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SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES*

RALPH JOHN DE LA CRUZ' AND AGNES T. PARAST

Abstract. An n-by-n matrix A is called symmetric, skew-symmetric, and orthogonal if AT = A, AT = —A, and AT = A~1,
respectively. We give necessary and sufficient conditions on a complex matrix A so that it is a sum of type “orthogonal +
symmetric” in terms of the Jordan form of A — AT, We also give necessary and sufficient conditions on a complex matrix A so
that it is a sum of type “orthogonal + skew-symmetric” in terms of the Jordan form of A + AT.
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1. Introduction. A matrix A is called

o symmetric if AT = A,
o skew-symmetric if AT = —A,
e orthogonal if A is nonsingular and AT = A1,

Several mathematicians have studied matrix decompositions involving the above special matrices. Frobenius
showed that every matrix over F € {R,C} is a product of two symmetric matrices [3] (see also the work of
Radjavi [12]). Gow and Laffey gave necessary and sufficient conditions for a matrix over an arbitrary field
to be a product of two skew-symmetric matrices [5]. Laffey later on proved that if n = 0 mod 4 and A is
an n-by-n matrix over an algebraically closed field with characteristic not equal to 2, then A is a product of
five skew-symmetric matrices [10]. Horn and Merino showed that a complex matrix A may be written as a
product A = QR, where Q is orthogonal and R is symmetric if and only if AAT is similar to AT A [9]. De
la Cruz et al. gave necessary and sufficient conditions for a complex matrix A to be written as a product
A = QR, where @ is orthogonal and R is skew-symmetric [1]. If n > 1, Merino showed that any matrix over
F € {R,C,H} is a sum of a finite number of orthogonal matrices [11]. Granario et al. gave necessary and
sufficient conditions for a complex matrix to be written as a sum of two orthogonal matrices [4].

The main result of this paper is the following theorem which gives necessary and sufficient conditions
for a complex matrix A to be written as A = @ + R, where @ is orthogonal and R is either symmetric or
skew-symmetric. For a complex number A, we denote by Ji(\) the k-by-k upper triangular Jordan block
with eigenvalue .

THEOREM 1.1. Let A € C"*™ be given. Then

(a) A= A;+ Ag, for some orthogonal Ay and symmetric Ag if and only if the Jordan blocks of A— AT
with eigenvalue 2i of size greater than one come in pairs of Ji(2i) ® Ji(21) or Ji(2i) ® Jpr1(27).

(b) A = By + By, for some orthogonal By and skew-symmetric By, if and only if A+ AT is similar to
a direct sum of matrices of the form
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(1) Je(X ) ® Ji(A), where X # £2,

(2) Jk(A) ® Ju(X) & Je(A) @ Ji(A), for any k> 1 and A = £2,
(3) Jet1(N) @ Ji(N), where A = £2, or

(4) Ay, where A =2, —2.

The authors have a similar study on symplectic, skew-Hamiltonian, and Hamiltonian matrices in [2].

If A has a decomposition as in Theorem 1.1(a), then
(1.1) A—AT = A+ Ay — (A1 + A)T = Ay + Ay — AT — AT = A, — AT,
Conversely, if A — AT = A; — AT for some orthogonal A;, then
(1.2) A—A =AT AT —(A— AT,

is symmetric and A = Ay + (A — A;) is a decomposition of A as in Theorem 1.1(a). Analogous arguments
show that A has a decomposition from Theorem 1.1(b) if and only if A+ AT = By + BT for some orthogonal
B;. The following theorem implies statements (a) and (b) of Theorem 1.1.

THEOREM 1.2. Let A € C™"*™ be given.

(a) If A is skew-symmetric, then A = X — X' for some orthogonal X if and only if the Jordan blocks
of A with eigenvalue 2i and size greater than one, if any, come in pairs of Jx(2i) ® Ji(2i) or
T (20) ® Jii (20).

(b) If A is symmetric, then A = X + X T for some orthogonal X if and only if A is similar to a direct
sum of matrices of the form

(i) Jk(A) @ Ji(N), where X # £2,

(ii) Je(N) @ Jk(X) @ Je(N) @ Ji(X), for any k > 1 and X = 2,
(iil) Jg+1(A) @ Jk (), where A = £2, or
(iv) Ay, where A =2, —2.

We give some preliminary observations in Section 2 and prove Theorem 1.2 in Section 3.

2. Preliminaries. The conditions for the decompositions in Theorem 1.2 can be stated in terms of
the existence of symmetric or skew-symmetric square roots of a symmetric matrix. By C(A4), we mean the
centralizer of the square matrix A, that is,

(2.3) C(A)={X eC""|AX = X A}.
LEMMA 2.1. Let A € C™ ™ be given.

(a) If A is skew-symmetric, then A = X — X for some orthogonal X if and only if A%+ 41 has a
symmetric square root in C(A).

(b) If A is symmetric, then A = X + XT for some orthogonal X if and only if A2 — 4I has a skew-
symmetric square root in C(A).

