{1}{2} A=Y . \tag{2.6}
\end{equation*}
$$

Thus, $Z:=2 Y$ is a symmetric square root of $A^{2}+4 I$ and $Z \in \mathcal{C}(A)$.
Conversely, suppose $Z \in \mathcal{C}(A)$ and Z is a symmetric square root of $A^{2}+4 I$. Set $Y:=\frac{1}{2} Z$ and set $X:=Y+\frac{1}{2} A$. Then $Y \in \mathcal{C}(A), Y$ is symmetric,

$$
\begin{equation*}
X X^{T}=\left(Y+\frac{1}{2} A\right)\left(Y-\frac{1}{2} A\right)=Y^{2}-\frac{1}{4} A^{2}=\frac{1}{4} Z^{2}-\frac{1}{4} A^{2}=I \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
X-X^{T}=Y+\frac{1}{2} A-\left(Y-\frac{1}{2} A\right)=A \tag{2.8}
\end{equation*}
$$

This proves (a). The proof of (b) is analogous.
Note that the existence of a decomposition in Theorem 1.2 is invariant under orthogonal similarity, and so the following theorem is useful.

Lemma 2.2 ([8, Corollary 22]). Two complex matrices which are both symmetric, both skew-symmetric, or both orthogonal are similar if and only if they are orthogonally similar.

A matrix A has a square root if and only if the nilpotent part of A, if any, is similar to a direct sum of matrices of the form $0_{m}, J_{m}(0) \oplus J_{m}(0)$, or $J_{m}(0) \oplus J_{m+1}(0)$ for any m [7, Theorem 6.4.12]. To prove Theorem 1.2 it helps to know the Jordan structure of a symmetric or skew-symmetric matrix. Any square complex matrix is similar to a symmetric matrix and so there are no restrictions on the Jordan form of a symmetric matrix [6, Theorem 4.4.9]. For a skew-symmetric matrix A, the Jordan form of A must be expressible as a direct sum of matrices of the form $J_{k}(\lambda) \oplus J_{k}(-\lambda)$ for $\lambda \neq 0, J_{k}(0) \oplus J_{k}(0)$ for even k, or $J_{k}(0)$ for odd k. Conversely, when A is similar to the direct sum of any of the preceding Jordan blocks, then A is similar to a skew-symmetric matrix [9]. Thus, by Lemma 2.2, we have the following.

Lemma 2.3. Let $A \in \mathbb{C}^{n \times n}$ be given. Then
(a) A is symmetric if and only if A is orthogonal similar to $\oplus_{i} A_{i}$, where each A_{i} is a symmetric matrix that is similar to a Jordan block.
(b) A is skew-symmetric if and only if A is orthogonal similar to $\oplus_{i} A_{i}$, where each A_{i} is skew-symmetric and similar to one of the following:
(1) $J_{k}(\lambda) \oplus J_{k}(-\lambda)$ for any $\lambda \neq 0$,
(2) $J_{k}(0) \oplus J_{k}(0)$ for any even k, and
(3) $J_{k}(0)$ for any odd k.

The following result reduces our problem to symmetric or skew-symmetric matrices having at most two eigenvalues. Let $\sigma(A)$ denote the spectrum of a matrix A.

LEMMA 2.4. Let $A=\oplus_{i=1}^{m} A_{i}$ for some square complex matrices A_{i} with pairwise disjoint spectra. Then
(a) A is symmetric such that $A^{2}-4 I$ has a skew-symmetric square root that commutes with A if and only if each A_{i} is symmetric and $A_{i}^{2}-4 I$ has a skew-symmetric square root that commutes with A_{i}.
(b) A is skew-symmetric such that $A^{2}+4 I$ has a symmetric square root that commutes with A if and only if each A_{i} is skew-symmetric and $A_{i}^{2}+4 I$ has a symmetric square root.

