SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES

RALPH JOHN DE LA CRUZ† AND AGNES T. PARAS†

Abstract. An n-by-n matrix A is called symmetric, skew-symmetric, and orthogonal if $A^T = A$, $A^T = -A$, and $A^T = A^{-1}$, respectively. We give necessary and sufficient conditions on a complex matrix A so that it is a sum of type “orthogonal + symmetric” in terms of the Jordan form of $A - A^T$. We also give necessary and sufficient conditions on a complex matrix A so that it is a sum of type “orthogonal + skew-symmetric” in terms of the Jordan form of $A + A^T$.

Key words. Orthogonal, Symmetric, Skew-symmetric, Sums, Decompositions.

AMS subject classifications. 15A21, 15A23.

1. Introduction. A matrix A is called
- symmetric if $A^T = A$,
- skew-symmetric if $A^T = -A$,
- orthogonal if A is nonsingular and $A^T = A^{-1}$.

Several mathematicians have studied matrix decompositions involving the above special matrices. Frobenius showed that every matrix over $F \in \{\mathbb{R}, \mathbb{C}\}$ is a product of two symmetric matrices [3] (see also the work of Radjavi [12]). Gow and Laffey gave necessary and sufficient conditions for a matrix over an arbitrary field to be a product of two skew-symmetric matrices [5]. Laffey later on proved that if $n \equiv 0 \mod 4$ and A is an n-by-n matrix over an algebraically closed field with characteristic not equal to 2, then A is a product of five skew-symmetric matrices [10]. Horn and Merino showed that a complex matrix A may be written as a product $A = QR$, where Q is orthogonal and R is symmetric if and only if AA^T is similar to $A^T A$ [9]. De la Cruz et al. gave necessary and sufficient conditions for a complex matrix A to be written as a product $A = QR$, where Q is orthogonal and R is skew-symmetric [1]. If $n > 1$, Merino showed that any matrix over $F \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ is a sum of a finite number of orthogonal matrices [11]. Granario et al. gave necessary and sufficient conditions for a complex matrix to be written as a sum of two orthogonal matrices [4].

The main result of this paper is the following theorem which gives necessary and sufficient conditions for a complex matrix A to be written as $A = Q + R$, where Q is orthogonal and R is either symmetric or skew-symmetric. For a complex number λ, we denote by $J_k(\lambda)$ the k-by-k upper triangular Jordan block with eigenvalue λ.

Theorem 1.1. Let $A \in \mathbb{C}^{n \times n}$ be given. Then

(a) $A = A_1 + A_2$, for some orthogonal A_1 and symmetric A_2 if and only if the Jordan blocks of $A - A^T$ with eigenvalue $2i$ of size greater than one come in pairs of $J_k(2i) \oplus J_k(2i)$ or $J_k(2i) \oplus J_{k+1}(2i)$.
(b) $A = B_1 + B_2$, for some orthogonal B_1 and skew-symmetric B_2, if and only if $A + A^T$ is similar to a direct sum of matrices of the form

*Received by the editors on May 14, 2022. Accepted for publication on September 16, 2022. Handling Editor: Roger Horn. Corresponding Author: Ralph John de la Cruz.
†Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines (rjdelacruz@math.upd.edu.ph, agnes@math.upd.edu.ph).
If \(A \) has a decomposition as in Theorem 1.1(a), then
\[
A - A^T = A_1 + A_2 - (A_1 + A_2)^T = A_1 + A_2 - A_1^T - A_2^T = A_1 - A_1^T.
\]

Conversely, if \(A - A^T = A_1 - A_1^T \) for some orthogonal \(A_1 \), then
\[
A - A_1 = A^T - A_1^T = (A - A_1)^T,
\]
is symmetric and \(A = A_1 + (A - A_1) \) is a decomposition of \(A \) as in Theorem 1.1(a). Analogous arguments show that \(A \) has a decomposition from Theorem 1.1(b) if and only if \(A + A^T = B_1 + B_1^T \) for some orthogonal \(B_1 \). The following theorem implies statements (a) and (b) of Theorem 1.1.

Theorem 1.2. Let \(A \in \mathbb{C}^{n \times n} \) be given.

(a) If \(A \) is skew-symmetric, then \(A = X - X^T \) for some orthogonal \(X \) if and only if the Jordan blocks of \(A \) with eigenvalue \(2i \) and size greater than one, if any, come in pairs of \(J_k(2i) \oplus J_k(2i) \) or
\[
J_k(2i) \oplus J_{k+1}(2i).
\]

(b) If \(A \) is symmetric, then \(A = X + X^T \) for some orthogonal \(X \) if and only if \(A \) is similar to a direct sum of matrices of the form
\[
\begin{align*}
(1) & \ J_k(\lambda) \oplus J_k(\lambda), \text{ where } \lambda \neq \pm 2, \\
(2) & \ J_k(\lambda) \oplus J_k(\lambda) \oplus J_2(\lambda), \text{ for any } k > 1 \text{ and } \lambda = \pm 2, \\
(3) & \ J_{k+1}(\lambda) \oplus J_k(\lambda), \text{ where } \lambda = \pm 2, \text{ or} \\
(4) & \ \lambda I_k, \text{ where } \lambda = 2, -2.
\end{align*}
\]

We give some preliminary observations in Section 2 and prove Theorem 1.2 in Section 3.

