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Abstract. In this paper, by using majorization inequalities, upper bounds on summations of

eigenvalues (including the trace) of the solution for the Lyapunov matrix differential equation are

obtained. In the limiting cases, the results reduce to bounds of the algebraic Lyapunov matrix

equation. The effectiveness of the results are illustrated by numerical examples.
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1. Introduction. Consider the Lyapunov matrix differential equation

Ṗ (t) = ATP (t) + P (t)A +Q, P0 = P (t0),(1.1)

and the algebraic Lyapunov matrix equation

ATP + PA+Q = 0,(1.2)

where Q is a constant positive semi-definite matrix and A is a constant (Hurwitz)

stable real matrix, P0 ≥ 0, and solution of (1.1) and (1.2) are positive semi-definite.

The main objective of this paper is to find estimates for the positive semi-definite

solution matrices P (t) and P for (1.1) and (1.2), respectively.

The Lyapunov matrix differential equation is important to the stability of linear

time-varying systems. In many applications such as signal processing and robust sta-

bility analysis, it is important to find reasonable bounds for summations including

the trace, and for products including the determinant, of the solution eigenvalues of

the Lyapunov matrix differential equation and the algebraic Lyapunov matrix equa-

tion (ALE)([1]). Although the exact solution of the Lyapunov equation can be found

numerically, the computational burden increases with the dimension of the system

matrices. Therefore, it is necessary to find a reasonable estimate for the solution of

the Lyapunov equation in stability analysis and control design, such as the upper and

lower bounds for the eigenvalues of the solution ([2]).
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However, in some cases, we want to know about the mean size of the solution.

For example, in the optimal regulator problem, the optimal cost can be written as

J = xT
0 Px0(1.3)

where x0 ∈ Rn is the initial states of the system and P is the positive definite solution

of the algebraic Riccati equation(ARE)

ATP + PA− PRP = −Q.

An interpretation of tr(P ) is that tr(P )/n is the average value of the cost (1.3) as x0

varies over the surface of a unit sphere.

Therefore, considering the applications, many scholars have attempted to pay

much attention to the bounds on summations of eigenvalues (including the trace) of

the solution for the Lyapunov matrix differential equation, the algebraic Lyapunov

matrix equation and the algebraic Riccati equation ([3]-[13]). However, most of the

previous bounds are presented under the restrictive assumption that A+ AT is neg-

ative definite. In this paper, by using majorization inequalities, we will remove this

assumption and provide bounds on summations including the trace, of the solution

eigenvalues of (1.1) and (1.2).

2. Notations and Previous Results. In the following, letRn×n(Cn×n) denote

the set of n × n real (complex) matrices. For A ∈ Rn×n, we assume AT , |A|, A−1,

tr(A), λi(A)(1 ≤ i ≤ n) are the transpose, the determinant, the inverse, the trace and

n eigenvalues of A, respectively. Let A ∈ Rn×n be an arbitrary symmetric matrix,

then we assume that the eigenvalues of A are arranged so that λ1(A) ≥ λ2(A) ≥ · · · ≥
λn(A). For any k = 1, 2, . . . , n, the term λ1(A) + λ2(A) + · · ·+ λk(A) is denoted by

s(A, k) and the trace of A is tr(A) = s(A, n). The notation A > 0 (A ≥ 0) is used

to denote that A is a symmetric positive definite (semi-definite) matrix. As in [5], we

define a matrix measure µ2(A) = λ1(As), where As =
1
2 (A+AT ), and suppose there

exists some matrix F > 0 such that µF (A) < 0, where µF (A) =
1
2λ1(FAF−1 +AT ).

Let x = (x1, x2, · · · , xn) be a real n−element array which is arranged in non-increasing

order. i.e., x[1] ≥ x[2] ≥ · · · ≥ x[n].

Let x, y be two real n−element arrays, if they satisfy

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, · · · , n,(2.1)

then x is called weakly majorized by y, which is signed by x ≺w y.