Proof. We only do (a). Sufficiency follows from the fact that a direct sum of skew-symmetric matrices is skew-symmetric. For necessity, let B be a skew-symmetric square root of $A^{2}-4 I$ that commutes with A. Since $\sigma\left(A_{i}\right) \cap \sigma\left(A_{j}\right)=\emptyset$ for $i \neq j$, Sylvester's theorem [6, Theorem 2.4.4.1] implies that $B=\oplus_{i=1}^{m} B_{i}$ and partitioned conformal to A. Hence each B_{i} is a skew-symmetric square root of $A_{i}^{2}-4 I$ that commutes with A_{i}.
3. Proof of Theorem 1.2. For $A \in \mathbb{C}^{n \times n}$, we let $\mathbb{C}[A]:=\{p(A) \mid p(x) \in \mathbb{C}[x]\}$ denote the set of all polynomials in A.

Proof of Theorem 1.2(a). Let A be skew-symmetric. Suppose that $A=Y-Y^{T}$ for some orthogonal Y. By Lemma 2.1, $A^{2}+4 I$ has a symmetric square root B which commutes with A. Lemma 2.3(b) implies that there is a nonsingular matrix X such that

$$
\begin{equation*}
X A X^{-1}=A_{1} \oplus-A_{1} \oplus A_{2} \tag{3.9}
\end{equation*}
$$

where each A_{i} is symmetric, $\sigma\left(A_{1}\right)=\{2 i\}$, and $2 i,-2 i \notin \sigma\left(A_{2}\right)$. Since $X B X^{-1} \in \mathcal{C}\left(X A X^{-1}\right)$, the eigenvalue conditions above and Sylvester's theorem imply that

$$
\begin{equation*}
X B X^{-1}=B_{1} \oplus B_{2} \oplus B_{3} \tag{3.10}
\end{equation*}
$$

which is partitioned conformal to $X A X^{-1}$. It follows that $B_{1}^{2}=A_{1}^{2}+4 I$, that is, the nilpotent matrix $A_{1}^{2}+4 I$ has a square root, and this gives the Jordan block restrictions stated in Theorem 1.2(a). This proves necessity.

Conversely, suppose the Jordan blocks of A with eigenvalue $2 i$ and size greater than 1 , if any, come in pairs $J_{k}(2 i) \oplus J_{k}(2 i)$ or $J_{k}(2 i) \oplus J_{k+1}(2 i)$. By Lemma 2.3(b) and Lemma 2.4(b), we may assume that
(1) $\sigma(A)$ does not contain $2 i$ and $-2 i$, or
(2) A is similar to $J_{k}(2 i) \oplus J_{k}(2 i) \oplus J_{k}(-2 i) \oplus J_{k}(-2 i)$ or $J_{k}(2 i) \oplus J_{k+1}(2 i) \oplus J_{k}(-2 i) \oplus J_{k+1}(-2 i)$ for $k>1$, or
(3) A is similar to $2 i I_{n} \oplus-2 i I_{n}$.

If $\sigma(A) \cap\{2 i,-2 i\}=\emptyset$, then $A^{2}+4 I$ is nonsingular, symmetric, and has a symmetric square root $B \in \mathbb{C}[A][7$, Theorem 6.4.12 (a) $]$. Since $B^{2}=A^{2}+4 I$, by Lemma 2.1(a), there exists an orthogonal X such that $A=X-X^{T}$.