Proof. Let A be skew-symmetric. Suppose A = X — X7 for some matrix X. If X is orthogonal, then
XT = X~1, and so we consider orthogonal solutions to the matrix equation

(2.4) A=X-X"1
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If X is a solution to (2.4), then X € C(A). Now (2.4) is equivalent to
(2.5) I=(X-A)X=X?-AX.

By completing the squares in (2.5), we get (X — 3A4)? = 1 (A2 +41). If, in addition, X is orthogonal and we
set Y:=X — 1A then Y € C(A), Y? = 1(A? + 4I), and

(2.6) YT:XT—%AT:X*1+%A:(X—A)Jr%A:Y.

Thus, Z := 2Y is a symmetric square root of A% +4I and Z € C(A).

Conversely, suppose Z € C(A) and Z is a symmetric square root of A% +41. Set Y := %Z and set
X =Y+ %A. Then Y € C(A), Y is symmetric,

1 1 1 1 1
T _ = . _ 2 T A2 i 2 T A2 —
(2.7) XX = <Y+ 2A> (Y 2A) Y 4A 4Z 4A I,
and
. 1 1
(2.8) X-X =Y+§A— Y—§A = A.
This proves (a). The proof of (b) is analogous. |

Note that the existence of a decomposition in Theorem 1.2 is invariant under orthogonal similarity, and
so the following theorem is useful.

LEmMMA 2.2 ([8, Corollary 22]). Two complex matrices which are both symmetric, both skew-symmetric,
or both orthogonal are similar if and only if they are orthogonally similar.

A matrix A has a square root if and only if the nilpotent part of A, if any, is similar to a direct sum
of matrices of the form 0,,, Jn(0) & Jn(0), or Jn(0) & Jpm41(0) for any m [7, Theorem 6.4.12]. To prove
Theorem 1.2 it helps to know the Jordan structure of a symmetric or skew-symmetric matrix. Any square
complex matrix is similar to a symmetric matrix and so there are no restrictions on the Jordan form of
a symmetric matrix [6, Theorem 4.4.9]. For a skew-symmetric matrix A, the Jordan form of A must be
expressible as a direct sum of matrices of the form Jx(A) @ Ji (=) for A # 0, Ji(0) & Ji(0) for even k, or
Ji(0) for odd k. Conversely, when A is similar to the direct sum of any of the preceding Jordan blocks, then
A is similar to a skew-symmetric matrix [9]. Thus, by Lemma 2.2, we have the following.

LEMMA 2.3. Let A € C"*" be given. Then

(a) A is symmetric if and only if A is orthogonal similar to ®;A;, where each A; is a symmetric matric
that is similar to a Jordan block.

(b) A is skew-symmetric if and only if A is orthogonal similar to ®;A;, where each A; is skew-symmetric
and similar to one of the following:
(1) Jk(A) & Ji(=A) for any A # 0,
(2) Ji(0) ® Jx(0) for any even k, and
(3) Ji(0) for any odd k.

The following result reduces our problem to symmetric or skew-symmetric matrices having at most two
eigenvalues. Let o(A) denote the spectrum of a matrix A.
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LEMMA 2.4. Let A = @2, A; for some square complex matrices A; with pairwise disjoint spectra. Then

(a) A is symmetric such that A2 — 41 has a skew-symmetric square oot that commutes with A if and
only if each A; is symmetric and A? — 41 has a skew-symmetric square root that commutes with A;.

(b) A is skew-symmetric such that A? + 41 has a symmetric square oot that commutes with A if and
only if each A; is skew-symmetric and A? + 41 has a symmetric square root .

Proof. We only do (a). Sufficiency follows from the fact that a direct sum of skew-symmetric matrices
is skew-symmetric. For necessity, let B be a skew-symmetric square root of A? — 41 that commutes with A.
Since 0(A;) No(A;) = 0 for ¢ # j, Sylvester’s theorem [6, Theorem 2.4.4.1] implies that B = &}, B; and
partitioned conformal to A. Hence each B; is a skew-symmetric square root of A7 — 41 that commutes with
A;. |

3. Proof of Theorem 1.2. For A € C"*", we let C[4] := {p(A) |p(z) € C[z]} denote the set of all
polynomials in A.

Proof of Theorem 1.2(a). Let A be skew-symmetric. Suppose that A =Y — Y7 for some orthogonal Y.
By Lemma 2.1, A% +41 has a symmetric square root B which commutes with A. Lemma 2.3(b) implies that
there is a nonsingular matrix X such that

(3.9) XAX '=A1 0 —-A; @ A,

where each A; is symmetric, 0(A1) = {2i}, and 2i, —2i ¢ 0(Asz). Since XBX ! € C(XAX 1), the eigenvalue
conditions above and Sylvester’s theorem imply that

(3.10) XBX ™' =B, @By ® Bs,

which is partitioned conformal to X AX~!. Tt follows that B? = A? + 41, that is, the nilpotent matrix
A2 441 has a square root, and this gives the Jordan block restrictions stated in Theorem 1.2(a). This proves
necessity.