We give the following lemmas to prove the main results.
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Lemma 2.1. ([14]) Let H = HT ∈ Rn×n, U ∈ Ck×n, 1 ≤ k ≤ n, then

k∑

i=1

λi(H) = max
UUT=Ik

trUHUT .(2.2)

Lemma 2.2. ([15, p.48]) Let G ≥ 0 and H ≥ 0 , then for k = 1, 2, · · · , n,
k∑

i=1

λi(GH) ≤
k∑

i=1

λi(G)λi(H).(2.3)

with equality when k = n.

Lemma 2.3. ([14, p.95, H.3.b]) If x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn and x ≺w y, then

for any real array u1 ≥ · · · ≥ un ≥ 0,

k∑

i=1

xiui ≤
k∑

i=1

yiui, k = 1, 2, · · · , n.(2.4)

Lemma 2.4. ([16, p.515]) For any A1, · · · , Ak ∈ Rn×n and all m = 1, 2, · · ·,

lim
m→∞

[e
A1

m e
A2

m · · · e
Ak

m ]m = eA1+A2+···+Ak .(2.5)

Lemma 2.5. For any matrix A ∈ Rn×n, we have

k∑

i=1

λi(e
AeA

T

) ≤
k∑

i=1

λi(e
A+AT

).(2.6)

Proof. From [14, ch. 9, A. 1. a], we know λi(BC) = λi(CB), for B,C ∈ Rn×n.

Considering Lemma 2.2, for any matrix X ∈ Rn×n and all m = 1, 2, · · ·, we obtain

k∑

i=1

λi(X
m(Xm)T ) =

k∑

i=1

λi(X
m(XT )m)(2.7)

=

k∑

i=1

λi(X(Xm−1)(XT )m−1XT )

=

k∑

i=1

λi((X
m−1)(XT )m−1XTX)
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≤
k∑

i=1

λi((X
m−1)(XT )m−1)λi(X

TX).

We proceed by induction on m, then in the same manner as (2.7), we have

k∑

i=1

λi(X
m(Xm)T ) ≤

k∑

i=1

λi(XXT )m.(2.8)

Let Y = Xm in (2.8), then we have

k∑

i=1

λi(Y Y T ) ≤
k∑

i=1

λi[Y
1

m (Y T )
1

m ]m.(2.9)

Then for any matrix A ∈ Rn×n, if we choose eA = Y in (2.9), we obtain

k∑

i=1

λi(e
AeA

T

) ≤
k∑

i=1

λi[e
A

m e
A

T

m ]m.(2.10)

From Lemma 2.4, let m → ∞ in (2.10), then we have

k∑

i=1

λi(e
AeA

T

) ≤ lim
m→∞

k∑

i=1

λi[e
A

m e
A

T

m ]m(2.11)

=
k∑

i=1

λi[ lim
m→∞

(e
A

m e
A

T

m )m]

=

k∑

i=1

λi(e
A+AT

).

This completes the proof.

3. Main Results. In this section, we first give a new upper bound on summa-

tions including the trace, of the solution eigenvalues of (1.1) under the single assump-

tion that A is a constant (Hurwitz) stable matrix. Then, we give a modification of

(1.1), and give a new upper bound on summations including the trace, of the solution

eigenvalues of (1.1).

Theorem 3.1. Suppose that the real matrix A is stable and A+AT is nonsingular,

then we have

s(P (t), k) ≤
k∑

i=1

λi(P (t0))e
λi(A+AT )(t−t0) −

k∑

i=1

λi(Q)

λi(A+AT )
(3.1)
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+

k∑

i=1

λi(Q)eλi(A+AT )(t−t0)

λi(A+AT )
.

Proof. The solution of (1.1) can be expressed as

P (t) = eA
T (t−t0)P (t0)e

A(t−t0) +

∫ t

t0

eA
T (t−s)QeA(t−s)ds.