We consider the second case. Let $k>1$. Set a symmetric B similar to $J_{2 k}(0)$ if A is similar to $J_{k}(2 i) \oplus J_{k}(2 i) \oplus J_{k}(-2 i) \oplus J_{k}(-2 i)$; and set a symmetric B similar to $J_{2 k+1}(0)$ if A is similar to $J_{k}(2 i) \oplus$ $J_{k+1}(2 i) \oplus J_{k}(-2 i) \oplus J_{k+1}(-2 i)$. Note that $B^{2}-4 I$ is symmetric, nonsingular, and has a symmetric square root $S \in \mathbb{C}\left[B^{2}-4 I\right]$ similar to $J_{k}(2 i) \oplus J_{k}(2 i)$ or $J_{k}(2 i) \oplus J_{k+1}(2 i)$. Set $D:=\left[\begin{array}{cc}0 & i S \\ -i S & 0\end{array}\right]$. Notice that D is skew-symmetric, $D^{2}=S^{2} \oplus S^{2}$, and D is orthogonally similar to A. We also have that $D^{2}+4 I=(B \oplus B)^{2}$, and $B \oplus B$ is symmetric and commutes with D, since S is a polynomial in B. By Lemma 2.1(a), $D=Y-Y^{T}$
for some orthogonal Y, and so, since A is orthogonally similar to D, we have that $A=X-X^{T}$ for some orthogonal X. This takes care of the case when the Jordan blocks of A corresponding to $2 i$ come in pairs of $J_{k}(2 i) \oplus J_{k}(2 i)$ or $J_{k}(2 i) \oplus J_{k+1}(2 i)$, for $k>1$.

For the last case, let A be similar to $2 i I_{n} \oplus-2 i I_{n}$. Set $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$. Observe that $2 J$ is skewsymmetric and orthogonally similar to A. Since J is orthogonal and $-J^{T}=J$, we have that $2 J=J-J^{T}$. It follows that $A=X-X^{T}$ for some orthogonal X.

Proof of Theorem 1.2(b). Let A be symmetric. Suppose that $A^{2}-4 I$ has a skew-symmetric root B in $\mathcal{C}(A)$. Lemma 2.3(a) implies that there is an orthogonal matrix X such that

$$
\begin{equation*}
X A X^{-1}=A_{\lambda_{1}} \oplus \cdots \oplus A_{\lambda_{k}} \oplus A_{2} \oplus A_{-2} \tag{3.11}
\end{equation*}
$$

where $\sigma\left(A_{\mu}\right)=\{\mu\}$ and $\lambda_{1}, \ldots, \lambda_{k}, 2,-2$ are the $k+2$ distinct eigenvalues of A. Since $X B X^{-1}$ commutes with $X A X^{-1}$,

$$
\begin{equation*}
X B X^{-1}=B_{\lambda_{1}} \oplus \cdots \oplus B_{\lambda_{k}} \oplus B_{2} \oplus B_{-2} \tag{3.12}
\end{equation*}
$$

where each B_{μ} is skew-symmetric and $B_{\mu}^{2}=A_{\mu}^{2}-4 I$. If $\mu= \pm 2$, then B_{μ}^{2} is nilpotent and the Jordan form of a nilpotent skew-symmetric B_{μ} given by Lemma 2.3(b) yields the Jordan block restrictions (ii), (iii), and (iv) for A_{μ}. If $\mu \neq \pm 2$, then B_{μ} is nonsingular. By Lemma 2.3(b)(i), $\sigma\left(B_{\mu}\right)=\left\{\sqrt{\mu^{2}-4},-\sqrt{\mu^{2}-4}\right\}$ and the Jordan form of B_{μ} is a direct sum of matrices of the form $J_{k}\left(\sqrt{\mu^{2}-4}\right) \oplus J_{k}\left(-\sqrt{\mu^{2}-4}\right)$. Hence, the Jordan form of A_{μ} is a direct sum of matrices of the form $J_{k}(\mu) \oplus J_{k}(\mu)$. This proves necessity. For the converse, we may assume, by Lemma 2.3(a) and Lemma 2.4(a), that A is similar to
(1) $J_{k}(\lambda) \oplus J_{k}(\lambda)$, where $\lambda \neq \pm 2,0$,
(2) $J_{k}(\lambda) \oplus J_{k}(\lambda) \oplus J_{k}(\lambda) \oplus J_{k}(\lambda)$, for any $k>1$ and $\lambda= \pm 2$,
(3) $J_{k+1}(\lambda) \oplus J_{k}(\lambda)$, where $\lambda= \pm 2$,
(4) λI_{k}, where $\lambda= \pm 2$, or
(5) $A_{0}:=A_{1} \oplus A_{1}$, where A_{1} is symmetric and similar to $J_{k}(0)$.