Conversely, suppose the Jordan blocks of A with eigenvalue 2i and size greater than 1, if any, come in
pairs Ji(2i) @ Ji(2¢) or Jx(2¢) @ Jr41(2¢). By Lemma 2.3(b) and Lemma 2.4(b), we may assume that

(1) o(A) does not contain 2¢ and —24, or

(2) A is similar to Jk(%) ©® Jk(2i) D Jk(—Qi) (&) Jk(—Zi) or Jk(Zi) (S5 Jk+1(2i) @ Jk(—Qi) (S5 Jk+1(—2i) for
k>1, or

(3) A is similar to 2il, & —2il,.

If o(A) N {2i,—2i} = 0, then A2 + 4] is nonsingular, symmetric, and has a symmetric square root
B € C[A] [7, Theorem 6.4.12 (a)]. Since B? = A? +4I, by Lemma 2.1(a), there exists an orthogonal X such
that A =X — X7,

We consider the second case. Let k > 1. Set a symmetric B similar to Joi(0) if A is similar to

Ik (20) @ Ji(20) @ Ji(—2i) @ Jp(—2i); and set a symmetric B similar to Jog41(0) if A is similar to J;(2i) &
Ji41(248) © Jp(—2i) @ Jg11(—2i). Note that B2 — 41 is symmetric, nonsingular, and has a symmetric square
0 S
—iS 0
skew-symmetric, D? = S?@® 5%, and D is orthogonally similar to A. We also have that D? + 41 = (B® B)?,
and B® B is symmetric and commutes with D, since S is a polynomial in B. By Lemma 2.1(a), D =Y —Y 7T

root S € C[B? — 41| similar to Ji(2i) ® Jx(2i) or Jy(2i) ® Jxs1(2i). Set D := [ } Notice that D is
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for some orthogonal Y, and so, since A is orthogonally similar to D, we have that A = X — X7 for some
orthogonal X. This takes care of the case when the Jordan blocks of A corresponding to 2i come in pairs of
Ji(21) ® Jg(2i) or Ji(2i) ® Jr11(24), for k > 1.

For the last case, let A be similar to 2¢I, & —2il,. Set J = [ OI I(ﬂ Observe that 2J is skew-
symmetric and orthogonally similar to A. Since .J is orthogonal and —J% = .J, we have that 2J = J — JT.
It follows that A = X — X7 for some orthogonal X. |

Proof of Theorem 1.2(b). Let A be symmetric. Suppose that A? — 41 has a skew-symmetric root B in
C(A). Lemma 2.3(a) implies that there is an orthogonal matrix X such that

(3.11) XAX ' =A\, @ DAy, ® A D Ao,

where o(A,) = {u} and Ai,..., A, 2, —2 are the k + 2 distinct eigenvalues of A. Since X BX ! commutes
with XAX !,

(3.12) XBX'=B),® - ©®B\ ©®By®B_,,

where each B, is skew-symmetric and B, = A% —4I. If y = +2, then B}, is nilpotent and the Jordan form
of a nilpotent skew-symmetric B,, given by Lemma 2.3(b) yields the Jordan block restrictions (ii), (iii), and
(iv) for A,. If 4 # £2, then B, is nonsingular. By Lemma 2.3(b)(i), o0(B,) = {\/p2 — 4, —/p% — 4} and
the Jordan form of B, is a direct sum of matrices of the form Jy(\/pu? —4) @ Ji(—/p? —4). Hence, the
Jordan form of A, is a direct sum of matrices of the form Jj(u) ® Ji(n). This proves necessity. For the
converse, we may assume, by Lemma 2.3(a) and Lemma 2.4(a), that A is similar to

(1) Je(N\) @ Jx(N), where X # +2,0,

(2) Je(A\) @ Je(N) & Jx(A) @ Ji (), for any k > 1 and A = 2,
(3) Jet1(N) & Jk(A), where A = 2,

(4) Ay, where A = +2, or

(5) Ap:= A; ® Ay, where A; is symmetric and similar to Jx(0).

We show for each case that A = X + X7 for some orthogonal X. For each of the cases (1) - (4), we
respectively set a skew-symmetric B similar to

(1) Jk(VA2 —4) @ Jp(—V A2 —4)
(2) J2x(0 )@Jzk( )
(3) J2+1(0)
(4) 0

4) O

Observe that B2 + 41 is nonsingular, symmetric, and has a symmetric square root R € C[B] that is similar
to A. By Lemma 2.1, R =Y + Y7 for some orthogonal matrix Y, and since R is orthogonally similar to A,
we have A = X + X7 for some orthogonal X.

For the last case, we observe that A? — 4] is nonsingular and symmetric, and thus has a symmetric

0 T
—i7 0
B? = AZ — 4I. By Lemmas 2.1 and 2.4, we have that A = X + X7 for some orthogonal X. 0

square root T € C[A1]. Set B := [ ] Note that B is skew-symmetric, commutes with A, and
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