Since P (t) = PT (t), then from Lemma 2.1, we know there exists a k × n functional

matrix U(t) such that

s(P (t), k) =

k∑

i=1

λi(P (t))

= max
U(t)UT (t)=Ik

tr(U(t)P (t)UT (t))

= max
U(t)UT (t)=Ik

[tr(U(t)eA
T (t−t0)P (t0)e

A(t−t0)UT (t))

+tr(U(t)

∫ t

t0

eA
T (t−s)QeA(t−s)dsUT (t))]

≤ max
U(t)UT (t)=Ik

tr(U(t)eA
T (t−t0)P (t0)e

A(t−t0)UT (t))

+ max
U(t)UT (t)=Ik

tr(U(t)

∫ t

t0

eA
T (t−s)QeA(t−s)dsUT (t)).

Note that there is no relation between the functional matrix U(t) and the integral

variable s, and for any function matrix w(t) with order n, we have

tr

∫ t

t0

w(s)ds =

n∑

i=1

∫ t

t0

wii(s)ds =

∫ t

t0

n∑

i=1

wii(s)ds =

∫ t

t0

trw(s)ds.

Since P (t0), Q ≥ 0, then from Lemma 2.2, we obtain

s(P (t), k) ≤ max
U(t)UT (t)=Ik

tr(P (t0)e
A(t−t0)UT (t)U(t)eA

T (t−t0))(3.2)

+ max
U(t)UT (t)=Ik

tr

∫ t

t0

U(t)eA
T (t−s)QeA(t−s)UT (t)ds
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= max
U(t)UT (t)=Ik

tr(P (t0)e
A(t−t0)UT (t)U(t)eA

T (t−t0))

+ max
U(t)UT (t)=Ik

∫ t

t0

tr(U(t)eA
T (t−s)QeA(t−s)UT (t))ds

= max
U(t)UT (t)=Ik

k∑

i=1

λi(P (t0)e
A(t−t0)UT (t)U(t)eA

T (t−t0))

+ max
U(t)UT (t)=Ik

∫ t

t0

k∑

i=1

λi(U(t)eA
T (t−s)QeA(t−s)UT (t))ds

= max
U(t)UT (t)=Ik

k∑

i=1

λi(P (t0)e
A(t−t0)UT (t)U(t)eA

T (t−t0))

+ max
U(t)UT (t)=Ik

∫ t

t0

k∑

i=1

λi(QeA(t−s)UT (t)U(t)eA
T (t−s))ds

≤ max
U(t)UT (t)=Ik

k∑

i=1

λi(P (t0))λi(e
A(t−t0)UT (t)U(t)eA

T (t−t0))

+ max
U(t)UT (t)=Ik

∫ t

t0

k∑

i=1

λi(Q)λi(e
A(t−s)UT (t)U(t)eA

T (t−s))ds

= max
U(t)UT (t)=Ik

k∑

i=1

λi(P (t0))λi(e
AT (t−t0)eA(t−t0)UT (t)U(t))

+ max
U(t)UT (t)=Ik

∫ t

t0

k∑

i=1

λi(Q)λi(e
AT (t−s)eA(t−s)UT (t)U(t))ds.

For any l = 1, 2, · · · , k, put ui = λi(P (t0)) ≥ 0 and ui = λi(Q) ≥ 0 in (3.2), from

Lemma 2.2 and Lemma 2.3, we have

k∑

i=1

λi(P (t0))λi(e
AT (t−t0)eA(t−t0)UT (t)U(t))
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≤
k∑

i=1

λi(P (t0))λi(e
AT (t−t0)eA(t−t0))λi(U

T (t)U(t)),(3.3)

k∑

i=1

λi(Q)λi(e
AT (t−s)eA(t−s)UT (t)U(t))

≤
k∑

i=1

λi(Q)λi(e
AT (t−s)eA(t−s))λi(U

T (t)U(t)).(3.4)