2. Preliminaries. The conditions for the decompositions in Theorem 1.2 can be stated in terms of the existence of symmetric or skew-symmetric square roots of a symmetric matrix. By \(\mathcal{C}(A) \), we mean the centralizer of the square matrix \(A \), that is,
\[
\mathcal{C}(A) := \{ X \in \mathbb{C}^{n \times n} \mid AX =XA \}.
\]

Lemma 2.1. Let \(A \in \mathbb{C}^{n \times n} \) be given.

(a) If \(A \) is skew-symmetric, then \(A = X - X^T \) for some orthogonal \(X \) if and only if \(A^2 + 4I \) has a symmetric square root in \(\mathcal{C}(A) \).

(b) If \(A \) is symmetric, then \(A = X + X^T \) for some orthogonal \(X \) if and only if \(A^2 - 4I \) has a skew-symmetric square root in \(\mathcal{C}(A) \).

Proof. Let \(A \) be skew-symmetric. Suppose \(A = X - X^T \) for some matrix \(X \). If \(X \) is orthogonal, then \(X^T = X^{-1} \), and so we consider orthogonal solutions to the matrix equation
\[
A = X - X^{-1}.
\]
If X is a solution to (2.4), then $X \in \mathcal{C}(A)$. Now (2.4) is equivalent to
\begin{equation}
I = (X - A)X = X^2 - AX.
\end{equation}

By completing the squares in (2.5), we get
\begin{equation}
(X - \frac{1}{2}A)^2 = \frac{1}{4}(A^2 + 4I).
\end{equation}

If, in addition, X is orthogonal and we set $Y := X - \frac{1}{2}A$, then $Y \in \mathcal{C}(A)$, $Y^2 = \frac{1}{4}(A^2 + 4I)$, and
\begin{equation}
Y^T = X^T - \frac{1}{2}A^T = X^{-1} + \frac{1}{2}A = (X - A) + \frac{1}{2}A = Y.
\end{equation}

Thus, $Z := 2Y$ is a symmetric square root of $A^2 + 4I$ and $Z \in \mathcal{C}(A)$.

Conversely, suppose $Z \in \mathcal{C}(A)$ and Z is a symmetric square root of $A^2 + 4I$. Set $Y := \frac{1}{2}Z$ and set $X := Y + \frac{1}{2}A$. Then $Y \in \mathcal{C}(A)$, Y is symmetric,
\begin{equation}
XX^T = \left(Y + \frac{1}{2}A\right)\left(Y - \frac{1}{2}A\right) = Y^2 - \frac{1}{4}A^2 = \frac{1}{4}Z^2 - \frac{1}{4}A^2 = I,
\end{equation}
and
\begin{equation}
X - X^T = Y + \frac{1}{2}A - \left(Y - \frac{1}{2}A\right) = A.
\end{equation}

This proves (a). The proof of (b) is analogous.

Note that the existence of a decomposition in Theorem 1.2 is invariant under orthogonal similarity, and so the following theorem is useful.

Lemma 2.2 ([8, Corollary 22]). Two complex matrices which are both symmetric, both skew-symmetric, or both orthogonal are similar if and only if they are orthogonally similar.

A matrix A has a square root if and only if the nilpotent part of A, if any, is similar to a direct sum of matrices of the form 0_m, $J_m(0) \oplus J_m(0)$, or $J_m(0) \oplus J_{m+1}(0)$ for any m [7, Theorem 6.4.12]. To prove Theorem 1.2 it helps to know the Jordan structure of a symmetric or skew-symmetric matrix. Any square complex matrix is similar to a symmetric matrix and so there are no restrictions on the Jordan form of a symmetric matrix [6, Theorem 4.4.9]. For a skew-symmetric matrix A, the Jordan form of A must be expressible as a direct sum of matrices of the form $J_k(\lambda) \oplus J_k(-\lambda)$ for $\lambda \neq 0$, $J_k(0) \oplus J_k(0)$ for even k, or $J_k(0)$ for odd k. Conversely, when A is similar to the direct sum of any of the preceding Jordan blocks, then A is similar to a skew-symmetric matrix [9]. Thus, by Lemma 2.2, we have the following.