We show for each case that $A=X+X^{T}$ for some orthogonal X. For each of the cases (1) - (4), we respectively set a skew-symmetric B similar to
(1) $J_{k}\left(\sqrt{\lambda^{2}-4}\right) \oplus J_{k}\left(-\sqrt{\lambda^{2}-4}\right)$
(2) $J_{2 k}(0) \oplus J_{2 k}(0)$
(3) $J_{2 k+1}(0)$
(4) 0_{k}

Observe that $B^{2}+4 I$ is nonsingular, symmetric, and has a symmetric square root $R \in \mathbb{C}[B]$ that is similar to A. By Lemma 2.1, $R=Y+Y^{T}$ for some orthogonal matrix Y, and since R is orthogonally similar to A, we have $A=X+X^{T}$ for some orthogonal X.

For the last case, we observe that $A_{1}^{2}-4 I$ is nonsingular and symmetric, and thus has a symmetric square root $T \in \mathbb{C}\left[A_{1}\right]$. Set $B:=\left[\begin{array}{cc}0 & i T \\ -i T & 0\end{array}\right]$. Note that B is skew-symmetric, commutes with A_{0}, and $B^{2}=A_{0}^{2}-4 I$. By Lemmas 2.1 and 2.4, we have that $A=X+X^{T}$ for some orthogonal X.

Acknowledgement. This work was funded by the UP System Enhanced Creative Work and Research Grant (ECWRG-2021-1-4R).

REFERENCES

[1] R.J. de la Cruz, D.I. Merino, and A.T. Paras. Skew ϕ polar decompositions. Linear Algebra Appl., 531:129-140, 2017.
[2] R.J. de la Cruz, A.T. Paras. The sums of symplectic, Hamiltonian, and skew-Hamiltonian matrices. Linear Algebra Appl., 603:84-90, 2020.
[3] G. Frobenius. Über die mit einer Matrix vertauschbaren Matrizen. Sitzungber. Preuss Akad. Wiss., 3-15, 1910.
[4] D. Granario, D.I. Merino, and A.T. Paras. The sum of two ϕ_{S} orthogonal matrices when $S^{-T} S$ is normal and $-1 \notin$ $\sigma\left(S^{-T} S\right)$. Linear Algebra Appl., 495:67-89, 2016.
[5] R. Gow and T.J. Laffey. Pairs of alternating forms and products of two skew-symmetric matrices. Linear Algebra Appl., 63:119-132, 1984.
[6] R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press, New York, 2013.
[7] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[8] R.A. Horn and D.I. Merino. Contragradient equivalence: A canonical form and some applications. Linear Algebra Appl., 214:43-92, 1995.
[9] R.A. Horn and D.I. Merino. The Jordan canonical forms of complex orthogonal and skew symmetric matrices. Linear Algebra Appl., 302-303:411-421, 1999.
[10] T.J. Laffey. Products of skew-symmetric matrices. Linear Algebra Appl., 68:249-251, 1985.
[11] D.I. Merino. The sum of orthogonal matrices. Linear Algebra Appl., 436:1960-1968, 2012.
[12] H. Radjavi. Products of Hermitian matrices and symmetries. Proc. Amer. Math. Soc., 12:369-372, 1969; Errata, Proc. Amer. Math. Soc. 26:701, 1970.

[^0]: *Received by the editors on May 14, 2022. Accepted for publication on September 16, 2022. Handling Editor: Roger Horn. Corresponding Author: Ralph John de la Cruz.
 ${ }^{\dagger}$ Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines (rjdelacruz@math. upd.edu.ph, agnes@math.upd.edu.ph).