Therefore, by Lemma 2.5 and (3.2), (3.3), (3.4), we obtain

s(P (t), k) ≤ max
U(t)UT (t)=Ik

k∑

i=1

λi(P (t0))λi(e
AT (t−t0)eA(t−t0))λi(U

T (t)U(t))(3.5)

+ max
U(t)UT (t)=Ik

∫ t

t0

k∑

i=1

λi(Q)λi(e
AT (t−s)eA(t−s))λi(U

T (t)U(t))ds

≤ max
U(t)UT (t)=Ik

k∑

i=1

λi(P (t0))λi(e
(AT+A)(t−t0))λi(U(t)UT (t))

+ max
U(t)UT (t)=Ik

∫ t

t0

k∑

i=1

λi(Q)λi(e
(AT+A)(t−s))λi(U(t)UT (t))ds by(2.6)

=

k∑

i=1

λi(P (t0))e
λi(A

T+A)(t−t0) +

∫ t

t0

k∑

i=1

λi(Q)eλi(A
T+A)(t−s)ds

=

k∑

i=1

λi(P (t0))e
λi(A

T+A)(t−t0) +

k∑

i=1

(−λi(Q)eλi(A+AT )(t−s)

λi(A+AT )
)|tt0

=

k∑

i=1

λi(P (t0))e
λi(A

T+A)(t−t0) −
k∑

i=1

λi(Q)

λi(A+AT )

+

k∑

i=1

λi(Q)eλi(A+AT )(t−t0)

λi(A+AT )
.
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This completes the proof.

Let k = n, from (3.1), we obtain the following Corollary about (1.1).

Corollary 3.2. Suppose that the real matrix A is stable and A+AT is nonsin-

gular, then we have

tr(P (t)) ≤
n∑

i=1

λi(P (t0))e
λi(A+AT )(t−t0)−

n∑

i=1

λi(Q)

λi(A+AT )
+

n∑

i=1

λi(Q)eλi(A+AT )(t−t0)

λi(A+AT )
.

(3.6)

Remark 3.3. Note that for i = 1, · · · , n, we have λi(P (t0)) ≤ λ1(P (t0)), λi(Q) ≤
λ1(Q). Then

n∑

i=1

λi(P (t0))e
λi(A+AT )(t−t0) −

n∑

i=1

λi(Q)

λi(A+AT )
+

n∑

i=1

λi(Q)eλi(A+AT )(t−t0)

λi(A+AT )

≤ λ1(P (t0))tr(e
(A+AT )(t−t0))− λ1(Q)tr((A +AT )−1) + λ1(Q)

n∑

i=1

eλi(A+AT )(t−t0)

λi(A+AT )
.

This implies that (3.1) is better than Theorem 3.1 in [5].

If λ1(A + AT ) < 0, when t → ∞ in (3.1) and (3.6), we obtain estimates for the

algebraic Lyapunov matrix equation (1.2) and we have the following corollaries.

Corollary 3.4. Suppose that the real matrix A is stable and λ1(A+AT ) < 0,

then we have

s(P, k) ≤ −
k∑

i=1

λi(Q)

λi(A+AT )
.(3.7)

Corollary 3.5. Suppose that the real matrix A is stable and λ1(A + AT ) < 0,

then we have

tr(P ) ≤ −
n∑

i=1

λi(Q)

λi(A+AT )
.(3.8)

Note that (3.8) is Theorem 3.5 in [5].

To remove the restrictive assumption that µ2(A) < 0, we give a modification of

(1.1) as follows:

˙̃
P (t) = ÃT P̃ (t) + P̃ (t)Ã + Q̃.(3.9)
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Ã = TAT−1, P̃ (t) = T−1P (t)T−1, Q̃ = T−1QT−1,

with T =
√
F , F > 0 such that µF (A) < 0. Obviously,

˙̃
P (t) = T−1Ṗ (t)T−1.

Applying Lemma 2.3 and Theorem 3.1 to (3.9), we can easily obtain the following

theorem.