Lemma 2.3. Let $A \in \mathbb{C}^{n \times n}$ be given. Then

(a) A is symmetric if and only if A is orthogonal similar to $\oplus_i A_i$, where each A_i is a symmetric matrix that is similar to a Jordan block.

(b) A is skew-symmetric if and only if A is orthogonal similar to $\oplus_i A_i$, where each A_i is skew-symmetric and similar to one of the following:

1. $J_k(\lambda) \oplus J_k(-\lambda)$ for any $\lambda \neq 0$,
2. $J_k(0) \oplus J_k(0)$ for any even k, and
3. $J_k(0)$ for any odd k.

The following result reduces our problem to symmetric or skew-symmetric matrices having at most two eigenvalues. Let $\sigma(A)$ denote the spectrum of a matrix A.
LEMMA 2.4. Let $A = \bigoplus_{i=1}^{n} A_i$ for some square complex matrices A_i with pairwise disjoint spectra. Then
(a) A is symmetric such that $A^2 - 4I$ has a skew-symmetric square root that commutes with A if and only if each A_i is symmetric and $A_i^2 - 4I$ has a skew-symmetric square root that commutes with A_i.
(b) A is skew-symmetric such that $A^2 + 4I$ has a symmetric square root that commutes with A if and only if each A_i is skew-symmetric and $A_i^2 + 4I$ has a symmetric square root.

Proof. We only do (a). Sufficiency follows from the fact that a direct sum of skew-symmetric matrices is skew-symmetric. For necessity, let B be a skew-symmetric square root of $A^2 - 4I$ that commutes with A. Since $\sigma(A_i) \cap \sigma(A_j) = \emptyset$ for $i \neq j$, Sylvester’s theorem [6, Theorem 2.4.4.1] implies that $B = \bigoplus_{i=1}^{n} B_i$ and partitioned conformal to A. Hence each B_i is a skew-symmetric square root of $A_i^2 - 4I$ that commutes with A_i.

3. Proof of Theorem 1.2. For $A \in \mathbb{C}^{n \times n}$, we let $\mathbb{C}[A] := \{ p(A) | p(x) \in \mathbb{C}[x] \}$ denote the set of all polynomials in A.

Proof of Theorem 1.2(a). Let A be skew-symmetric. Suppose that $A = Y - Y^T$ for some orthogonal Y. By Lemma 2.1, $A^2 + 4I$ has a symmetric square root B which commutes with A. Lemma 2.3(b) implies that there is a nonsingular matrix X such that

\[XAX^{-1} = A_1 \oplus -A_1 \oplus A_2, \]

where each A_i is symmetric, $\sigma(A_1) = \{2i\}$, and $2i, -2i \notin \sigma(A_2)$. Since $XBX^{-1} \in \mathbb{C}(XAX^{-1})$, the eigenvalue conditions above and Sylvester’s theorem imply that

\[XBX^{-1} = B_1 \oplus B_2 \oplus B_3, \]

which is partitioned conformal to XAX^{-1}. It follows that $B_1^2 = A_1^2 + 4I$, that is, the nilpotent matrix $A_1^2 + 4I$ has a square root, and this gives the Jordan block restrictions stated in Theorem 1.2(a). This proves necessity.

Conversely, suppose the Jordan blocks of A with eigenvalue $2i$ and size greater than 1, if any, come in pairs $J_k(2i) \oplus J_{k+1}(2i)$ or $J_k(-2i) \oplus J_{k+1}(-2i)$. By Lemma 2.3(b) and Lemma 2.4(b), we may assume that

1. $\sigma(A)$ does not contain $2i$ and $-2i$.
2. A is similar to $J_k(2i) \oplus J_{k+1}(2i)$ for $k > 1$, or A is similar to $2iI_n \oplus -2iI_n$.

If $\sigma(A) \cap \{2i, -2i\} = \emptyset$, then $A^2 + 4I$ is nonsingular, symmetric, and has a symmetric square root $B \in \mathbb{C}[A]$ [7, Theorem 6.4.12 (a)]. Since $B^2 = A^2 + 4I$, by Lemma 2.1(a), there exists an orthogonal X such that $A = X - X^T$.

We consider the second case. Let $k > 1$. Set a symmetric B similar to $J_{2k}(0)$ if A is similar to $J_{k}(2i) \oplus J_{k+1}(2i)$, and A is similar to $J_{2k}(0)$ if A is similar to $J_{k}(2i) \oplus J_{k+1}(2i)$ or $J_{k}(2i) \oplus J_{k+1}(2i)$. Note that $B^2 - 4I$ is symmetric, nonsingular, and has a symmetric square root $S \in \mathbb{C}[B^2 - 4I]$ similar to $J_{k}(2i) \oplus J_{k}(2i)$ or $J_{k}(2i) \oplus J_{k+1}(2i)$. Set $D := \begin{bmatrix} 0 & iS \\ -iS & 0 \end{bmatrix}$. Notice that D is skew-symmetric, $D^2 = S^2 \oplus S^2$, and D is orthogonally similar to A. We also have that $D^2 + 4I = (B \oplus B)^2$, and $B \oplus B$ is symmetric and commutes with D, since S is a polynomial in B. By Lemma 2.1(a), $D = Y - Y^T$. \[\]
for some orthogonal Y, and so, since A is orthogonally similar to D, we have that $A = X - X^T$ for some orthogonal X. This takes care of the case when the Jordan blocks of A corresponding to $2i$ come in pairs of $J_k(2i) \oplus J_k(2i)$ or $J_k(2i) \oplus J_{k+1}(2i)$, for $k > 1$.