Theorem 3.6. Let F be a positive definite matrix satisfying µF (A) < 0, then

s(P (t), k) ≤
k∑

i=1

λi(F )λi(P̃ (t0))(e
λi(Ã+ÃT )(t−t0))−

k∑

i=1

λi(F )λi(F
−1Q)

λi(FAF−1 +AT )
(3.10)

+

k∑

i=1

λi(F )λi(F
−1Q)eλi(FAF−1+AT )(t−t0)

λi(FAF−1 +AT )
.

Proof. Note that

T =
√
F , λi(Q̃) = λi(T

−1QT−1) = λi(F
−1Q),

λi(Ã+ ÃT ) = λi(TAT
−1 + T−1ATT ) = λi(FAF−1 +AT ).

So µF (A) < 0 is equivalent to µ2(Ã) < 0, i.e., Ã + ÃT is nonsingular. Then from

Theorem 3.1, we obtain

s(P̃ (t), k) =

k∑

i=1

λi(P̃ (t))(3.11)

≤
k∑

i=1

λi(P̃ (t0))e
λi(Ã+ÃT )(t−t0) −

k∑

i=1

λi(Q̃)

λi(Ã+ ÃT )
+

k∑

i=1

λi(Q̃)eλi(Ã+ÃT )(t−t0)

λi(Ã+ ÃT )
.

And (3.11) can be written as

k∑

i=1

[λi(P̃ (t)) − λi(F
−1Q)

λi(FAF−1 +AT )
eλi(FAF−1+AT )(t−t0)](3.12)

≤
k∑

i=1

[λi(P̃ (t0))e
λi(Ã+ÃT )(t−t0) − λi(F

−1Q)

λi(FAF−1 +AT )
].

As

λ1(P̃ (t)) ≥ · · · ≥ λn(P̃ (t)) ≥ 0,
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λ1(P̃ (t0)) ≥ · · · ≥ λn(P̃ (t0)) ≥ 0,

λ1(F
−1Q) ≥ · · · ≥ λn(F

−1Q) ≥ 0,

eλ1(FAF−1+AT )(t−t0) ≥ · · · ≥ eλn(FAF−1+AT )(t−t0) ≥ 0,

[−λ1(FAF−1 +AT )]−1 ≥ · · · ≥ [−λn(FAF−1 +AT )]−1 ≥ 0.

Then

λ1(P̃ (t))− λ1(F
−1Q)

λ1(FAF−1 +AT )
eλ1(FAF−1+AT )(t−t0) ≥

· · · ≥ λn(P̃ (t)) − λn(F
−1Q)

λn(FAF−1 +AT )
eλn(FAF−1+AT )(t−t0) ≥ 0,

λ1(P̃ (t0))e
λ1(Ã+ÃT )(t−t0) − λ1(F

−1Q)

λ1(FAF−1 +AT )
≥

· · · ≥ λn(P̃ (t0))e
λn(Ã+ÃT )(t−t0) − λn(F

−1Q)

λn(FAF−1 +AT )
≥ 0.

Let

xi = λi(P̃ (t))− λi(F
−1Q)

λi(FAF−1 +AT )
eλi(FAF−1+AT )(t−t0),

yi = λi(P̃ (t0))e
λi(Ã+ÃT )(t−t0) − λi(F

−1Q)

λi(FAF−1 +AT )
.

From (3.12), then we have

(x1, x2, · · · , xn) ≺w (y1, y2, · · · , yn).

Choose ui = λi(F ), since λ1(F ) ≥ λ2(F ) ≥ · · · ≥ λn(F ) ≥ 0. Then applying Lemma

2.3 to (3.12), we have

k∑

i=1

[λi(P̃ (t))− λi(F
−1Q)

λi(FAF−1 +AT )
eλi(FAF−1+AT )(t−t0)]λi(F )(3.13)

≤
k∑

i=1

[λi(P̃ (t0))e
λi(Ã+ÃT )(t−t0) − λi(F

−1Q)

λi(FAF−1 +AT )
]λi(F ).
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From (3.13), using the relationship
k∑

i=1

λi(P (t)) =
k∑

i=1

λi(P̃ (t)F ) and Lemma 2.2, it

follows that

k∑

i=1

λi(P (t)) =
k∑

i=1

λi(P̃F )

≤
k∑

i=1

λi(P̃ (t))λi(F )

≤
k∑

i=1

[λi(P̃ (t0))e
λi(Ã+ÃT )(t−t0) − λi(F

−1Q)

λi(FAF−1 +AT )
]λi(F )

+
k∑

i=1

λi(F )λi(F
−1Q)eλi(FAF−1+AT )(t−t0)

λi(FAF−1 +AT )
.

This completes the proof.

Let k = n, from (3.10), we obtain the following corollary about (1.1).

Corollary 3.7. Let F be a positive definite matrix satisfying µF (A) < 0, then

tr(P (t)) ≤
n∑

i=1

λi(F )λi(P̃ (t0))e
λi(Ã+ÃT )(t−t0)(3.14)

−
n∑

i=1

λi(F )λi(F
−1Q)

λi(FAF−1 +AT )
+

n∑

i=1

λi(F )λi(F
−1Q)eλi(FAF−1+AT )(t−t0)

λi(FAF−1 +AT )
.

When t → ∞ in (3.10) and (3.14), we obtain estimates for the algebraic Lyapunov

matrix equation (1.2) and we have the following corollaries.

Corollary 3.8. Let F be a positive definite matrix satisfying µF (A) < 0, then

s(P, k) ≤ −
k∑

i=1

λi(F )λi(F
−1Q)

λi(FAF−1 +AT )
.(3.15)

Corollary 3.9. Let F be a positive definite matrix satisfying µF (A) < 0, then

tr(P ) ≤ −
n∑

i=1

λi(F )λi(F
−1Q)

λi(FAF−1 +AT )
.(3.16)
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Remark 3.10. Note that for i = 1, · · · , n, we have λi(F ) ≤ λ1(F ). Then

−
n∑

i=1

λi(F )λi(F
−1Q)

λi(FAF−1 +AT )
≤ −λ1(F )

n∑

i=1

λi(F
−1Q)

λi(FAF−1 +AT )
.

This implies that (3.15) is better than Theorem 3.7 in [5].

4. Numerical Examples. In this section, we present examples to illustrate the

effectiveness of the main results.

Example 4.1. Let

A =




−1 −2 0

1 −1 5

0 −4 −1



 , Q =




1 0 0

0 1 0

0 0 1



 ,

P (t0) = P (0) =




3 1 −2

1 4 0

−2 0 2


 .

Case 1. k = 2, t = 0.5.

By (3.1), we obtain

s(P (0.5)), 2) ≤ 4.0643.

However, ([5, Theorem 3.1]) can’t be used.

Case 2. k = 3, t = 0.5.

By ([5, Theorem 3.1]), we obtain

tr(P (0.5)) ≤ 6.6676.

By (3.1), we obtain

s(P (0.5)), 3) = tr(P (0.5)) ≤ 6.1845.

Thus, (3.1) is better than ([5, Theorem 3.1]).

Example 4.2. Let

A =




−1 2 0

0 −1 0

0 0 −1


 , Q =




1 0 0

0 1 0

0 0 1


 .
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Since µ2(A) = 0, we can not use Theorem 3.1.

We choose F =




ε2 0 0

0 1 0

0 0 1


 , where ε > 0 is to be determined, we choose

ε = 0.5.

Using Corollary 3.2 in [5], we have

tr(P ) ≤ 6.0000.

Using Theorem 3.6 in [5], we have

tr(P ) ≤ 5.0000.

Using Theorem 3.7 in [5], we have

tr(P ) ≤ 4.8333.

Using (3.15), we have

tr(P ) ≤ 4.5833.

From this example, (3.15) is better than some results in [5].
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