For the last case, let A be similar to $2iI_n \oplus -2iI_n$. Set $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$. Observe that $2J$ is skew-symmetric and orthogonally similar to A. Since J is orthogonal and $-J^T = J$, we have that $2J = J - J^T$. It follows that $A = X - X^T$ for some orthogonal X.

Proof of Theorem 1.2(b). Let A be symmetric. Suppose that $A^2 - 4I$ has a skew-symmetric root B in $\mathbb{C}(A)$. Lemma 2.3(a) implies that there is an orthogonal matrix T such that

\[(3.11) \quad XAX^{-1} = A_{\lambda_1} \oplus \cdots \oplus A_{\lambda_k} \oplus A_2 \oplus A_{-2},\]

where $\sigma(A_{\mu}) = \{\mu\}$ and $\lambda_1, \ldots, \lambda_k, 2, -2$ are the $k + 2$ distinct eigenvalues of A. Since XBX^{-1} commutes with XAX^{-1},

\[(3.12) \quad XBX^{-1} = B_{\lambda_1} \oplus \cdots \oplus B_{\lambda_k} \oplus B_2 \oplus B_{-2},\]

where each B_{μ} is skew-symmetric and $B_{\mu}^2 = A_{\mu}^2 - 4I$. If $\mu = \pm 2$, then B_{μ}^2 is nilpotent and the Jordan form of a nilpotent skew-symmetric B_{μ} given by Lemma 2.3(b) yields the Jordan block restrictions (ii), (iii), and (iv) for A_{μ}. If $\mu \neq \pm 2$, then B_{μ} is nonsingular. By Lemma 2.3(b)(i), $\sigma(B_{\mu}) = \{\sqrt{\mu^2 - 4}, -\sqrt{\mu^2 - 4}\}$ and the Jordan form of B_{μ} is a direct sum of matrices of the form $J_k(\sqrt{\mu^2 - 4}) \oplus J_k(-\sqrt{\mu^2 - 4})$. Hence, the Jordan form of A_{μ} is a direct sum of matrices of the form $J_k(\mu) \oplus J_k(\mu)$. This proves necessity. For the converse, we may assume, by Lemma 2.3(a) and Lemma 2.4(a), that A is similar to

1. $J_k(\lambda) \oplus J_k(\lambda)$, where $\lambda \neq \pm 2, 0$,
2. $J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda) \oplus J_k(\lambda)$, for any $k > 1$ and $\lambda = \pm 2$,
3. $J_{k+1}(\lambda) \oplus J_k(\lambda)$, where $\lambda = \pm 2$,
4. λI_k, where $\lambda = \pm 2$, or
5. $A_0 := A_1 \oplus A_1$, where A_1 is symmetric and similar to $J_k(0)$.

We show for each case that $A = X + X^T$ for some orthogonal X. For each of the cases (1) - (4), we respectively set a skew-symmetric B similar to

1. $J_k(\sqrt{\mu^2 - 4}) \oplus J_k(-\sqrt{\mu^2 - 4})$
2. $J_{2k}(0) \oplus J_{2k}(0)$
3. $J_{2k+1}(0)$
4. 0_k

Observe that $B^2 + 4I$ is nonsingular, symmetric, and has a symmetric square root $R \in \mathbb{C}[B]$ that is similar to A. By Lemma 2.1, $R = Y + Y^T$ for some orthogonal matrix Y, and since R is orthogonally similar to A, we have $A = X + X^T$ for some orthogonal X.

For the last case, we observe that $A_1^2 - 4I$ is nonsingular and symmetric, and thus has a symmetric square root $T \in \mathbb{C}[A_1]$. Set $B := \begin{bmatrix} 0 & iT \\ -iT & 0 \end{bmatrix}$. Note that B is skew-symmetric, commutes with A_0, and $B^2 = A_0^2 - 4I$. By Lemmas 2.1 and 2.4, we have that $A = X + X^T$ for some orthogonal X. \qed
Acknowledgement. This work was funded by the UP System Enhanced Creative Work and Research Grant (ECWRG-2021-1-4R).

REFERENCES